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Abstract

CaSiO3 perovskite was synthesized in a diamond cell and its lattice strain anisotropy was measured under non-hydrostatic
compression to conditions corresponding to 61 GPa. Experiments were performed using energy dispersive synchrotron X-ray
diffraction in a radial geometry. The equation of state of CaSiO3 perovskite obtained from lattice strains measured at different
angles from the loading direction can describe the range of compression curves previously reported under quasi-hydrostatic
and non-hydrostatic conditions. The ratio of the differential stress to the shear modulus increases from 0.016(5) to 0.039(4)
for CaSiO3 perovskite over pressures from 19 to 61 GPa. In combination with a theoretical prediction for the shear modulus,
room-temperature yield strengths are 3–11 GPa for CaSiO3 perovskite over this pressure range. Under the assumption that
the effect of the tetragonal distortion is minimal, the elastic constants for CaSiO3 perovskite were recovered. Single-crystal
elastic constants of CaSiO3 perovskite are in good agreement with theoretical predictions for the cubic phase. In particular,
the elastic anisotropy,S, decreases from 0.0020(7) to 0.0004(2) GPa−1 over the 19–61 GPa pressure range. Comparison with
theoretical elasticity data provides evidence for possible strength anisotropy.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The single-crystal elastic properties of mantle min-
erals are essential for interpreting seismic wave ve-
locities and their lateral variations, as well as for un-
derstanding seismic anisotropy in the mantle. CaSiO3
perovskite is believed to be an important phase in
the Earth’s transition zone and lower mantle on the
basis of laboratory experiments on expected man-
tle compositions as well as examination of natural
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diamond inclusions (Joswig et al., 1995; Fiquet,
2001). Furthermore, it has been suggested as a possi-
ble host of large cations such as rare earth elements
(REE) and radioactive elements in the deep mantle
(Kato et al., 1988). Hence the physical properties of
CaSiO3 perovskite are of interest for interpreting seis-
mic observations and understanding the geodynamics
and geochemistry of the Earth’s deep interior.

The differential stress supported by a sample un-
der loading is a lower bound to the yield strength, and
thus, is an important parameter for characterizing me-
chanical behavior. The low-temperature, high-stress
conditions within the non-hydrostatic diamond anvil
cell provide insights into rheological behavior in the
regime of low-temperature plasticity. The flow law
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under such conditions is governed by the Peierls stress,
which is the stress required to move dislocations at
0 K (Evans and Goetze, 1979), and is equivalent to the
yield strength. Low-temperature plasticity is impor-
tant for understanding deformation of the lithosphere
(Evans and Goetze, 1979) as well as having technolog-
ical applications, but relatively little is known about
behavior in this regime for silicates. Correlations have
been suggested between the room-temperature flow
stress and activation energy for high-temperature creep
(Karato et al., 1990). In addition to the stress mea-
surements, the texture development observed in radial
diffraction experiments can give insights into deforma-
tion mechanisms and active slip systems. Perovskites
are an important class of compounds and characteriz-
ing their mechanical properties across a wide range of
conditions is desirable.

The elastic and rheological properties of CaSiO3
perovskite are very poorly understood largely because
it is non-quenchable at ambient conditions. Available
results on the elastic properties are restricted to ana-
log (Kung et al., 2001) and theoretical studies (Karki
and Crain, 1998). Recent studies of the orientation
dependence of lattice strains under non-hydrostatic
stress in the diamond anvil cell (radial X-ray diffrac-
tion method) have shown that constraints on these
properties can be obtained for high-symmetry mate-
rials (Singh et al., 1998; Kavner and Duffy, 2001a;
Merkel et al., 2002; Shieh et al., 2002). Most exper-
imental studies reported that CaSiO3 crystallizes in
the cubic structure (Mao et al., 1989; Wang et al.,
1996) and first-principles calculations also supported
this observation (e.g.Hemley et al., 1987; Sherman,
1993; Wentzcovitch et al., 1995). However, other
theoretical calculations favored a tetragonal structure
(Chizmeshya et al., 1996; Stixrude et al., 1996) or
even lower symmetry (Akber-Knutson et al., 2002;
Magyari-Köpe et al., 2002). Calculated energy dif-
ferences between the proposed phases are sufficiently
small that the crystal structure under mantle condi-
tions is uncertain and may be cubic even if a lower
symmetry phase is favored at 0 K (Karki and Crain,
1998). Recently, a high-resolution X-ray diffraction
study reported the first experimental evidence for the
existence of a lower symmetry phase at room temper-
ature through observation of small (<0.4%) splittings
in the (2 0 0) and (2 1 1) diffraction lines (Shim et al.,
2002). In this paper, we report an in-situ strength

