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of each event over a specified measure-
ment period.  MPX technology has
been integrated into the Performance
API  toolkit, developed at the University
of Tennessee
(PAPI,http://icl.cs.utk.edu/projects/papi).

Tool Gear  is software infrastructure
that provides common services to tools
like MPX and mpiP
(http://www.llnl.gov/asci/
projects/asde/toolgear.html).  These ser-
vices include source code navigation,
dynamic instrumentation, data collec-
tion, and data display.  Analysis tools
focus on gathering data, and Tool Gear

UCRL-TB-145830 URL: http://www.llnl.gov/CASC/sections.html/

each counter is often designed to mea-
sure only a subset of the countable
events on a CPU. Often, a combination
of measurements is required to gain
performance insights; for example, esti-
mating cache utilization requires both
the number of cache misses and the
number of load requests.  When hard-
ware limitations prevent concurrent
counting of hardware events, MPX uses
time slicing, which directs the hard-
ware registers to measure each event
type in turn for a period of time. Using
these measurements, MPX computes
an accurate estimate of the frequency
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The Parallel Performance Improvement
(PPI) effort is a collection of projects that
are developing ways to improve the effi-
ciency of parallel programs. We are
investigating both performance analysis
tools and system-level techniques for
improving performance.

OO
ptimizing the performance of
a parallel program requires
attention to CPU utilization,

memory subsystem utilization, commu-
nication efficiency, and other areas.  The
Lawrence Livermore National Laboratory
(LLNL) has developed tools to help
developers investigate a variety of perfor-
mance parameters.

The mpiP tool (Vetter and McCracken,
2001), for example, shows users how
communication performance scales with
increasing numbers of processors, and it
offers information at varying levels of
detail: categories of MPI functions (e.g.,
collective operations); specific MPI func-
tions (e.g., all uses of MPI_Allreduce);
and specific call sites (e.g., a call to
MPI_Allreduce at a particular line of a
particular file). These levels of detail
enable users to see a general overview of
communication performance and then
zoom in to find specific problem areas.
The mpiP tool gathers data from a whole
program run without significantly slow-
ing its execution, even when the
program executes on 1000 processors or
more (Figure 1).

Another tool, MPX (May, 2001), gath-
ers statistics from CPU hardware
performance counters
(http://www.llnl.gov/CASC/mpx). Perform-
ance data (such as requests to load data,
cache misses, and floating point opera-
tions) can help programmers tune their
codes to improve cache utilization or
balance workload among processors.
Unfortunately, hardware counters have
somewhat limited functionality, since

Allreduce:timing.c:419
Allreduce:struct_innerprod.c:107
Waitall:coarsen.c:542
Waitall:coarsen.c:491
Type_free:communication.c:1405
Type_free:communication.c:1413
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Figure 1. The mpiP tool shows how much time various MPI calls take as the number of tasks
increases. Steep increases indicate possible scaling problems.
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focuses on managing and presenting it,
and also on user interactions (Figure 2).
Tool Gear uses IBM’s Dynamic Probe
Class Library (DPCL), which lets tools
insert instrumentation into a running
program without the need for re-compi-
lation or re-linking. Together, Tool Gear
and DPCL offer a flexible combination
of features that simplify the process of
creating sophisticated performance
analysis and debugging tools. 

LLNL has used these and other tools
(such as the Sphinx parallel microbench-
mark suite, http://www.llnl.gov/CASC/
sphinx/sphinx.html) to gather a wealth
of data on the performance characteris-
tics of several scientific applications.

Performance Tuning
The other goal of PPI is to develop

system-level techniques for improving
the performance of applications.  Our
main effort in this area is the Memory
Wall project. This project is examining
patterns of memory accesses that pro-
grams generate, and it is developing
techniques for handling these accesses
more efficiently within memory sub-
systems.  While standard caching
methods work well when programs
access the same data items repeatedly
or in strict sequential order, many sci-
entific codes access data in strided
patterns or in other complex ways.
The Memory Wall project has devel-
oped tools to measure and
characterize the memory access pat-
terns of a program (T. Mohan, et. al,
2001 and E. Parker, et. al, 2001), and it
is also investigating the use of dynamic

access optimization (DAO) to improve
efficiency for these access patterns.
DAO, which was first developed at the
University of Virginia and the
University of Utah, uses indirection to
change a program’s access patterns at
runtime into ones that exhibit better
spatial locality so that the memory sys-
tem can handle them more efficiently.
LLNL is collaborating with the devel-
opers of DAO and with SRC
Computers to extend these techniques
to shared memory parallel computers
(Figure 3).

Collaborations
LLNL works with many academic

partners and vendor institutions on
its performance analysis and tuning
efforts.  We currently fund academic
partners at the Universities of
Maryland, Oregon, Utah, and
Wisconsin, and at Portland State
University.  Vendor parters include
IBM, MPI Software Technology, KAI,
Pallas, and Etnus. LLNL also has
many ongoing collaborations with
other major universities, vendors,
and national laboratories. LLNL is a
participant in the Performance
Evaluation Research Center, funded
by the Department of Energy’s
Scientific Discovery through
Advanced Computing (SciDAC) ini-
tiative. 
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Figure 2. Tool Gear infrastructure gathers performance data from pro-
grams through the IBM Dynamic Probe Class Library (DPCL) or by other
means and deposits it in a database. Customized viewers present pre-
sent this data in various ways and associate it with source code.

Figure 3. Dynamic Access Ordering (DAO) can group requests for data in
the same row of a DRAM array so that an access to a single row can ser-
vice multiple requests.


