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Abstract

Estimates of production functions suffer from an omitted
variable problem; plant quality is an omitted variable that is
likely to be correlated with variable inputs.  One approach is to
capture differences in plant qualities through plant specific
intercepts, i.e., to estimate a fixed effects model.  For this
technique to work, it is necessary that differences in plant
quality are more or less fixed; if the "fixed effects" erode over
time, such a procedure becomes problematic, especially when
working with long panels.  In this paper, a standard fixed
effects model, extended to allow for serial correlation in the
error term, is applied to a 16-year panel of textile plants. 
This parametric approach strongly accepts the hypothesis of fixed
effects.  They account for about one-third of the variation in
productivity.  A simple non-parametric approach, however,
concludes that differences in plant qualities erode over time,
that is plant qualities N-mix.  Monte Carlo results demonstrate
that this discrepancy comes from the parametric approach imposing
an overly restrictive functional form on the data; if there were
fixed effects of the magnitude measured, one would reject the
hypothesis of N-mixing.  For textiles, at least, the functional
form of a fixed effects model appears to generate misleading
conclusions.  A more flexible functional form is estimated.  The
"fixed" effects actually have a half life of approximately 10 to
20 years, and they account for about one-half the variation in
productivity.      

Keywords: fixed effects; plant level productivity; textile

industries

     *Columbia University and William M. Mercer Inc.  Address
correspondence to 512 West 112th St #3B, New York, NY 10025 or
dwd4@columbia.edu.  The author thanks Andrew Caplin, Vivek



Dehejia, Phoebus Dhrymes, Richard Ericson, Zvi Griliches, Boyan
Jovanovic, Ariel Pakes, and the seminar participants of Columbia
University's Applied Microeconomics Workshop and the NBER
Productivity Program's Lunch Seminar Series for their questions
and ideas.  The assistance of Bob Bechtold, Robert McGuckin and
Arnold Reznek at the Census Bureau's Center for Economic Studies
is highly appreciated.  Any remaining errors, however, are mine
alone.   



1

I. Introduction

Estimates of production functions provide the framework that

economists employ to study the sources of economic growth (cf.

Solow, 1957; Jorgenson, Gollop and Fraumeni, 1987; Bartelsman,

1992; Olley and Pakes, 1992; Gort, Bahk and Wall, 1993).  Until

recently, most of this work has been based on nation-wide or

industry-wide information.  The increasing availability of plant

and firm level data in manufacturing has generated research in

the micro-foundations of productivity growth and the relationship

between plant level productivity dynamics and job flows

(Bartelsman and Dhrymes, 1991; Davis and Haltiwanger, 1992;

Baily, Hulten and Campbell, 1992; Caballero and Hammour, 1994;

Campbell, 1994; Cooley, Greenwood and Yorukoglu, 1994; Atkeson,

Khan and Ohanian, 1995).  As old as the literature on the

analysis of economic growth, however, is the debate on how to

estimate production functions.  That is, how to create the

framework with which to perform the analysis (see Griliches and

Mairesse, 1995 for a recent review of this issue).

Techniques for estimating production functions fall into two

groups, econometric and non-econometric.  The non-econometric (or

accounting) method requires the assumptions of constant returns

to scale and static cost minimization to take the cost shares as

estimates of the output elasticities (cf. Solow, 1957).  Under

the econometric method, one regresses the log of output onto the
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logs of the different types of inputs (cf. Dhrymes, 1991).  The

residual of this equation (times 100) is the percentage of output

produced, above and beyond expected output given the inputs used,

i.e., productivity.  This suggests the intrinsic problem with the

econometric approach: as long as the manager knows more about his

plant than the econometrician, and the manager uses this

knowledge in his choice of inputs, the error term will be

correlated with the independent variables resulting in biased

parameter estimates (hereafter the simultaneity problem).  

The most common "solution" to this problem is a fixed

effects model: one assumes that there are unobserved, permanent

productivity differences across plants and estimates these

differences through plant specific intercepts.  The null

hypothesis of no fixed effects is routinely rejected via an F-

test.  For a panel that is short in the time dimension, this

approach may be reasonable.  Over time, however, it is certainly

possible that these "permanent" productivity differentials change

because the plant retools, the manager retires, and/or the

product mix changes.  In order for a fixed effects model to solve

the simultaneity problem in a long panel, it is necessary that

the "fixed" effects are relatively fixed over the length of the

sample. This brings us in a rather round about way to a recent

non-parametric test of alternative models of industry dynamics

(Pakes and Ericson, 1995).  Pakes and Ericson test an active



     1My test is an application of the general linear model, it is
asymptotically equivalent to Pakes and Ericson's unconstrained
test when I allow for heteroscedasticity of the error term.  
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exploration model (Ericson and Pakes, 1995) against a passive

learning model (Jovanovic, 1982).  In the active exploration

model, firms invest to improve their quality, and hence their

quality may change permanently.  In the passive learning model,

in contrast, firms are born with a fixed quality that they learn

over time.  Therefore, under passive learning there are permanent

differences between plants, i.e., fixed effects.  

The sharpest distinction between the two models involves the

concept of N-mixing--N-mixing is one definition of a stochastic

sequence (xt,xt+1,xt+2,...) becoming independent of the initial

value (x0) as t becomes large.  In the active exploration model,

the effect of being a certain quality today will erode over time

(plant quality N-mixes). In the passive learning model, in

contrast, it cannot (plant quality does not N-mix).  Pakes and

Ericson use firm size (number of employees) as a proxy for firm

quality.  They find that there are permanent differences in the

size of Wisconsin retail firms, which is consistent with the

passive learning model.  The active exploration model, in

contrast, is consistent with Wisconsin manufacturing firms,

because manufacturing firms do not have permanent size

differences.  In this paper, I present a non-parametric test for

N-mixing of plant productivity levels.1   



     2Economists have long been interested in the degree of
persistence in measures of plant/firm quality.  Mueller (1986;
see also Pakes' review, 1987) and Rumuelt (1991) look at profit
rates.  Roberts and Supina examine output price (1994).  Finally,
Dhrymes (1991), Bartelsman and Dhrymes (1991), Baily, Hulten and
Campbell (1992), and Dwyer (1995b) study the persistence in plant
productivity levels.  The technique developed in Section VI may
provide a useful method for describing the nature of persistence
in all of these measures.    

     3The data are an extract of the Longitudinal Research Database
(LRD).  This extremely rich data base is based on the Annual
Survey of Manufactures and the Census of Manufactures. 
Unfortunately, access to the data requires financial support and
a security clearance.  Furthermore, the research must be
performed in residence and removing statistics requires a
clearance procedure to ensure that confidentiality is maintained. 
Further information is available on the Census Bureau's world
wide web site (http://www.census.gov/ces.html).
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The log of total factor productivity (tfp), the residual of

a production function, is arguably a better measure of firm or

plant quality than size in a competitive market.2  In this paper,

I measure tfp at the plant level in the textile industry using a

16-year panel.3  I then test for the presence of fixed effects

using a conventional parametric method, extended to allow for

serial correlation in the error term, and find that there are

permanent differences in tfp.  In fact, the permanent differences

account for about one-third the variation in productivity.  From

the non-parametric viewpoint, in contrast, plant level tfp's N-

mix, which implies that there are no permanent differences in

tfp.  Monte Carlo techniques resolve the discrepancy between the

two approaches; if there actually were fixed effects in the data

of the magnitude measured, the non-parametric test would reject



     4The survival rate is the percentage of plants that were in the
industry in 1972 and were in any manufacturing industry in the
1987 Census.
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the hypothesis of N-mixing.  It appears that the parametric form

of the fixed effects model is too restrictive and consequently

leads to misleading results.  This suggests that parametric

results that find fixed effects in panel data may be misleading.  