and elasticity of CaSiO3 perovskite using energy dis-
persive radial X-ray diffraction together with lattice
strain theory.

2. Experiment

Natural samples from Newburgh, NY were exam-
ined by powder X-ray diffraction and confirmed to be
wollastonite (CaSiO3). No peaks from any impurity
phases were detectable. The powdered sample (grain
size ∼1–3�m) was mixed with 10 wt.% Pt, which
served as a laser absorber and loaded into a 100-�m Be
gasket hole with a pre-indented thickness of∼25�m
in a diamond anvil cell. A small piece of gold foil was
placed on the top within 5�m of the sample center to
serve as a positional reference and pressure standard.
No pressure-transmitting medium was used. CaSiO3
perovskite was synthesized near 20 GPa by laser heat-
ing at temperatures estimated to be less than 1800 K.
The sample was heated using the Nd:YLF laser heat-
ing set-up at the GSECARS sector of the Advanced
Photon Source (Shen et al., 2001). The 20–30�m di-
ameter laser beam was not scanned across the sample
but moved in a step-wise fashion over the whole sam-
ple chamber with the laser beam position held fixed
for ∼2 min at each step. The beam was translated with
a step size of∼10�m in order to ensure overlap of
sequential heating spots. The total heating time was
more than 30 min. Transformation to the CaSiO3 per-
ovskite phase was confirmed by in situ X-ray diffrac-
tion, and no residual diffraction lines attributable to
the starting material were observed.

Energy dispersive radial X-ray diffraction experi-
ments were carried out at beamline 13-BM-D of the
GSECARS sector of the Advanced Photon Source. All
diffraction measurements were made without any fur-
ther heating after the initial synthesis. The incident
X-ray beam was collimated by slits and focused by
a pair of Kirkpatrick-Baez mirrors to a size of ap-
proximately 12�m × 11�m. The beam was directed
through the Be gasket, CaSiO3 perovskite, and inter-
nal standard. The diffraction signal was detected by
a solid-state Ge detector with a fixed angle at 2θ =
11.998(4)◦, which was calibrated with a gold foil
outside the diamond cell. Data were collected only
after sufficient time (i.e. 1–2 h) elapsed after each
compression step to allow for stress relaxation. The
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change ind-spacing over this time interval was gener-
ally less than 0.2% and no further detectable change
in d-spacing was observed over the measurement time
interval. This was verified by recording diffraction pat-
terns for the same orientation at the beginning and end
of the measurements at a given loading step.

Spectra were collected as a function of the angle
(ψ) between the diffraction plane normal and the di-
amond cell loading axis over the range from 0 to 90◦
at approximately 15◦ intervals. Hydrostatic pressure
was determined from data collected atψ = 54.7◦
as described below. Lattice spacings were converted
to pressures using the equations of state for platinum
(Holmes et al., 1989) and/or gold (Shim et al., 2002).
In general, although there is some overlap between
gold and platinum peaks especially at lowerψ an-
gles and high pressures, we found that the pressures
determined from our available gold peaks are con-
sistent with those from platinum ones, i.e. the pres-
sure difference between gold and platinum is of order
1–3 GPa. This also indicates that errors introduced by
any platinum dissolution into gold at high tempera-
ture are minimal. Aside from pressure determination,
however, the gold and platinum diffraction data were
not analyzed in detail.

