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Fundamental Power Coupler

• Functions
• Transfer RF power to the cavity through a dielectric window 

vacuum barrier
• Coupling determines the Qext of the cavity

• Performance and reliability
• Low RF reflection and transmission losses with the beam loaded 

cavity
• Low cost
• Mechanical stability
• RF heating and cooling
• Arcing and multipacting
• Low maintenance

• Desired properties of the window material
• High vacuum seal
• Good mechanical strength and thermal conductivity
• Low RF loss 



Coupler Design Consideration

• RF frequency, power level (peak and average), cavity design, 
etc.

• RF matching and adjustment - Impedance matching is made 
individually at the window, the cavity input, and the transition
• Variable coupling ?

• Transmission line type – waveguide or coaxial

• Heat dissipation and cooling

• Material selection and processing

• Number of windows

• Coupler conditioning and operation 
• Window protection - vacuum, cooling, arcing, multipacting
• Control of multipacting and out gassing - DC biasing capacitor
• Water condensation - heating and temperature control



Coupler Equivalent Circuit and Resonant Matching
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Coupler Window Matching with Inductive Chokes

Inductive chokes Cavity

CavityInductive chokes

Unbalanced Matching

Balanced Matching



Ceramic Window Matching

l A thin ceramic window in a transmission line alone has 
significant return loss (-5 ~ -10 dB) due to its shunt capacitive 
loading
» ex) Return loss of a 0.015λ thick, 95% Alumina window in a 0.25λ

diameter 50 Ω coaxial transmission line is about -8 dB

l Tuning out the capacitive loading is required to insure good RF 
power transmission

l Tuning and matching can be done either locally or globally. 
Local tuning is more desirable to eliminate resonant standing 
wave formation in the transmission line.
» It is desired that the ceramic window is matched separately to the 

transmission line. Then, no standing-wave exists between the 
cavity, window, and transition.

» Waveguide impedance transformers can be used separately to 
match both beam loading and phases of superconducting cavity 
from a transmitter. This introduces the standing waves in the 
waveguide.



Windows for Couplers

• Window shape
• Circular or rectangular disks for hollow waveguides 
• Annular disk type for coaxial lines
• Circularly cylindrical window in waveguide transition
• Tapered cone
• Half wavelength thick (λ/2)

• Impedance matching
• Resonant cavity
• Resonant window
• Choke type inductive loading
• Tapered cone
• Half wavelength thick (λ/2)



Waveguide Ceramic Window in Resonant Cavity

lFor a specified operating 
frequency, both the diameter and the 
length of the cavity must be 
optimized

lCylindrical cavity (and ceramic 
window) diameter greater than the 
waveguide dimensions



E- and H-fields in Cylindrical Cavity Window



Waveguide Window (WR-770) with Choke Matching

l For a specified operating 
frequency, only the choke 
depth needs to be optimized.

l Length and diameter of the 
ceramic can be arbitrary

l Cylindrical cavity (and 
ceramic window) diameter 
can be minimized



Waveguide Ceramic Window with Chokes



E-and H-fields in the Waveguide Ceramic with 
Chokes



E- and H-fields of Coaxial Window with Balanced 
Chokes



Coaxial Window with Balanced Choke Matching
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E- and H-fields in Coaxial Window with Inner 
Conductor Chokes



Coaxial Window with Inner Conductor Chokes
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E- and H-fields in Coaxial Window with Outer 
Conductor Chokes



Coaxial Window with Outer Conductor Chokes

-80

-70

-60

-50

-40

-30

-20

-10

0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (GHz)

R
et

ur
n 

Lo
ss

 (
dB

)

d=2.00in

d=2.25in

d=2.50in

d=2.75in

d=3.00in

d=3.25in

d=3.50in

Choke depth



Waveguide to Coaxial Transitions

l Semicircular Short l Miter Short



Return Loss of Transition with Semicircular Short



Waveguide Transition with Dimensional Changes
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Return Loss vs. Doorknob Height Return Loss vs. Short Location

Optimized Transition in WR-975 with Semicircular Short:
•Doorknob height = 2.6013”
•Short Location = 0.6752”



Coupler Design for the SNS SRF LINAC



Couplers for the SNS SRF Linac

• Operating frequency = 805 MHz

• Operating power - 1.3ms pulses at 8% duty
• Peak power = 550kW
• Average power = 44kW 

• Fixed coupling
• Qext = 7.3 x 105  for medium beta cavities
• Qext = 7.0 x 105  for high beta cavities

• Coaxial type derived from 508 MHz KEK-B coaxial coupler 
design
• Coaxial disk type alumina ceramic window
• Rectangular waveguide to coaxial to transition



E-fields around Ceramic Window
Field strengths normalized to 1W input powerz



RF Losses of Matched Ceramic Window



Electric Fields along the Coaxial Structure
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Return Loss of Transition and Ceramic Window



DC Blocking Capacitior for DC Biasing

l Coaxial type couplers allow easy implementation of DC 
blocking capacitors that are used to DC bias for control of 
multipacting and RF conditioning
» Insulated doorknob in the waveguide transition
» Insulated center conductor

l SNS coaxial coupler design uses λ/4 low impedance coaxial 
section with 6 mil Kapton film insulated center conductor to 
realize the capacitior



DC Blocking Capacitor in the Door Knob Transition



Summary

l Inductive choke matching of the ceramic windows is considered 
simple and efficient solution for good RF matching for both 
waveguide and coaxial type couplers

l Very good impedance matching can be achieved by careful 
simulation optimization process

l Non-resonant waveguide type couplers can made using 
inductive choke matching with smaller window

l Coaxial couplers with simple and cost efficient designs maybe 
possible using unbalanced inductive chokes

l In waveguide to coaxial transitions, short circuit position error is 
less sensitive than the doorknob height

l Coaxial DC blocking capacitor can be easily implemented in the 
waveguide to coaxial transition
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