This result is consistent with an active exploration model

for plant dynamics in the textile industry; the textile plants

that survive are those that are able to reinvent themselves.  In

terms of our understanding of dynamic industry equilibria, this

finding leads to two more questions.  First, how strong is the

survival condition?  Second, how long does it take plants to

reinvent themselves?  The survival condition is strong but not

overwhelming; sixteen year survival rates range from 30 to 60

percent across the 21 different four-digit textile industries.4 

The answer to the latter question requires one to estimate a more

flexible functional form for the time series properties of plant

level tfp.  

It appears as though there are at least two components to

plant level tfp.  One component is transitory while another is

highly persistent.  The transitory component may result from

idiosyncratic supply or demand shocks and/or transitory

measurement error.  The persistent component may be the product

of managerial and technological differences and/or persistent



     5Not all of the dispersion in productivity levels is the
product of measurement error.  Plants with above average
productivity levels expand faster and are less likely to exit
(Dwyer, 1995b).  I will come back to this issue in the
conclusion. 
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measurement error.  Such a decomposition can be represented as

the sum of two AR(1) processes, with the persistent and

transitory components having a large and a small autocorrelation

coefficient, respectively.  Consistent estimates of these two

components reveal a great deal of persistence in the latter

component; if a plant is 50 percent above average today, net of

the transitory component, you would expect it to be 25 percent

above average 10 to 20 years from now.  This degree of

persistence suggests that either the market is working rather

slowly or there is measurement error in the persistent

component.5  Furthermore, the persistent component explains about

45 percent of the variation in productivity, which is more than

suggested by the fixed effects model.  This suggests that forcing

the persistent component to be fixed understates its importance.

The remainder of this paper is organized as follows.  In the

next section, I present the econometric background behind the

fixed effects model as a solution to the simultaneity problem. 

In section III, I discuss my data and how I measure plant level

tfp.  Sections IV and V present the parametric case for fixed

effects and the non-parametric case for N-mixing, respectively. 

Section V resolves the discrepancy in the two results through



     6For a detailed history of this argument see Griliches and
Mairesse (1995).
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Monte Carlo techniques.  Section VI presents consistent estimates

of a more flexible functional form, which suggest that the fixed

effects actually have a half life of 10 to 20 years.  A brief

consideration of the econometric and economic implications of

these results finishes out the paper.        

II. Econometric Background

The argument for a simultaneity problem in estimates of

production functions is simple and old.6  Its simplest form is

the following.  If the quality of one plant is higher than that

of another, then the owner of the more productive plant will

choose to use more inputs.  This implies that the OLS estimate of

the elasticity of output with respect to the input has an upward

bias, as can be analytically illustrated. 

Suppose the true production function is:

where y is the log of output, x is the log of an input, a is a

plant specific effect that is known to the firm but unknown to

the econometrician (allowing for more than one production input

is straightforward), " is the elasticity of output with respect

to the input, and , is an idiosyncratic shock unknown to both

the manager and the econometrician.  Suppose the manager chooses



     7If there were errors in static optimization, i.e., xit = xit* +
vit, then 

Therefore, the E("̂) goes to " and 1 as Var(v)/Var(a) goes to 4
and 0, respectively.
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x to maximize profits:

where lower case letters denote logarithms, w is the input cost

per unit output and x* denotes the optimal level of the input (In

order for x* to be finite, " must be less the one, i.e.,

decreasing returns to scale.).  Note that x* is positively

correlated with a.  The OLS estimate of " is given by:

Therefore, "̂ has an upward bias ("̂ > "); actually "̂ will always

equal one in this framework (Atkeson, Khan, and Ohanian, 1995).7 

A possible "solution" is to suppose that ait is constant over

time (ait=ai for all t).  Then one either includes plant dummies



     8This hypothesis is rather consistent with what happens to the
capital coefficient when estimating a fixed effects model; it
becomes implausibly small both in my data and others (cf.
Mairesse and Griliches, 1990; Olley and Pakes, 1992; Jones and
Kato, 1995).  Errors in measurement of capital include non-
uniform capacity utilization and the fact that when new
investment actually comes on line is not observed.  It is
reasonable to suspect that these errors in measurement are much
more of a within (xit - xi.) than a between (xi.) phenomenon, that
is they will average out over time (Griliches, 1986 and for
further elaboration see Griliches and Mairesse 1995). 
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or estimates the regression as deviations from the time mean

(yit-yi. on xit-xi.), which is algebraically equivalent (for a

recent exposition of this technique see Green, 1993).  Provided

the rest of the Gauss Markov assumptions apply, the estimate of

" is now unbiased.  Even if ai were truly constant over time,

such a methodology is not without costs.  If there is transitory

measurement error in xit, then subtracting out the time mean of x

increases the noise to signal ratio and aggravates the downward

bias on " associated with the measurement error.8  Nevertheless,

the fixed effects solution is commonly utilized in the

literature; sometimes the technique is contrasted with the

between and total estimates and sometimes instrumental variables

are used (cf. Irwin and Klenow, 1994; Jones and Kato, 1995).    

Early on, the fixed effects technique was applied to

agricultural data (Griliches and Mairesse, 1995).  The hypothesis

that ait is fixed over time seems reasonable when looking at

farms and short time periods.  The quality of the land, which is

relatively fixed over time, is known to the farmer before
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choosing the level of production inputs.  The idiosyncratic

shock, ,, is then viewed as weather, which is unknown to both

the econometrician and the framer until after the inputs have

been purchased.  In manufacturing, however, this interpretation

becomes rather problematic, especially as the time dimension of

panels becomes longer.  For a certain period of time, a plant may

have a fixed technology.  Over time, however, there is always the

possibility of a plant retooling.  If the ait is time varying,

then the fixed effect method can not fully account for the

simultaneity problem.  Of course, the extent to which the fixed

effects method partially accounts for the simultaneity problem is

going to depend on how variable ait is over the sample period.  

III. Estimates of Productivity at the Plant Level.

 My database, an extract of the Longitudinal Research

Database (LRD), includes plants in 21 different four-digit

textile industries from 1972 to 1987.  The panel is highly

unbalanced.  This results from plants entering and exiting as

well as the fact that small plants are sampled with a probability

of less than 1 in non-census years.  The appendix contains a

description of the sampling methods as well as a discussion of

the construction of the each variable.  Table 1 reports the

number of plants and firms ever present in each industry.   

Suppose production in a four digit textile industry can be



     9If there are simultaneity problems and measurement error in
the data, correcting for heteroscedasticity and serial
correlation does not lead to unbiased estimates.  Since I believe
that there are both simultaneity and measurement error in the
data, it is not clear what one would gain by correcting for
heteroscedasticity and serial correlation.      