The measuredd-spacings were analyzed using the
lattice strain theory described bySingh (1993)and
Singh et al. (1998). A sample in the diamond anvil
cell is characterized by a stress,σ3, along the diamond
cell loading axis, and a radial stress,σ1. The tensor
describing the state of stress in the sample can be
divided into hydrostatic and deviatoric components.
The d-spacings obtained from X-ray diffraction are
then given by

dm(hkl) = dp(hkl)[1 + (1 − 3 cos2ψ)Q(hkl)], (1)

where dm is the measuredd-spacing anddp is the
d-spacing under hydrostatic pressure.Q(h k l) is given
by

Q(hkl) =
( t

3

)
{α[2GX

R(hkl)]−1 + (1 − α)(2GV)
−1},

(2)

whereGX
R (h k l) is the X-ray shear modulus under the

Reuss (isostress) limit andGV is shear modulus un-
der the Voigt (isostrain) limit (Singh et al., 1998). The
parameter,α, which can vary between 0 and 1, is the
weighting factor for the relative degree of stress and

strain continuity across grain boundaries in the sample.
We assumed that the sample was under isostress condi-
tions (Kumazawa, 1969) and henceα is taken to be 1.
The effect of varyingα will be considered below. Ac-
cording toEq. (1), whenψ = 54.7◦, then the quantity
1−3 cos2ψ = 0 and the measuredd-spacing is equiv-
alent to that under hydrostatic stress. Thed-spacing at
54.7◦ is obtained from linear fits of the measured data
to Eq. (1). The differential stress,t, can be obtained
from the aggregate shear modulus,G, and the average
Q(h k l) value obtained from all measured reflections
by

t = 6G〈Q(hkl)〉. (3)

Alternatively, the differential stress corresponding
to slip along the plane (h k l) can be obtained if the
elastic constants are known through

t(hkl) = 6G(hkl)Q(hkl). (4)

The differential stress,t, is given byt = σ3 − σ1 ≤
Y = 2τ whereτ is the shear strength, andY is the yield
strength. The elastic tensor can also be obtained from
the measured lattice strain anisotropy (Singh et al.,
1998). For a cubic material, a linear fit toQ(h k l)
versus 3Γ (h k l), whereΓ(h k l) = (h2k2 + k2l2 +
l2h2)/(h2 + k2 + l2)2, yields an intercept,m0, and
slope,m1, that are related to the elastic compliances
for the case whereα = 1 through

m0 = t

3
(S11 − S12), (5)

m1 = − t

3
(S11 − S12 − 0.5S44), (6)

whereS11, S12, andS44 are the three elastic compli-
ances of a cubic crystal (seeSingh et al., 1998for
general expressions that apply to any value ofα). Ad-
ditionally, using the relationship of the bulk modulus,
K, to the single-crystal compliances

1

3K
= S11 + 2S12, (7)

we are able to calculate the three independent elastic
compliances or stiffnesses of a cubic crystal (Singh
et al., 1998). The bulk modulus can be obtained from
the third-order Birch-Manurghan equation of state and
a fit to data atψ = 54.7◦. The elastic anisotropy of a
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cubic crystal can be described by the Zener anisotropy
ratio

A = 2C44

C11 − C12
= 2(S11 − S12)

S44
. (8)

Alternatively, the anisotropy is also commonly de-
scribed using

S = S11 − S12 − S44

2
= S44(A− 1)

2
. (9)

In the caseα = 1, the Zener anisotropy can be
obtained independent of the values oft and G from
(5) and (6)

A = m0

m0 +m1
. (10)

3. Results and discussion

Diffraction spectra of CaSiO3 perovskite were
measured to conditions corresponding to a hydro-
static pressure up to 61 GPa. With increasingψ (or
decreasing strain) all CaSiO3 peaks shifted to lower
energy (higherd-spacing) (Fig. 1). The total shift of
the peaks fromψ = 0 to 90◦ is about 0.5–1 keV at
the highest pressure of this study. While there is some
variation in peak intensity withψ, these are not sys-
tematic and appear to be primarily a result of small
sample position changes. More problematic are peak
overlaps which affect mainly CaSiO3 perovskite’s
(1 1 1) line and the (2 0 0) line to a lesser degree.

