

ATLAS Data Challenge Production and U.S. Participation

Kaushik De
University of Texas at Arlington

BNL Physics & Computing Meeting August 29, 2003

ATLAS Data Challenges

* Original Goals (Nov 15, 2001)

- ☐ Test computing model, its software, its data model, and to ensure the correctness of the technical choices to be made
- □ Data Challenges should be executed at the prototype Tier centres
- □ Data challenges will be used as input for a Computing Technical
 □ Design Report due by the end of 2003 (?) and for preparing a MoU

☆ Current Status

- ☐ Goals are evolving as we gain experience
- □ Computing TDR ~end of 2004
- □ DC's are ~yearly sequence of increasing scale & complexity
- □ DC0 and DC1 (completed)
- □ DC2 (2004), DC3, and DC4 planned
- ☐ Grid deployment and testing is major part of DC's

ATLAS DC1: July 2002-April 2003

Goals: Produce the data needed for the HLT TDR Get as many ATLAS institutes involved as possible

Worldwide collaborative activity Participation: 56 Institutes (39 in phase 1)

 	 ≉Italy
-----------------	----------------

≉Austria ≉Japan

***Canada *Norway ***

***CERN *Poland**

***China *Russia**

***Czech Republic *Spain**

***Denmark * *Sweden ***

** ★France ★Taiwan**

** Germany ★UK**

***Greece *USA ***

Israel □ New countries or institutes

* using Grid

DC1 Statistics (G. Poulard, July 2003)

Process	No. of	CPU Time	CPU-days	Volume of
	events		(400 SI2k)	data
		kSI2k.months		ТВ
Simulation	10 ⁷	415	30000	23
Physics evt.				
Simulation	3x10 ⁷	125	9600	2
Single part.				
Lumi02 Pile-up	4x10 ⁶	22	1650	14
Lumi10 Pile-up	2.8x10 ⁶	78	6000	21
Reconstruction	4x10 ⁶	50	3750	
Reconstruction	2.5x10 ⁶	(84)	(6300)	
+ LvI1/2				
Total		690 (+84)	51000	60
			(+6300)	

DC2:Scenario & Time scale (G. Poulard)

★End-July 03: Release 7

- Mid-November 03: preproduction release
- **February 1^{st 04}: Release 8 (production)**
- ***April 1st 04:**

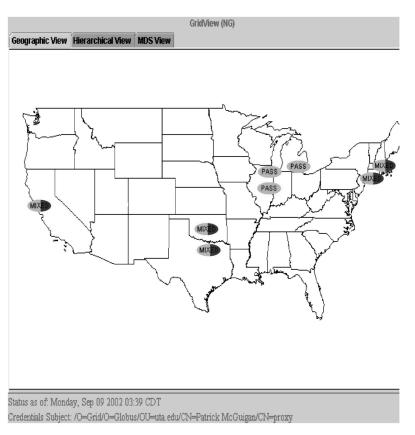
- *June 1st 04: "DC2"
- *****July 15th

➤ Put in place, understand & validate:

- Geant4; POOL; LCG applications
- Event Data Model
- Digitization; pile-up; byte-stream
- Conversion of DC1 data to POOL; large scale persistency tests and reconstruction

➤ Testing and validation

- Run test-production
- >Start final validation
- ➤ Start simulation; Pile-up & digitization
- **≻Event mixing**
- >Transfer data to CERN
- ➤Intensive Reconstruction on "Tier0"
- **➢ Distribution of ESD & AOD**
- **≻**Calibration; alignment
- ➤ Start Physics analysis
- ➤ Reprocessing


U.S. ATLAS DC1 Data Production

- * Year long process, Summer 2002-2003
- Played 2nd largest role in ATLAS DC1
- Exercised both farm and grid based production
- * 10 U.S. sites participating
 - □ Tier 1: BNL, Tier 2 prototypes: BU, IU/UC, Grid Testbed sites: ANL, LBNL, UM, OU, SMU, UTA (UNM & UTPA will join for DC2)
- Generated ~2 million fully simulated, piled-up and reconstructed events
- * Largest grid-based DC1 data producer in ATLAS
- Data used for HLT TDR, Athens physics workshop, reconstruction software tests...

U.S. ATLAS Grid Testbed

- *BNL U.S. Tier 1, 2000 nodes, 5% for ATLAS, 10 TB, HPSS through Magda
- *LBNL pdsf cluster, 400 nodes, 5% for ATLAS (more if idle ~10-15% used), 1TB

- **♦ Oklahoma U. OSCER facility**
- *ANL test nodes, JAZZ cluster
- ***SMU 6 production nodes**
- ***UNM Los Lobos cluster**

U.S. Production Summary

- Exercised both farm and grid based production
- * Valuable large scale grid based production experience

	Number of	Number of	CPU hours	CPU hours	CPU hours
	Files in Magda	Events	Simulation	Pile-up	Reconstruction
25 Gev di-jets	41k	1M	~60k	56k	60k+
50 Gev di-jets	10k	250k	~20k	22k	20k+
Single particles	24k	200k	17k	6k	
Higgs sample	11k	50k	8k	2k	
SUSY sample	7k	50k	13k	2k	
minbias sample	7k	?	?		

^{*} Total ~30 CPU YEARS delivered to DC1 from U.S.

^{*} Total produced file size ~20TB on HPSS tape system, ~10TB on disk.