     10I do not employ plant specific intercepts when estimating "
and $, because they lead to implausibly low estimates of $, the
output elasticity of capital.
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represented by a value added Cobb-Douglas production function:

where y is value added, l is total employment, k is gross book

value of capital, and , is the residual, i.e., the log of total

factor productivity.  This paper will examine the stochastic

process behind the estimated residual, tfp.  In order to estimate

the residual, I first need consistent estimates of " and $,

i.e., I need to perform the first stage of GLM.  In order to

obtain efficient estimates of " and $, one would then use the

knowledge of the stochastic process behind the residual to

estimate the second stage of a GLM procedure (for example, a

random effects model).9  

I use the OLS estimates of " and $ after including time and

time region dummies to take into account potential simultaneity

problems resulting from aggregate shocks.10  Dwyer (1994) argues

that this technique does reduce the simultaneity bias in the

estimates of " and $.  It is likely, however, that these dummy



     11Labor share is computed as the weighted average of total
compensation divided by value added over the whole sample, where
the weights are the real value added of each plant.  The labor
share is consistently smaller than the econometric estimate of
".  Therefore, this measure of productivity places a larger
weight on capital productivity.  Labor productivity, measured as
real value added per employee, places no weight on capital
productivity.  Most other measures of productivity, therefore,
should lie "within" these three measures.
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variables do not fully eliminate the simultaneity problems and

certainly do not eliminate the measurement error in the

independent variables.  I have, therefore, conducted robustness

tests of the key results through alternative estimates of " and

$.  I use the labor share and one minus the labor share as

estimates of " and $, which are consistent and unbiased under

the assumptions of static cost minimization and constant returns

to scale.  Additionally, I use labor productivity, which

arbitrarily sets " to 1 and $ to 0.11  Regardless of the measure

of productivity, the results are substantively the same. 

For each four-digit industry, I estimate:

 

The subscripts, itr, denote the plant, time period, and region

respectively.  The indicator variable, Iirt, is defined as: 

Iirt = 1 if year = t and region = r, 
 0 otherwise,



     12tfpit = ,it + ("-"̂)lit + ($- $̂)kit. 
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where region 1 is the mid-atlantic states (NY, NJ and PA), region

2 is the southern states (VA, WV, NC, SC, GA, FL, KY, TN, AL, MS)

and region 0 is all other states.  Table 2 summarizes the results

of these regressions.  Observe that the coefficient estimates are

plausible (the capital coefficient is always greater than 0) and

the production functions exhibit constant returns to scale or

close to constant returns to scale.  The residual, estimated tfp,

is then computed as

 

The estimated tfp is a random variable.  This paper's results,

with respect to statistical inference, pertain to this random

variable rather than its true value.12  The reader may be

concerned with how my results regarding the stochastic process

behind the estimated tfp, ,̂it, relate to the true value of ,it. 

The fact that my results are robust to many measures of

productivity, however, makes it unlikely that these results are

the product of the measurement error in "̂ and $̂.
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Table 1: Number of Firms and Plants Ever Present in Each
Industry

SIC Number
of
Firms

Number
of
Plants
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2211 (Broad woven fabric mills, cotton)
2221 (Broad woven fabrics mills, man made

fiber and silk)
2231 (Broad woven fabric mills, wool)
2241 (Narrow fabrics and other smallwares

mills)
2251 (Women's hosiery above the knee)
2252 (Women's hosiery below the knee)
2253 (Knit outerwear mills)
2254 (Knit underwear mills)
2257 (Circular knit fabric mills)
2258 (Lace goods and warp knit fabrics, an

aggregation see appendix)
2259 (Knitting mills NEC)
2261 (Finishers of broad woven cotton

fabrics)
2262 (Finishers of broad woven man-made

fiber and silk)
2269 (Finishers of textiles NEC)
2273 (Carpets, an aggregation see appendix)
2282 (Yarn texturizing, throwing, twisting

and winding mills)
2283 (Yarn and thread mills, an

aggregation see appendix)
2295 (Coated fabrics, not rubberized)
2296 (Tire cord and fabric)
2297 (Nonwoven fabrics)
2298 (Cordage and twine)
2299 (Textile goods NEC, an aggregation

see appendix)

 334
 531
 233
 422
 325
 541
1583
 139
 922
 499

 180
 447
 468
 321
 678
 380
 586
 344
  22
 217
 249
 885

 496
 776
 249
 460
 376
 609
1645
 167
1008
 548

 177
 471
 523
 337
 733
 432
 858
 355
  34
 249
 267
 931
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Table 2: Estimates of Production Functions

SIC " $ "+$ R2

2211
    
2221
    
2231
    
2241
    
2251
    
2252
    
2253
    
2254
    
2257
    
2258
    
2259
    
2261
    
2262
    
2269
    
2273

2282
    
2283
    
2295
    
2296
    
2297
    
2298
    
2299

 0.8242
 (.0164)
 0.8013
 (.0117)
 0.6936
 (.0274)
 0.7740
 (.0185)
 0.8550
 (.0226)
 0.8678
 (.0177)
 0.6332
 (.0114)
 0.8579
 (.0358)
 0.7718
 (.0144)
 0.7811
 (.0210)
 0.5732
 (.0393)
 0.8333
 (.0265)
 0.8152
 (.0192)
 0.8457
 (.0282)
 0.7585
 (.0198)
 0.7805
 (.0220)
 0.8845
 (.0132)
 0.8193
 (.0258)
 0.9080
 (.0743)
 0.7182
 (.0303)
 0.8304
 (.0271)
 0.7451
 (.0167)

0.1739
(.0131)
0.1720
(.0093)
0.2773
(.0224)
0.1845
(.0136)
0.1665
(.0188)
0.1849
(.0135)
0.3303
(.0091)
0.1369
(.0265)
0.1859
(.0113)
0.2374
(.0161)
0.3632
(.0328)
0.1929
(.0214)
0.1776
(.0152)
0.1784
(.0222)
0.2467
(.0162)
0.1992
(.0165)
0.1319
(.0101)
0.2048
(.0197)
0.1934
(.0716)
0.2739
(.0204)
0.1753
(.0219)
0.2559
(.0131)

0.9981
(.0090)
0.9732*

(.0071)
0.9709 
(.0151)
0.9585*

(.0123)
1.0215 
(.0145)
1.0527*

(.0103)
0.9635*

(.0076)
0.9948 
(.0195)
0.9577*

(.0089)
1.0185 
(.0124)
0.9363*

(.0225)
1.0262 
(.0143)
0.9928 
(.0104)
1.0242 
(.0169)
1.0052 
(.0100)
0.9798 
(.0135)
1.0164*

(.0081)
1.0241 
(.0143)
1.1014*

(.0507)
0.9921 
(.0190)
1.0057 
(.0153)
1.0010 
(.0102)

0.88

0.86

0.86

0.83

0.85

0.84

0.83

0.84

0.80

0.83

0.87

0.89

0.89

0.82

0.80

0.81

0.79

0.82

0.72

0.82

0.86

0.84

The standard errors are in parentheses, which should be interpreted with
caution, because the procedure does not take into account the serial
correlation in the error term.  The * in column four denotes that the
hypothesis of constant returns to scale can be rejected with 95 percent
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certainty.