The full width at half maximum (FWHM) for the
CaSiO3 perovskite peaks increases from 0.3–0.5 keV
at low pressure to 0.5–1.0 keV at the highest pres-
sures. Consistent with previous energy dispersive
diffraction studies, we are unable to observe any
splitting or anomalous broadening associated with
the low-symmetry distortion found in the recent
high-resolution diffraction study (Shim et al., 2002).
The FWHM of the (2 0 0), (2 1 1), and (2 2 0) reflec-
tions are all similar and slightly larger than that of the
(1 1 0) reflection at all pressures. Furthermore, there
is no evidence for any systematic angle dependence
of the peak width. As a result, we have analyzed
these data using the lattice strain equations for the
cubic system. This may not produce major errors if
the structure remains pseudo-cubic. Indeed, the ef-
fect on the compression curve appears to be minor

Fig. 1. Energy-dispersive X-ray diffraction spectra of CaSiO3 per-
ovskite obtained at different angles from the loading axis. The
value ofψ is indicated next to each spectrum. The pressure, ob-
tained usingEq. (1), is 61 GPa. The sample peaks are labeled with
Miller indices. Au is the internal pressure marker, Pt is the laser
absorber, and bold vertical lines at the bottom denote Be gasket
peaks.

(Shim et al., 2002). However, the effects of the dis-
tortion on the elastic tensor and yield strength are
difficult to predict: even minor distortions can have
major effects near a phase transition boundary (Shieh
et al., 2002). Thus, our results for the elastic tensor
are only tentative and must be subjected to further
examination. We should also note that the symmetry
of CaSiO3 perovskite at lower mantle conditions is
unknown, and indeed may be cubic (Karki and Crain,
1998). Therefore, the physical properties of cubic
CaSiO3 perovskite may well still be of geophysical
importance.

In general, our measuredd-spacings show a linear
relation with 1− 3 cos2ψ, as expected from theory.
The value ofQ(h k l) was determined from the slope
of the linear fit toEq. (1)anddp. Fig. 2 shows plots
of d-spacings as a function of 1− 3 cos2ψ at five
different pressures. The (1 1 0), (1 1 1), (2 0 0), (2 1 1),
and (2 2 0) lines were generally observable through en-
tire range of our measurements and were used for our
data analysis. From the linear fit, we obtaineddp(h k l)
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Fig. 2. d-spacings as a function of 1− 3 cos2ψ for CaSiO3 perovskite at five different pressures. The solid circles are 18.6 GPa, solid
squares are 30.6 GPa, solid triangles are 40.6 GPa, solid diamonds are 52.8 GPa, and crosses are 60.8 GPa. The solid lines are linear fits
to all the individual (h k l) data sets.

values atψ = 54.7◦ or 1−3 cos2ψ = 0 and used these
data to calculate the compression curve of CaSiO3 per-
ovskite. The corresponding pressure was determined
from thed-spacing of gold and/or platinum at this an-
gle.Fig. 3shows a plot ofQ(h k l) as a function of 3Γ .
The (2 1 1) line deviates from the linear trend of the
data at all pressures. However, there is only a minor
effect on the fitted slope and intercept if we removed
this line from consideration. The linear fit ofQ(h k l)
as function of 3Γ (h k l) (Fig. 3) provides two parame-
ters, the intercept,m0 and the slope,m1 for resolving

single-crystal elastic constants (Eqs. (5) and (6)) as
discussed later.

