GLTRS--Glenn
TITLE AND SUBTITLE:
The Aeroacoustics of Supersonic Coaxial Jets

AUTHOR(S):
Milo D. Dahl

REPORT DATE:
November 1994

FUNDING NUMBERS:
WU-505-52-52

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES):
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

PERFORMING ORGANIZATION REPORT NUMBER:
E-9235

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES):
National Aeronautics and Space Administration
Washington, D.C. 20546-0001

REPORT TYPE AND DATES COVERED:
Technical Memorandum

SPONSORING/MONITORING AGENCY REPORT NUMBER:
NASA TM-106782

SUPPLEMENTARY NOTES:
Responsible person, Milo D. Dahl, organization code 2600, (216) 433-3578.

ABSTRACT:
Instability waves have been established as the dominant source of mixing noise radiating into the downstream arc of a supersonic jet when the waves have phase velocities that are supersonic relative to ambient conditions. Recent theories for supersonic jet noise have used the concepts of growing and decaying linear instability waves for predicting radiated noise. This analysis is extended to the prediction of noise radiation from supersonic coaxial jets. Since the analysis requires a known mean flow and the coaxial jet mean flow is not described easily in terms of analytic functions, a numerical prediction is made for its development. The Reynolds averaged, compressible, boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed for the effects of velocity and temperature ratios and Mach number. Both normal and inverted velocity profile coaxial jets are considered. Comparisons with measurements for both single and coaxial jets show good agreement. The results from mean flow and stability calculations are used to predict the noise radiation from coaxial jets with different operating conditions. Comparisons are made between different coaxial jets and a single equivalent jet with the same total thrust, mass flow, and exit area. Results indicate that normal velocity profile jets can have noise reductions compared to the single equivalent jet. No noise reductions are found for inverted velocity profile jets operated at the minimum noise condition compared to the single equivalent jet. However, it is inferred that changes in area ratio may provide noise reduction benefits for inverted velocity profile jets.

SUBJECT TERMS:
Supersonic coaxial jets; Noise radiation; Instability waves; Mean flow prediction; Noise prediction; Noise reduction

NUMBER OF PAGES:
182

PDF NOT AVAILABLE VIA WEB:
Reports not available in PDF can be purchased from the Center for AeroSpace Information at:
http://www.sti.nasa.gov select Order Information

This page contains an Adobe® Acrobat® Reader PDF file. The PDF documents have been created to show thumbnails of each page. If the thumbnails do not display properly, download the file to the hard drive and view through Acrobat® Reader. You can download Acrobat® Reader for free. click

NASA NASA GLTRS--Glenn


A service of the NASA Glenn Research Center Logistics and Technical Information Division

Suggestions or questions about this site can be directed to:

NASA official: Technical Publications Manager, Sue.E.Butts@nasa.gov

Web curator: Caroline.A.Rist@grc.nasa.gov

Privacy Policy and Important Notices