     13For expositional purposes, suppose vt is known to be 0 for all
t.  The OLS estimate of D is obtained by regressing ,it - ,i. on
,it-1 - ,i..  The OLS estimate is therefore biased because both the
right hand side and left hand side of the equation contain ,i.. 
The equation one is actually estimating is:

Note that the measurement error in the dependent variable, ,i.,
is negatively correlated with the error term, (:it + ,i.), which
yields a downward bias on D̂.  The estimate of D will converge in
probability to the true value with T for fixed N, but not with N
for a fixed T.  This is a problem, because in panel data T tends

18

IV. The Case for Fixed Effects

Previous work suggests that each plant's productivity has a

permanent component and an idiosyncratic component that contains

serial correlation (Dwyer, 1995b).  Suppose that estimated tfp

can be characterized by:

where vt is a non-stochastic time shock, ai is a non-stochastic

fixed effect, D is the autocorrelation coefficient, and :it is

i.i.d. across time and plants.  Let T and N be the time dimension

and the cross-sectional dimension of the panel, respectively. 

Estimating the parameters of such a data-generating process is

problematic in the context of an unbalanced panel.  The first

problem arises in the estimate of the serial correlation

coefficient.  Regressing the residual on the lag of a residual

introduces a simultaneity problem, because the lagged endogenous

variable is not independent of the error term by construction.13 



to be small. 

     14Balancing the panel, of course, introduces the possibility of
sample selection bias.  Dwyer (1995b) compares results from a
"robust method of performing analysis of variance on an
unbalanced panel with serial correlation and substantial
reporting error" to the results of the conventional methodology
executed on these balanced panels, and argues that they are
remarkably similar.
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This problem, however, goes away as the time dimension goes to

infinity for every plant.  For four industries, a balanced panel

can be constructed, that is a panel in which at least 30 plants

are observed in every year over the 16 year time period.14  This

time dimension is viewed as sufficiently large to allow for the

estimation of a fixed effects model with a lagged endogenous

variable.     

I estimate:

where xit = tfpit - tfp.t for the four industries, via OLS.  The

results of this procedure are in the fourth column of Table 3.  

An alternative methodology is to construct dummy variables

for each plant and to pre-multiply both the independent variable

(xit) and the dummy variables by H, where H'H equals the inverse

of the variance covariance matrix of the error term, which is a

function of D.  Then one searches for the D that minimizes the

sum of squared residuals resulting from the OLS regression on the

transformed variables.  The results of the search procedure are
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in the fifth column of Table 3.  In practice, the search

procedure's estimate of D is bigger than the OLS estimate.   

It is shown in Appendix II that

where ESS1 and ESS2 are the sum of square residuals, when one

regresses tfpit onto time dummies and time and plant dummies,

respectively.  The term (2(T-1)D+DT+1)/((1-D)2) corrects for the

fact that serial correlation "looks" like a fixed effect in a

panel with a short time dimension.  Columns 2, 3 and 7 of Table 3

use these two equations and the OLS estimate of D to compute F2
,,

F2
a, and the percentage of variation explained by the fixed

effects (100(F2
a/(F2

, +F2
a)) for each of these four industries.  The

percentage of the variation explained by fixed effects is about

one-third.  While I compute these numbers using an estimate of

D, rather than its true value, the estimates are not sensitive

to one standard deviation changes in D.  Therefore using the

estimate of D rather than its true value does not appear to

introduce a substantial bias into the estimates of F2
,, F2

a, and

%fixed.  



     15This is a special case of the GLM as exposited in Dhrymes,
1978, chapter 3.
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One can test the hypothesis that ai = aj for all i and j,

via a chi-square test.  One transforms the dependent variable and

the dummy variables according to the transformation in the search

procedure.  Then one computes the difference between the sum of

squared residuals of the transformed independent variable

regressed on a transformed constant variable, and the sum of

squared residuals when the transformed independent variable is

regressed on the transformed dummy variables.  The data is, of

course, transformed with the D that minimizes the sum of square

residuals of the unconstrained model.  This statistic converges

in distribution (in T) to a O2 distribution with degrees of

freedom equal to the number of plants minus one.15  The null

hypothesis is conclusively rejected at any traditional level of

significance for all four industries.  One should be concerned,

however, with invoking asymptotic properties in T, when working

with a 16 year time dimension, given the potential for a downward

bias in D̂.  Nevertheless, the p-value of the test only rises

above .05 for large and unreasonable estimates of D. 

Table 3:  Analysis of Variance and the Autocorrelation
Coefficient
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SI
C

F2
a F2

, D
(OL
S)

D̂
(sea
rch
base
d)

Pvalu
e
that
ai = aj

for
all i,j.

100(F2
a

/(F2
a+F,

2))
Num
ber
of
Plant
s

221
1

222
1

227
3

228
3

.04
7

.05
4

.15
6

.05
3

.12

.09
7

.20
7

.12
3

0.23
(.04
7)
0.25 
  
(.03
0)
0.31 
  
(.04
1)
0.34 
  
(.02
6)

.24

.27

.35

.38

0

0

0

0

28

36

43

30

30

73

38

86

Imposing a conventional fixed effects model, extended to allow

for serial correlation in the error term, leads one to conclude

that there are fixed effects in the data.  That is, there are

permanent quality differences across plants.  Furthermore, these

differences are large.  A plant with a fixed effect that is one

standard deviation above average expects to produce between 21%

(SIC 2211) and 40% (SIC 2273) more output than the average plant,

with the same inputs.

V. The Case for M-Mixing

This section presents a test of N-mixing.  For a random

variable to be N-mixing over-time, means that with the passage of



     16These are sufficient conditions to ensure that the
expectations will always exist.
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time the distribution of the random sequence becomes independent of

the initial condition.   If there truly are fixed effects, plants

do not N-mix.  Formally, let {xt} be a stochastic process, where x

is an element of a compact subset of the reals with a continuous

density function.16  Let M[a,b] be the F-algebra generated by

possible realizations of [xa,...,xb].  Let P be the probability

measure defined on M[0,4].  Then xt is said to N-mix at a geometric

rate if for all b > 0:

with )b finite and N < 1.  This definition implies that for any *

there exists a t such that:

Testing this condition, however, may require an unreasonably long

time period.

A more powerful implication of N-mixing at a geometric rate is:

with )b finite (for all b) and N < 1.  Intuitively, the expectation
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conditional on the lags becomes arbitrarily close to the

expectation conditional on both the lags and the initial value, as

the number of lags becomes large (for details see Pakes and

Ericson, 1995).  Another powerful implication of N-mixing at a

geometric rate is: 

with )t finite (for all t) and N < 1.

This implies that for N-mixing, the observations close to the

current year may be informative, but as the observations move

farther away from the current year they contain less information.

This property clearly does not hold for a fixed effects model.  

 

 Test Procedure

The objective is to test the N-mixing hypothesis; that is, two

plants with the same recent history have the same expected value of

xit even though their initial values of xi0 differ.  Under the

hypothesis of N-mixing, this independence property becomes stronger

as the distance between t and 0 becomes bigger and as the number of

lags become larger.  I define xit = tfpitj - tfp.tj, where j denotes

that four digit industry.  Note that xit is a standardized tfp; if

xit = .35 then plant i is 35% more productive than the average plant

in its industry in that time period. 