Fig. 4shows the equation of state determined at an-
gles of 0◦, 54.7◦, and 90◦. In each case, we assumed
that thed-spacings of both the pressure marker and
sample at this angle correspond to the volume com-
pression under hydrostatic stress. While this is only
strictly correct at 54.7◦, this method facilitates com-
parison with literature data which typically uses the
same assumption in analyzing axial diffraction data
even when the stress is not hydrostatic. Data fromψ =
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Fig. 3. Q(h k l) as a function of 3Γ (h k l) for CaSiO3 perovskite at 61 GPa.

90◦ are in excellent agreement with non-hydrostatic
compression data reported byMao et al. (1989)as
expected since axial diamond cell experiments are
performed near this angle. This is consistent with
radial diffraction results for other materials including
SiO2 (Shieh et al., 2002) and rhenium (Duffy et al.,
1999). The data fromψ = 54.7◦ agree best with
quasi-hydrostatic data byShim et al. (2002)andWang
et al. (1996), but are less compressible than earlier data
of Shim et al. (2000). A third-order Birch-Manurghan
equation of state fit to the data at 54.7◦ yields a bulk
modulus of 246(18) GPa and pressure derivative of
4.5(1.0), which can be compared with the results of
Wang et al. (1996)(Ko = 232(8)GPa,K′

o = 4.8(3)),
Shim et al. (2000)(Ko = 236(4)GPa,K′

o = 3.9(2))
andShim et al. (2002)(Ko = 255 GPa,K′

o = 4). We
note thatShim et al. (2002)’s equation of state data
are based on fitting to a tetragonal cell.

The ratio of differential stress to shear modu-
lus, t/G, is directly obtained from the slope of the
d-spacing versus 1− 3 cos2ψ relationship (Eqs. (1)
and (3)). In Fig. 5, t/G of CaSiO3 perovskite is

found to be in the range of 0.016(5)–0.039(4) for
pressures of 19–61 GPa. This is lower than observed
for four-coordinated silicates such as ringwoodite
(t/G = ∼5–7% in the pressure range of 6–27 GPa)
(Kavner and Duffy, 2001a) and olivine (Uchida et al.,
1995) but comparable to another six-coordinated sil-
icate, stishovite and its CaCl2-type modification (t/G
= ∼2–4% in the pressure ranges of 15–61 GPa) (Shieh
et al., 2002). Therefore, these results support the pre-
viously observation (Shieh et al., 2002) that strength
as a fraction of shear modulus for six-coordinated sil-
icates is in general lower than that of four-coordinated
silicates at high pressures. Similar results have been
reported for silica glass using radial pressure gradient
measurements in a diamond anvil cell (Meade and
Jeanloz, 1990). It is also worth noting that thet/G
values of CaSiO3 perovskite are close to stishovite
values, which may indicate a common behavior for
octahedral silicates at high pressure. Our observations
here can be compared to systematic relations for the
normalized flow stress,σ/G, observed for different
crystal structures of dense oxides in high-temperature
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third-order Birch-Manurghan equation of state. Open diamonds are fromShim et al. (2002)and long dash line is a fit to their data.

deformation experiments (Karato, 1989). In that study,
the normalized flow stress was observed to decrease
in the order spinel, olivine, and perovskite just as we
observed in our low-temperature experiments (Fig. 5).
A systematic dependence of yield strength on crystal
structure, thus, appears to extend across high- and
low-temperature deformation regimes. Further studies
are needed, however, to confirm the structural trends
observed in diamond cell experiments.

