Your browser version may not work well with NCBI's Web applications. More information here...
1: Exp Brain Res. 2005 Oct;166(3-4):465-73. Epub 2005 Jul 19.Click here to read Links

Simultaneity constancy: detecting events with touch and vision.

Centre for Vision Research, York University, Toronto, Ontario, M3J 1P3, Canada.

What are the consequences of visual and tactile neural processing time differences when combining multisensory information about an event on the body's surface? Visual information about such events reaches the brain at a time that is independent of the location of the event. However, tactile information about such events takes different amounts of time to be processed depending on the distance between the stimulated surface and the brain. To investigate the consequences of these differences, we measured reaction times to touches and lights on different parts of the body and the perceived subjective simultaneity (PSS) for various combinations. The PSSs for pairs of stimuli were predicted by the differences in reaction times. When lights and touches were on different body parts (i.e. the hand and foot) a trend towards compensation for any processing time differences was found, such that simultaneity was veridically perceived. When stimuli were both on the foot, subjects perceived simultaneity when the light came on significantly earlier than the touch, despite similar processing times for these stimuli. When the stimuli were both on the hand, however, there was complete compensation for the significant processing time differences between the light and touch such that simultaneity was correctly perceived, a form of simultaneity constancy. To identify if there was a single simultaneity constancy mechanism or multiple parallel mechanisms, we altered the PSS of an auditory-visual stimulus pair and looked for effects on the PSS of a visual-touch pair. After repeated exposure to a light/sound pair with a fixed time lag between them, there was no effect on the PSS of a touch-light pair, suggesting multiple parallel simultaneity constancy mechanisms.

PMID: 16028031 [PubMed - indexed for MEDLINE]