25

The alternative hypothesis is that xit is not N-mixing.  It is

illustrative, however, to consider a special case of the

alternative hypothesis.  Suppose the xit is generated according to

the fixed effects model with serial correlation, as estimated in

the previous section.  For fixed effects, as the number of lagged

values becomes large our estimate of the permanent parameter

converges to its true value and therefore the information content

of xi0 becomes negligible.  If we fix the number of lags, however,

the information content of xi0 is non-decreasing in the distance

between 0 and t; if there is serial correlation, then the further

away the initial observation is from the current observation the

more independent the error term becomes and consequently the

observation becomes more informative.  Under fixed effects, xi0

always provides information on the expectation of xit given a fixed

number of lags, regardless of the distance between t and 0.

I start with observations of tfp at the plant level for all of

textiles.  I select the plants that are observed in the same

industry in 1987, the initial year and for all of the lagged years.

Define q1, q2, and q3 such that 

prob(tfp0 < q1) = prob(q1<tfp0<q2) = prob(q2<tfp0<q3) = prob(q3<tfp0)

= .25.

Define the function F(xit): ú 6 {1,2,3,4} such that

Qit = 1 if tfpit < q1,

2 if q1 < tfpit < q2,
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3 if q2 < tfpit < q3,

4 if q3 < tfpit.

Note that this function maps xit into quartiles only in the

initial year.  If t Ö 0, then more or less than 25% of the plants

can end up in one quartile.

Define

Iijt = 1 if Qit = j, 

0 otherwise.

That is, Iijt = 1 if plant i was in cell j in year t and 0

otherwise.  In order to test that the expectation of tfpi87 given

tfpi86 and tfpi0 is equal to the expectation of tfpi87 given tfpi86

(vs. the alternative hypothesis that it is not) I estimate the

parameters of the equation below via OLS:

and test the null hypothesis that $jk = 0 for all j and k (vs. the

alternative that $jk does not equal 0 for some j and k).  The

interpretation of $jk is the difference between the expectation of

xit given qi86 = j and qi0 = 1 and the expectation of xit given qi86 =

j and qi0 = k.  Therefore, the null is N-mixing and the alternative

is that it is not.  

The extension to additional lags is straightforward.  For two

lags I estimate:



     17It is certainly possible that the variance of x differs
across cells, which would imply that an F-test is not valid. 
This problem can be overcome via an application of GLM; divide
the dependent and independent variables by the standard deviation
of the cell and run OLS on the transformed data.  Now an F-test
is asymptotically valid.  In fact, the corresponding chi-squared
test is equivalent to the Pakes and Ericson test.  I have
executed this procedure and the results are substantively the
same.
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and test the hypothesis that $jkl = 0 for all j, k, and l.  For

three lags,  I estimate:

and test the hypothesis that $jklm = 0 for all j, k, l and m.  When

one of the independent variables is always zero, i.e., when a cell

is empty, it is dropped from the regression.  

I estimate this regression for all possible initial years (for

one lag the initial year ranges from 72 to 85, for two lags it

ranges from 72 to 84, and so forth) via OLS.17  For one lag, the

null hypothesis (of N-mixing) can only be rejected, with 90 percent

confidence, when the initial year is greater than 75 (Table 4).

For two lags the null hypothesis can only be rejected when the

initial year is after 1982 (Table 5).  For three lags, the null
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hypothesis is only rejected in 1981 (Table 6).  The fact that the

null hypothesis is rejected only as the initial year moves closer

to 1987 strongly suggests N-mixing; N-mixing says that recent

observations may matter, but that the more distant the observation

the less information it provides. 

 

Table 4:  Test of tfp87 Being Independent of tfp0 Given tfp86
year0 R2ur R2r DFN DFD Ftest Pvalue

72
73
74
75
76
77
78
79
80
81
82
83
84
85

0.254
0.263
0.262
0.270
0.256
0.269
0.276
0.264
0.261
0.244
0.273
0.254
0.289
0.286

0.243
0.250
0.245
0.260
0.237
0.245
0.259
0.237
0.228
0.224
0.250
0.224
0.260
0.251

12
12
12
12
12
12
12
12
12
12
12
12
12
12

  763
  675
  693
  709
  729
  908
  741
  677
  692
  714
 1170
  799
 1142
 1191

0.923
1.032
1.295
0.818
1.566
2.476
1.454
2.062
2.557
1.630
3.117
2.757
3.931
4.829

0.522
0.416
0.216
0.631
0.096
0.003
0.136
0.017
0.002
0.078
0.000
0.001
0.000
0.000

Table 5:  Test of tfp87 Being Independent of tfp0 Given tfp86 and
tfp85

year0 R2ur R2r DFN DFD Ftest Pvalue
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72
73
74
75
76
77
78
79
80
81
82
83
84

0.323
0.318
0.336
0.362
0.322
0.337
0.355
0.334
0.329
0.335
0.317
0.310
0.349

0.288
0.286
0.280
0.299
0.272
0.289
0.301
0.270
0.275
0.266
0.280
0.243
0.291

47
47
47
45
48
46
46
45
45
48
48
45
47

 665
 582
 591
 608
 626
 802
 639
 574
 589
 605
1057
 693
1076

0.730
0.584
1.061
1.346
0.975
1.267
1.146
1.232
1.057
1.300
1.197
1.493
2.070

0.910
0.988
0.366
0.069
0.521
0.113
0.239
0.147
0.374
0.089
0.170
0.021
0.000

Table 6:  Test of tfp87 Being Independent of tfp0 Given tfp86, tfp85,
tfp84.

year0 R2ur R2r DFN DFD Ftest Pvalue

72
73
74
75
76
77
78
79
80
81
82
83

0.470
0.445
0.476
0.476
0.466
0.477
0.481
0.439
0.426
0.482
0.419
0.421

0.369
0.340
0.357
0.374
0.339
0.365
0.359
0.331
0.337
0.333
0.334
0.321

125
120
107
109
122
118
115
106
 97
106
141
105

524
450
468
486
490
658
504
455
478
485
879
578

0.798
0.714
0.995
0.865
0.954
1.196
1.029
0.822
0.767
1.314
0.912
0.952

0.937
0.986
0.500
0.821
0.616
0.092
0.409
0.888
0.944
0.029
0.749
0.613

In the previous section, I estimated parameters of a data

generating process that allows for both fixed effects and serial

correlation in plant level tfps.   The variance of the fixed

effects is statistically discernible from zero, which contradicts

N-mixing.  These contradictory results beg the question: what is

the power of this test?  For a fixed number of observations, the



     18The plant effects and the idiosyncratic error term were
generated form a normally distributed random variable.
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probability of accepting a wrong null hypothesis (N-mixing) will

become arbitrary close to .95 (the probability of rejecting a

correct null hypothesis) as the variance of the fixed effects

becomes arbitrary small.  One can ascertain the power of this

test by asking the following question: if the parametric

estimates of the fixed effects were the true data generating

process behind plant productivity levels, what would be the

probability of rejecting the null hypotheses of N-mixing under

the above methodology?  