To obtain the differential stress supported by
CaSiO3 perovskite, it is necessary to know the shear
modulus. While estimates of the shear modulus of
CaSiO3 perovskite have been made at ambient pres-
sure based on elasticity systematics (Kung et al., 2001;
Sinelnikov et al., 1998), there are no high-pressure
experimental data available. However, the shear mod-
ulus for cubic CaSiO3 has been determined by den-
sity functional theory calculations to pressures above
100 GPa (Karki and Crain, 1998). Using these values
(and assumingt = Y ), the yield strength of CaSiO3
perovskite is found to increase from 3(1) GPa at
19 GPa to 11(1) GPa at 61 GPa (Fig. 6).

We find that six-coordinated silicates (e.g. CaSiO3
perovskite and stishovite) support lower differential
stresses than four-coordinated silicates even though
the shear moduli of the six-coordinated silicates is
larger. There have been several measurements of
strength of orthorhombic perovskites with composi-
tions at or near (Mg0.9Fe0.1)SiO3 (Meade and Jean-
loz, 1990; Chen et al., 2002; Merkel et al., 2003)
(Fig. 6). Meade and Jeanloz (1990)used measure-
ments of pressure gradients across the sample to
infer shear strengths which we converted to differ-
ential stress (yield strength) inFig. 6. Merkel et al.
(2003) used a similar technique as our study, and
Chen et al. (2002)inferred the strength at room and
high temperatures from measurements of diffraction
peak linewidths in a multi-anvil press. For the data
of Merkel et al. (2003)and Chen et al. (2002), the
reported differential stresses for (Mg0.9Fe0.1)SiO3
are 2–3% of the shear modulus, consistent with our
results for six-coordinated silicates. The strength of
(Mg0.9Fe0.1)SiO3 perovskite is greater than CaSiO3
perovskite. However, there remains considerable
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uncertainty in the strength of (Mg0.9Fe0.1)SiO3 as
reported values vary by nearly a factor of 3 at
15–20 GPa. In high temperature experiments, it has
been noted that the normalized creep strengths of per-
ovskite compositions with orthorhombic symmetry
are larger than those of compositions exhibiting cubic
symmetry (Wang et al., 1999).

It is notable that lattice strain anisotropy and ap-
preciable deviatoric stresses are observed at our low-
est compression step (∼19 GPa) (Figs. 2 and 6) which
was measured after laser heating but without further
compression. It is generally believed that laser anneal-
ing greatly reduces or eliminates differential stresses
in diamond cell samples. However, measurements of
lattice strain anisotropy now allow the reduction in dif-
ferential stress to be quantified. Our findings here are
consistent with previous results from our laboratory
(Shim et al., 2000; Kavner and Duffy, 2001b) which
document significant residual differential stresses after
laser heating. We note, however, that all these observa-
tions follow laser heating restricted to a single heated

spot or a series of heated spots, rather than continuous
rastering of the laser beam across the sample.

In cases where the elastic tensor is known,Eq. (2)
can be solved for individual diffraction lines to inves-
tigate possible anisotropy oft (Eq. (4)). For the cu-
bic crystal system,GR(h k l) can also be related to the
Young’s modulus,E(h k l) in the direction normal to
the diffraction plane, and the linear compressibility,β

(Uchida et al., 1996)

1

2GX
R(hkl)

= 1

2

(
3

E(hkl)
− β

)

= S11 − S12 − 3SΓ(hkl). (11)

The results for specific diffraction lines and con-
verting compliances,Sij, into elastic stiffnesses,Cij,
are

GX
R(200) = 1

2
(C11 − C12), (12)

GX
R(111) = C44, (13)
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GX
R(211) = GX

R(110) = 4C44

A+ 3
. (14)