^{*} Black - majority grid produced, Blue - majority farm produced

Grid Production Statistics

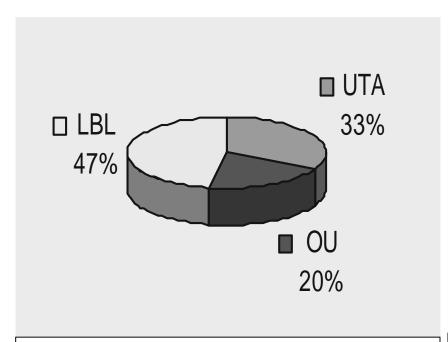


Figure: Pie chart showing the sites where DC1 single particle simulation jobs were processed. Only three grid testbed sites were used for this production in August 2002.

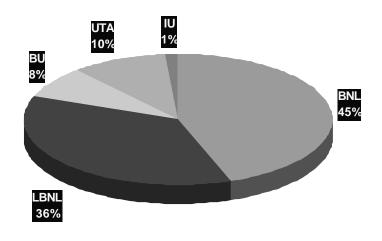


Figure: Pie chart showing the number of pile-up jobs successfully completed at various U.S. grid sites for dataset 2001 (25 GeV dijets). A total of 6000 partitions were generated.

These are examples of some datasets produced on the Grid. Many other large samples were produced, especially at BNL using batch.

DC1 Production Systems

- * Local batch systems bulk of production
- NorduGrid grid system, ~10k files in Nordic countries
- AtCom GUI, ~10k files at CERN (mostly batch)
- *** GRAPPA interactive GUI for individual user**
- ★ EDG test files only
- ★ + systems I forgot...
- * More systems coming for DC2
 - □ LCG
 - □ GANGA
 - DIAL

Databases used in GRAT

- Production database
 - □ define logical job parameters & filenames
 - □ track job status, updated periodically by scripts
- * Data management (Magda)
 - ☐ file registration/catalogue
 - grid based file transfers
- * Virtual Data Catalogue
 - simulation job definition
 - □ job parameters, random numbers
- ★ Metadata catalogue (AMI)
 - post-production summary information
 - □ data provenance

U.S. Middleware Evolution

GODUS GOMOOM

Used for 95% of DC1 production

Used successfully for simulation

Used successfully for simulation (complex pile-up workflow not yet)

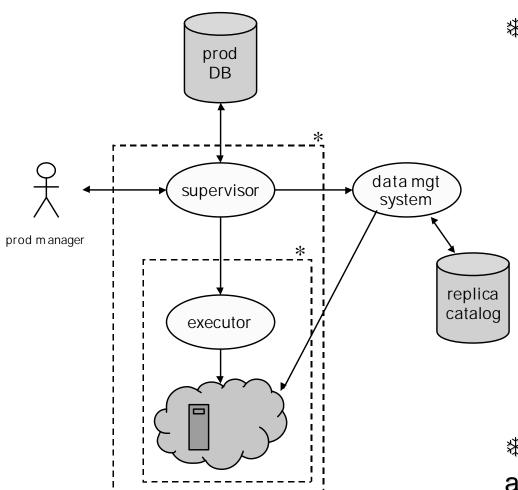
Tested for simulation, used for all grid-based reconstruction

U.S. Experience with DC1

- * ATLAS software distribution worked well for DC1 farm production, but not well suited for grid production
- * No integration of databases caused many problems
- * Magda & AMI very useful but we are missing data management tool for truly distributed production
- Required a lot of people to run production in the U.S., especially with so many sites on both grid and farm
- * Startup of grid production slow but learned useful lessons
- Software releases were often late leading to chaotic last minute rush to finish production

U.S. Plans for DC2

- ** Computing organization in the U.S. has been restructured to reflect growing importance of grid in DC2 (we hope to use only grid based production for DC2 in the U.S.)
- R. Gardner leading effort to develop grid tools and services,K. De & P. Nevski leading production
- New tools being developed for DC2, based on Chimera see: http://www.usatlas.bnl.gov/computing/grid/gce
- # Joint CMS/ATLAS preDC2 exercise underway called Grid3, for next 6 months
- Need to develop plans and have software ready and tested before real DC2 production/user analysis starts


Plans for DC2 Production System

- ★ Need unified system for ATLAS
 - □ for efficient usage of facilities, improved scheduling, better QC
 - □ should support all varieties of grid middleware (& batch?)
- * First "technical" meeting at CERN August 11-12, 2003
 - attended by Luc Goosens*, KD, Rich Baker, Rob Gardner,
 Alessandro De Salvo, Jiri Chudoba, Oxana Smirnova
 - design document is being prepared
 - □ planning a Supervisor/Executor model (see fig. next slide)
 - ☐ first prototype software should be released ~6 months
 - □ U.S. well represented in this common ATLAS effort
 - □ Still unresolved Data Management System
 - □ Need strong coordination with database group (Luc & Kaushik attended Database meeting at Oxford in July)

Schematic of New DC2 System

★Main features

- Common production database for all of ATLAS
- Common ATLAS supervisor run by all facilities/managers
- Common data management system a la Magda
- Executors developed by middleware experts (LCG, NorduGrid, Chimera teams)
- Final verification of data done by supervisor
- *U.S. involved in almost all aspects could use more help

Conclusion

- Data Challenges are important for ATLAS software and computing infrastructure readiness
- **U.S.** playing a major role in DC planning & production
- * 12 U.S. sites ready to participate in DC2, more welcome
- * Production software development needs help
- Physics analysis major emphasis of DC2
- * Involvement by more U.S. physicists is needed in DC2
 - □ to verify quality of data
 - □ to tune physics algorithms
 - to test scalability of physics analysis model