I have generated ten Monte Carlo databases of 1000 plants

over 16 years according to the parametric estimates of sic 2283

(carpets) from the previous section.18  I have run the above

tests for N-mixing on these data sets and report the percentage

of times that the null hypothesis of N-mixing was accepted with

95% certainty in Table 7.  One sees that the results are very

different.  For one lag, the null hypothesis is rejected for

every initial year.  For two lags, the null hypothesis is

rejected about twenty percent of the time with the probability of

rejecting being higher the earlier the initial year.  For three

lags, the null hypothesis is rejected about 90 percent of the

time.  If there were permanent plant effects of the magnitude

measured, the pattern emerging from the data would be very



     19Reports the percentage of times the null hypothesis was
accepted with 95% confidence out of 10 trials. 
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different.  There is a key qualitative distinction between these

results; for the real data, the null hypothesis of N-mixing was

less likely to be rejected as the distance between the current

year and the initial year increased, whereas for the Monte Carlo

results it was more likely to be rejected.   

 It appears that the functional form of fixed effects with

serial correlation is too restrictive to capture key features of

the data.  It is possible that a plant's productivity level is

subject to large transitory shocks and that it occasionally

retools, which is a permanent change to its productivity level. 

Since the fixed effects specification does not allow for these

two different types of shocks to a plant's productivity level,

one mistakes the latter for a fixed effect. 

Table 7:  Estimated Probability of a Type II Error19

yea
r0

P of Type II
error with one
lag

P of Type II
error with two lags

P of Type II
error with three
lags
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72
73
74
75
76
77
78
79
80
81
82
83
84
85

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.2
0.2
0.3
0.1
0.3
0.1
0.2
0.1
0.2
0.2
0.2
0.3
0.5

0.9
0.7
1.0
0.9
1.0
0.8
0.9
0.9
1.0
0.9
0.9
1.0

VI. Estimates of a More Flexible Functional Form

The previous results suggest that plant level tfp (measured

as the deviation from the industry mean) contain at least two

components, one that is transitory and one that is persistent but

not permanent.  Expressing plant level tfps as the sum of two

AR(1) processes provides a functional form rich enough to capture

these two components:

where vt is non-stochastic, 

 

Finally assume that * and : are independently distributed with

means of 0 and variances of F2
a(1-r2) and  F,

2 (1-D2), respectively. 



     20In the case of the textile industry as a whole, I measure
productivity as a deviation from the four digit industry mean.

     21I am adopting the convention that a yij represents the ij
element of the matrix Y.
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In this section, I shall compute a simple method of moments

estimate of this process for each of the four balanced panels, as

well as for the two digit textile industry as a whole.20 

Additionally, I shall compute these estimates for the

corresponding unbalanced panels.

Once again, define

which converges in probability to tfpit - vt.  Let X be an NxT

matrix where the itth element is xit.21  Let MM = X'X/(N-1) be the

sample moment matrix (TxT).  This matrix has T2 sample moments,

((T+1)T)/2 of which are distinct.  Any model implies an

expectation of these moments as a function of the parameters.  If

the number of parameters is less than ((T+1)T)/2, the model is

overidentified.  The idea of method of moments estimation is to

choose the parameter values of the model to make the population

moments as close as possible to the sample moments.  This method

yields estimates that are consistent in N, provided the model is

correctly specified.  That is, for a fixed T, as the number of

plants goes to infinity the sample moments will converge in

probability to their true values.  Consequently, the parameter
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estimates will converge in probability to their true values.  In

panel data, T is typically small while N is typically large. 

Consistency in N, therefore, is a desirable property.  

Let  

i.e., the population moment matrix given by the above model.

In order to set up the minimization problem, it is useful to

vectorize these matrices dropping the redundant elements.  Let

MV = (mm11, mm12, ...,mm1T, mm22, ..., mm2T, mm33, ...mmTT)' 

that is, the moment vector.  Let  

PMV = (pmm11, pmm12, ..., pmm1T, pmm22, ..., pmm2T, pmm33, ...,

pmmTT)'

that is, the population moment vector.

Let 2 = (F2
a r F,

2 D)', that is, the parameter vector, and 20 be

its true value.

And finally let 

g(MV, 2) = MV - PMV(2), 

i.e., the so called orthogonality conditions, because gi has an



     22r' 0 {0.005, 0.015, 0.025, ..., 0.995} and D' 0 {0, 0.01,
0.02,...,0.99}.  I set up the grid to avoid r' equaling D',
because the values of F2

a and F,
2 that minimize g'Ig are not unique

if r' = D'.  I then take the largest and smallest values of r'
and D' to be r and D, respectively.  It should be clear from the
previous results that both D and r will be positive.  This prior
was confirmed by running a search over a coarser grid that
allowed D and r to range between -1 and 1; they consistently

35

expectation of zero.  Note that there are T(T+1)/2 such

conditions.

A consistent estimate of 20 solves:

 

where I is a T(T+1)/2 by T(T+1)/2 identity matrix.  Define 2̂ to

be the 2 that solves this problem, i.e., the estimate of 20,

which is a function of MV. The derivatives of g'Ig are linear in

F2
a and F,

2 and non-linear in r and D.  Therefore, for a given

(r,D) minimizing g'Ig with respect to F2
a and F,

2 merely involves

solving two linear equations in two unknowns, which suggests a

procedure for approximating the solution.  I run a grid search

over possible values of r and D, computing

 

for each pair of r and D and choose the pair that yields the

lowest min[F2
a,F,

2] g'Ig.  In practice, I execute this by running a

grid search over a 100 by 100 grid.22  From a computational



came up positive. 
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perspective, the surface of G is well behaved.  It has one local

maximum, and small changes in the maximization algorithm do not

lead to large changes in the estimates.  The results for the

balanced and unbalanced panels are reported in Tables 8&9.

In order to convert these simple method of moment estimates

into "general method of moments estimates," one would estimate

the expectation of gg' on basis of the estimates of 2 in Table

8.  The inverse of this matrix would then become the optimal

weighting matrix, and one typically iterates until the parameter

estimates converge (cf. Hamilton, Chapter 14, 1995).   These

estimates would then be efficient, given the moments. 

Unfortunately, working out an analytical expression for the

expectation of gg' is not practical.  For the balanced panel

only, I can estimate it with Monte Carlo techniques (while not

impossible, estimating it for the unbalanced panels is

computationally rather intensive).  

If the precision of consistent estimates is high, then the

gain in obtaining efficient estimates is marginal.  But in order

to make this claim, one needs measures of the precision of the

estimates, i.e., asymptotic standard errors.  Asymptotic standard

errors are computed for the balanced panels as follows.  First, I

use a first order Taylor expansion and implicit differentiation

to write the parameter estimates as a linear function of the
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sample moment vector.  Second, I use Monte Carlo techniques to

estimate the variance covariance matrix of the sample moment

vector for the balanced panel.  Finally, I transform this matrix

on basis of the linear approximation to obtain an asymptotic

variance covariance matrix of the parameter estimates.  The

asymptotic standard errors of the estimates are in parenthesis in 

Table 8.  For the complete details of this technique see Appendix

III.  I have not computed the standard errors for the unbalanced

panel's parameter estimates due to the computational burden. 