Using the cubic elastic tensor results ofKarki
and Crain (1998), we find, for example at 41 GPa,
GR(2 0 0) = 195 GPa,GR(1 1 0) = GR(2 1 1) =
266 GPa, andGR(1 1 1) = 303 GPa. Using these re-
sults in Eq. (4), we obtain the differential stresses,
t(h k l), shown in Fig. 7. While the (1 1 0), (2 2 0),
(2 0 0), and (1 1 1) planes yield similar values,
t(h k l) corresponding to the (2 1 1) planes is larger
at high pressure, as expected fromFig. 3. The
high value of (2 1 1) relative to (1 1 0) is not af-
fected by uncertainty in Reuss shear modulus for
these planes asGR(2 1 1) = GR(1 1 0). Our re-
sults suggest that strengths on the (1 0 0), (1 1 0),
and (1 1 1) planes are similar in magnitude. This
is similar to high-temperature observations on
oxide perovskites in which slip is observed on
〈0 0 1〉{1 0 0}, 〈1 1 0〉{11̄ 0}, and 〈11̄ 0〉{1 1 1}

systems (Beauchesne and Poirier, 1990). However,
deformation experiments on oxide perovskites have
revealed a wide range of creep laws, and it is not
easy to generalize across compositions (Wright et al.,
1992).

An alternative approach, and the way in which
strain anisotropy data in the diamond anvil cell have
been normally analyzed (e.g.Singh et al., 1998; Duffy
et al., 1999; Merkel et al., 2002), is to assume no
strength anisotropy and to directly invert for the elastic
moduli (Eqs. (3), (5)–(7)). Again, we emphasize that
the following results are dependent on the assumption
that the slight tetragonal (or lower symmetry) distor-
tion observed byShim et al. (2002), but undetectable
with the techniques of this study, do not affect the
results of Fig. 2. This assumption will need to be
tested in future work. In general, our single-crystal
elastic constants for CaSiO3 perovskite show good
agreement with first-principles calculations (Karki
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and Crain, 1998) (Fig. 8). When we varyα, the
parameter governing stress continuity, from 1 to 0.5,
it is found thatC11 decreases andC12 increases. For
C44, the values obtained atα = 0.5 are much larger at
low pressure but becomes close to those of the theo-
retical predication and values fromα = 1 at high pres-
sure. The anisotropy factor,S = S11 − S12 − 0.5S44,
decreases with increasing pressure, from 0.0020(7) to
0.0004(2) GPa−1 whenα is assumed to be 1 (Fig. 9).
The observed trend is in general good accord with the
theoretical predictions (Karki and Crain, 1998). When
we reduce the value ofα to 0.75 and 0.5, the elastic
anisotropy increases by a more pronounced amount
at low pressure. Furthermore, the anisotropy deviates
increasingly from the theoretical results, suggesting
thatα ≈ 1 is appropriate for this experiment. In fact,
we continue to observe a strong decrease in elastic
anisotropy with pressure in all cases. Thus, a decrease
in the elastic anisotropy of CaSiO3 with pressure,
consistent with theoretical predictions, is supported
by our data, even in the case where� decreases with
pressure.

4. Conclusion

Radial X-ray diffraction of CaSiO3 perovskite under
non-hydrostatic loading and assuming a pseudo-cubic
structure yields a quasi-hydrostatic equation of state
in good agreement with previous experiments. The
ratio of differential stress to shear modulus,t/G varies
between 2 and 4% in the pressure range of 19–61 GPa.
This value is similar to that of stishovite and sug-
gests a common behavior of six-coordinated silicates
at mantle pressures. The differential stress or yield
strength for CaSiO3 perovskite increases from 3 to
11 GPa over the pressure range of our study. Direct
inversion for the cubic elastic constants and elastic
anisotropy of CaSiO3 perovskite from lattice strains
yields good agreement with theoretical predictions
(Karki and Crain, 1998). However, there is evidence
for possible strength anisotropy. Our results indicate
the elastic anisotropy decreases with compression.
While the recently discovered symmetry-reducing
distortion of CaSiO3 perovskite does not appear to
measurably affect the angle dependence of lattice
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strain, numerical values fort and theCij tensor depend
on the assumption that the theoretically calculated
shear modulus and measured lattice strain anisotropy
are not drastically affected by this distortion. Future
studies will be required to evaluate this assumption.
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