 

Table 8: Method of Moment Estimates (Balanced Panels)

SI
C

F2
a   r F,

2 D 100(
F2

a/F2
a+

F,
2)
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f
lif
e
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ts



     23This is the mean number of plants used in computing each
sample moment.
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22
11

22
21

22
73

22
83

22

.068
8
(.021
3)

.064
(.013
)

.210
5
(.055
)

.070
3
(.014
)

.097
7
(.005
7)

.94
(.060
5)

.97
(.030
7)

.96
(.046)

.96
(.032)

.935
(.012
2)

.09
9
(.02
5)

.08
68
(.01
6)

.15
95
(.06
6)

.10
79
(.01
6)

.14
01
(.00
66)

.22
5
(.45
6)

.34
5
(.18
9)

.30
5
(.10
9)

.42
5
(.15)

.30
(.04
1)

41

42

56

39

41

11.
2

22.
7

17.
0

17.
0

10.
3

30

73

38

86

631

Table 9: Method of Moment Estimates (Unbalanced Panels)

SI
C
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2 D 100(
F2

a

/(F2
a+F

,
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22
11

22
21

22
73

22
83

22

.082
3

.089
5

.213
5

.087
09

.191
8

.935

.995

.945

.92

.935

.202
5

.044
6

.384
3

.205
5

.248
6

.30

.41

.40

.28
5

.27
5

28

67

36

30

43

10.
3

138

12.
8

8.3

10.
3

100

198

110

229

170
0

  As r approaches 1, for a finite F2
a, this model becomes the

fixed effects model estimated in Section III.  Indeed, the

estimated value of r is close 1 in all cases and the rest of the

parameter estimates are similar to those estimated in Section

III.  In all the balanced panels, nevertheless, an r of less than

.995 fits the data better than .995, which is largest possible

value in the grid search.  At the four digit industry level

(where the number of observations is small) r is about one

standard error away from one.  When looking across all of

textiles (where the number of observations is large) the estimate

of r is about six standard errors away from one and therefore

highly significant.  These estimates are consistent with the

finding of N-mixing; there is a highly persistent component to a

plant's tfp, but it is not fixed.  The sixth column of Table 8

presents the percentage of cross-sectional variation explained by
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the persistent component, which ranges from 39 percent to 56

percent.  Note that these numbers are consistently larger than

the corresponding numbers in Table 3.  This demonstrates that by

requiring the persistent component to be fixed, one understates

its importance.

The picture that emerges for the unbalanced panel is

somewhat different.  The magnitude of the transitory shocks is

considerably larger, except in SIC 2221.  It is likely that this

is the result of outliers, which are more of a problem in the

unbalanced panel.  The Census edits the responses of large plant

more intensely; large plants are over-represented in the balanced

panel, because small plants are sampled intermittently.  The

magnitudes of the persistent component, however, are similar. 

The degree of persistence is also substantively the same, except

in SIC 2221, where r took on the largest possible value, r =

.995.  The estimates of r and F2
, in 2221 are both problematic; it

is possible that the estimates for this industry are outlier

dominated.   

Note that one component of tfp is indeed highly transitory

while the other is highly persistent in all four industries. 

Consistent estimates of the half life of ait can be found by

solving for J:



     24The corresponding figures for the other industries are
substantively the same, but noisier.  This is to be expected,
given that the balanced panel for SIC 2283 has the largest number
of observations.  Furthermore, corresponding graphs for the
unbalanced data sets are similar.

41

given the estimate of r.  These half lives are reported in the

fifth column of Table 8.  In the Carpet Industry (SIC 2273), if

the persistent component of a given plant is 50 percent above

average today (about one standard deviation) then it expects to

be 25 percent above average 15 years from now.  

 This paper's results are summarized in Figure 1.  The

squares plot the sample correlation coefficients between tfpi72

and tfpix, where x ranges from 72 to 87 for SIC 2283.24  The plus

symbols plot the predicted correlation coefficients from

estimates of a simple AR(1) process, i.e., estimating xit = Dxit-1

+ ,it via OLS.  Clearly, there is too much persistence in the

data for this simple model.  The diamonds plot the correlation

coefficients predicted by the fixed effects model estimated in

Section IV.  This model predicts that the correlation coefficient

will asymptote a positive value that appears too large to be

consistent with the data.  The triangles plot the serial

correlation coefficients predicted by the model estimated in this

section, which fits the data well.  It predicts that the

correlation coefficient will rapidly fall off at first and then

gradually asymptote 0.  It predicts that the plant's productivity

level eventually becomes independent of its initial value; plant
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productivity levels N-mix. 

Figure #1
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VII. Econometric and Economic Implications 

We have long known that there is substantial persistence in

plant productivity levels (cf. Dhrymes, 1991; Bartelsman Dhrymes,

1991; Baily, Hulten, and Campbell, 1992).  Dwyer (1995b)

demonstrates that when ranking plants according to their

productivity 12 years ago, the 85th percentile plant is as much

as 20% more productive than the 15th percentile plant, today.  Is

this persistence permanent?  When imposing a conventional fixed
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effects model on the data, extended to allow for serial

correlation in the error term, one conclusively concludes that

there are fixed effects in the data.  That is, the parametric

methodology leads one to the conclusion that there are permanent

differences in plant productivity levels, consistent with a

passive learning model of plant dynamics.      

A non-parametric test, however, reveals that a plant's

productivity in year t becomes independent of its productivity in

year 0 as t becomes large, i.e., plant productivity levels N-

mix, consistent with an active exploration model of plant

dynamics.  This non-parametric conclusion contradicts the

parametric conclusion.  Monte Carlo results suggest that the

functional form imposed on the data by the fixed effects model is

too rigid; if there were fixed effects of the magnitude measured,

the testing procedure would have rejected the hypothesis of N-

mixing.  If this phenomenon is true across many industries, then

the "fixed-effects solution" to the simultaneity problem will

become more problematic as panels become longer.  There are at

least two approaches to solve this problem.  First, one could

work with a rolling panel.  Second, one could develop a quasi-

fixed effects model, that is, estimating some sort of moving

average intercept.  I am skeptical about the value of either

approach.  If one is really interested in solving the

simultaneity problem, one needs to "find (instrumental) variables
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that have genuine information about factors which affect firms

differentially as they choose their input levels" (Griliches and

Mairesse, 1995, page 23). 

The parametric conclusion of fixed effects leads to

different economic conclusions than the non-parametric conclusion

of N-mixing.  The parametric results suggest a passive learning

model whereas, the finding of N-mixing suggests a model of

active exploration (Pakes and Ericson, 1995).  More recent

theoretical papers emphasize the option value of an existing

plant (Dixit, 1992; and Campbell, 1994).  It is argued that a

plant with marginal cash flows has a positive value, because

there is a possibility of it becoming highly productive and its

decision to exit is irreversible.  The parametric results suggest

that this option value would be small, because the differences in

plant productivity levels are fixed, except for a transitory

shock that is short lived.  Whereas, the non-parametric results

suggest that there are both transitory and persistent changes to

a plant's productivity level and the option value associated with

the persistent changes is potentially large.  

A method of moments estimate of a more flexible functional

form suggests that the quasi fixed effects erode slowly; if your

manager is 50 percent more productive than average today, 15



     25More precisely, if your productivity today (after filtering
out transitory shocks) is 50 percent above average, then you
expect to be 25 percent of above average 15 years from now.
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years from now you expect him to be 25 percent above average.25 

This result begs two questions: is this persistent component

mostly measurement error? if not, why are the market forces in

the textile industry -- a competitive industry -- working so

slowly?

There are a number of reasons to doubt that this persistence

is the product of persistent measurement error alone.  First, the

same amount of persistence is observed in labor productivity,

which should have less measurement error.  Second, most

explanations of measurement error in value added will imply that

plants with high measured productivity would have a low material

to sales ratio.  For example, suppose a plant sets the

intercompany transfer price of its product too high, then it will

overstate its value added and productivity will be overestimated. 

Furthermore, the material to sales ratio will be below the

industry average, ceteris paribus.  Some work in progress reveals

that plants that are measured as highly productive today do

indeed have low material to sales ratios.  This correlation,

however, is not persistent.  Therefore, measurement error that is

identified by the material to sales ratio does not explain

persistence in tfp.

If one rules out persistent measurement error, one is left
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to speculate on why the market  forces in a competitive industry

seem to be working so slowly.  Recently, there has been interest

in models in which economic agents optimally chooses to

periodically adopt a new technology as their current technology

becomes obsolete (Parente, 1994; Dwyer, 1995a).  A 10 to 20 year

half life in the persistent component suggests a rather long

retooling cycle.  Nevertheless, there is evidence that retooling

cycles are long.  This is true in textiles -- diffusion of the

shuttleless loom has taken over 20 years (MIT Commission on

Industrial Productivity, 1989, chapter 4, page 25) -- as well as

in other industries.  Diffusion of the Diesel Locomotive took

over forty years (Jovanovic and McDonald, 1994).  Recent surveys

of 61 paper mills report 1973 as the average date of the last

major rebuild (Upton, 1995).  It may be that the fixed costs of

adoption are big, which results in a long retooling cycle.  

Vintage human capital, or a quasi-fixed managerial effect is

certainly another possibility.  In the steel industry, Ichniowski

and Shaw (1995) found that "through 1992, very few of these older

lines (started in the 50s and 60s) made any changes to their

traditional (management) practices."  The firms that did make

changes did so "during times of threatened job loss when new

managers are brought in to make large-scale changes in the work

environment."  Therefore, it seems likely that vintage human

capital, as modelled in Chari and Hopenhayn (1991), explains some
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of the persistence in productivity differentials.      
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Appendix I:  Analysis of Variance on a Balanced Panel with Serial

Correlation

In panel data, as the degree of serial correlation

approaches a unit root the data will look like it has fixed

effects, even in the absence of fixed effects.  Here, I develop

unbiased estimates of the variances of the fixed effects and the

error term, assuming the that error term follows an AR1 process,

which is known, for a balanced panel.

Let tfpit be NxT observations (N and T are the number of

plants and years, respectively.) generated by:

where vt are deterministic time trends, ai are non-

stochastic with a mean of zero and a of variance of F2
a
26, and :it

are independently drawn from a distribution whose mean is zero

and variance is F:
2.  Define

Let x.t and xi. denote the mean of x in a given year and across

time, respectively.  
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Let

Let

Define

Here, the first term is just ESS1.  In order to evaluate the
next, two terms observe that:

 

Therefore, the second two terms in the ESS2 expression can be
evaluated as follows:
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Therefore, 

Finally,

Therefore,

Now solving for Fa
2 and F,

2 is just a matter of solving to
equations and two unknowns.

Appendix II: Computing Asymptotic Standard Errors for the
Simple Method of Moments Estimates.

First, in order to make the linear approximation, I need to

differentiate 2̂ with respect to MV.  This derivative can be
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obtained implicitly.  Because 2̂ maximizes G at an interior of

the parameter space (its an open space), DG*2= 2̂ = (0,0,0,0)',

where DG is the derivative of G with respect to 2.  Noting that

G is a function of both 2 and MV yields:

for all i and j.  Therefore, 2̂ can be approximated by:

where H is 4x((T+1)T/2) and  

This linear approximation provides a means for determining the

limiting distribution, because it becomes arbitrarily accurate as

2̂  approaches 2 (provided 2̂ is continuous in MV). 

In order to determine the variance covariance matrix of 2̂,

we need the variance covariance matrix of MV.  This can be



     27For a detailed description of this database see McGuckin and
Pascoe (1988).
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obtained by Monte Carlo techniques for the balanced panel.  I

generated 100 industries according to the parameter estimates (I

drew the underlying shocks from a normal distribution.); I

constructed 100 MV; and I computed the variance covariance matrix

of the these 100 random moment vectors.  The variance-covariance

matrix of 2̂ is HEH', where E is the estimated variance

covariance matrix of MV.  The standard errors are computed

accordingly.

Appendix III: Data

My data set consists of the textile plants (SIC 2200-2299)

in the Longitudinal Research Database (LRD), which is based on

the Annual Survey of Manufactures (ASM) and the Census of

Manufactures (CM).27  The sample runs from 1972 until 1987. 

The CM is carried out every five years (1967, 1972, 1977,

1982, and 1987) and each plant is, in principle, sampled with

probability one.  The ASM draws a sample of plants two years

after the census, and then follows this sample for five years

(these samples begin in 74, 79, and 84).  It adds newly created

plants to the sample every year.  The sample probability is
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increasing in plant size.

My sample is a subset of a sample that includes all

information available on every plant ever in the SIC codes 2200-

2299 from 1967 to 1989.  The sample is truncated to drop

administrative record cases, which are small plants for which

only a limited amount of information is collected, and drops pre-

1972 and post-1987 observations.  The pre-1972 observations were

dropped in order to construct a complete time series and the

post-1987 observations were dropped, because machine and capital

retirements were not collected in 1988 or 1989.  The regressions

are ran separately for each four-digit SIC code, and therefore a

plant was only included in the regression if it was in that

textile industry.  My unbalanced sample contains four  years in

which all firms are sampled with probability one (in theory), and

three different samples in which large firms are sampled with a

higher probability.  

To resolve an apparent inconsistency in the classification

of plants in census and non-census years the following

aggregations are made: SIC 2258 includes DIND 2258 and 2292; SIC

2273 includes DIND 2271, 2272 and 2279; SIC 2283 includes DIND

2281, 2283 and 2284; SIC 2299 includes DIND 2291, 2293, 2294 and 

2299 (DIND is the derived industry code).  The relevant prices

indices were computed as a Laspeyres price index with 1987 as a

base year via Gray's productivity database with total value of
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shipments as the relevant weights (Gray, 1989). 

Variable Construction:

RVA (Real value added) 
Value added is computed as the total value of shipments plus
changes in the value of inventories less the cost of
materials (including materials, supplies, fuel, electric
energy, cost of resales, and cost of contract work).  Value
added is deflated through Gray's shipments price index to
generate RVA.   

TE (Total employment)    
Total employment is the sum of the average number of
production workers and nonproduction workers.

BOOK (Gross book value of capital)
The only measure of assets that can be calculated
consistently across small plants (which are intermittently
sample) and large plants is book value.  That is the book
value of buildings and machinery at the end of the period
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plus the capitalized value of rental payments deflated by
Gray's investment price index.  

Assetst = (BAEt + MAEt)/PINVt + (BRt+MRt)/(rtPINVt).
Here BAE and MAE are the gross book value of assets and
machinery at the end of the period; BR and MR are rents paid
for buildings and machinery, and r is the user cost of
capital (Wang, 1994).  

Payroll and Average Wages
Payroll is the sum of total salaries and wages (SW) plus
legally required supplemental labor costs (LE) and voluntary
supplemental labor costs (VLC).  Average wages are payroll
divided by total employment (TE).   


