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Findings from single-cell recording studies suggest that a com-
parison of the outputs of different pools of selectively tuned
lower-level sensory neurons may be a general mechanism by
which higher-level brain regions compute perceptual decisions.
For example, when monkeys must decide whether a noisy field of
dots is moving upward or downward, a decision can be formed
by computing the difference in responses between lower-level
neurons sensitive to upward motion and those sensitive to
downward motion1–4. Here we use functional magnetic resonance
imaging and a categorization task in which subjects decide
whether an image presented is a face or a house to test whether
a similar mechanism is also at work for more complex decisions
in the human brain and, if so, where in the brain this compu-
tation might be performed. Activity within the left dorsolateral
prefrontal cortex is greater during easy decisions than during
difficult decisions, covaries with the difference signal between
face- and house-selective regions in the ventral temporal cortex,
and predicts behavioural performance in the categorization task.
These findings show that even for complex object categories, the
comparison of the outputs of different pools of selectively tuned
neurons could be a general mechanism by which the human brain
computes perceptual decisions.

Consider driving home fromwork in clear weather. Stopping at a

light, you see pedestrians waiting to cross the street. Effortlessly, you
decide whether one of them is your spouse, your boss or a stranger,
and connect the percept with the appropriate action, so that youwill
either be waving frantically, greeting respectfully or taking another
sip of coffee. During a rainstorm, however, the sensory input is
noisier, and thus you have to look longer to gather more sensory
data to make a decision about the person at the light and the
appropriate behavioural response.
This type of decision-making has been studied in single-unit

recording studies in monkeys performing sensory discriminations5–8.
Shadlen et al. proposed that perceptual decisions are made by
integrating the difference in spike rates from pools of neurons
selectively tuned to different perceptual choices9. For example, in a
direction-of-motion task, in which the monkey must decide
whether a noisy field of dots is moving upward or downward, a
decision can be formed by computing the difference in responses
between lower-level neurons that are sensitive to upward motion and
those sensitive to downwardmotion1–4. Similarly, in a somatosensory
task, inwhich themonkeymust decidewhich of two vibratory stimuli
has a higher frequency, a decision can be formed by subtracting the
activities of two populations of sensory neurons that prefer low and
high frequencies, respectively8,10. These findings suggest that a com-
parison of the outputs of different pools of selectively tuned lower-
level sensory neurons could be a generalmechanism bywhich higher-
level cortical regions compute perceptual decisions1,2,11. However, it
is still unknown whether such a mechanism is at work for more
complex cognitive operations in the human brain and, if so, where
in the brain this computation might be performed.
We used functional magnetic resonance imaging (fMRI) while

subjects decided whether an image presented on a screen was a face
or a house (Fig. 1). Previous neuroimaging studies have identified
regions in the human ventral temporal cortex that are activated
more by faces than by houses, and vice versa12–16. Increases in the
blood-oxygen-level-dependent (BOLD) signal have been shown to
be proportional to changes in neuronal activity in a given region17,18.
Therefore larger BOLD responses to faces than to houses and vice
versa in specific voxels in the ventral temporal cortex reflect the
change in activity in a population of neurons that are more
responsive to faces than to houses, and vice versa. Our task thus
enabled us to identify two brain regions, one more sensitive to faces
and another to houses, and to test whether there are higher-level
cortical regions whose output is proportional to the difference in
activation in the face- and house-selective regions, respectively.
We based our hypotheses on results from single-unit recording

studies in monkeys, which have shown that neuronal activity in
areas involved in decision-making gradually increases and then
remains elevated until a response is given, with the rate of increase
being slower during more difficult trials1,2. These studies have also
shown that higher-level cortical regions, such as the dorsolateral
prefrontal cortex (DLPFC), might form a decision by comparing the
output of pools of selectively tuned lower-level sensory neurons4,9.
Therefore, we hypothesized that higher-level cortical regions
computing a decision would have to fulfil two conditions. First,
they should show the greatest activity on trials inwhich the evidence
for a given perceptual category is greatest, for example, a greater
fMRI response during decisions about suprathreshold images of
faces and houses than during decisions about perithreshold images
of these stimuli. Second, their activity should be correlated with the
difference between the output signals of the two brain regions
containing pools of selectively tuned lower-level sensory neurons
involved; that is, those in face- and house-responsive regions.
To test the model of decision-making, we added noise to the face

and house stimuli, which made the task arbitrarily more difficult by
reducing the sensory evidence available to the subject (Fig. 1b). In
the fMRI experiment, subjects viewed images that were either easy
(suprathreshold, Fig. 1b top) or difficult (perithreshold, Fig. 1b
bottom) to identify as faces or houses.
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We identified voxels in the ventral temporal cortex that
responded more to faces than to houses, and vice versa, in each
subject (Fig. 2a, ‘Face’ and ‘House’). By analogy to the monkey
studies, we then used only correct trials to calculate the mean fMRI
responses to the four classes of stimuli relative to baseline (fixation)
in face- and house-selective regions, respectively. For the preferred
category, both face- and house-selective regions responded more to
suprathreshold than to perithreshold images whereas the opposite
was true for the non-preferred category, indicating that face- and
house-selective regions represented the sensory evidence for the two
respective categories (Fig. 2b).
Several brain regions typically associated with the attentional

network showed a greater response to perithreshold than to supra-
threshold stimuli of both faces and houses19,20. These regions, which
included the frontal eye field (FEF, Brodmann area (BA)6), the
supplementary eye field (SEF) and parietal regions (intraparietal
sulcus, IPS), gave a greater response when the task became more
difficult, thereby requiring more attentional resources for correct
performance (Fig. 3; Supplementary Information).
By contrast, higher-level decision-making areas should show a

greater response when decisions are made about suprathreshold
images as compared with when decisions are made about peri-
threshold images of both faces and houses. Several brain regions
fulfilled this condition, including a region in the depth of the
superior frontal sulcus (BA8/9) within the posterior portion of
the DLPFC, the posterior cingulate cortex (BA31) and the superior
frontal gyrus (BA9) (Fig. 3). To test the hypothesis that higher-level
decision-making areas might use the output from lower-level
sensory regions (namely face- and house-selective regions) to
form a decision, we first averaged the BOLD signal across voxels
in the lower-level face-selective and house-selective regions at each
time point. For each participant we thereby derived two time series,

one for the face-selective region and another for the house-selective
region (Face(t) and House(t)). We then computed the absolute
difference between these two time series and determined which
brain regions covaried with the resulting difference time course
(jFace(t) 2 House(t)j). Finally, within these regions we searched
for voxels that also showed a greater response during decisions
about suprathreshold images relative to decisions about perithres-
hold images. The only region fulfilling both of the conditions was
located in the depth of the left superior frontal sulcus in the
posterior portion of the DLPFC (BA8/9, Fig. 4). This region is
located just posterior to BA9/46 in the mid-DLPFC and just
anterior to the FEF (Fig. 3). Task-related signal changes in the
posterior portion of the DLPFC showed a positive correlation with
task performance (Fig. 4b).

These results provide strong evidence that perceptual decisions
are made by integrating evidence from sensory processing areas.

 

Figure 2 FMRI data illustrating representation of sensory evidence in maximally face- and

house-responsive voxels. a, Maximally face- (Face, orange) and house-responsive

(House, green) voxels in one subject. b, BOLD change corresponds to perceptual evidence

for respective classes of stimuli. Mean responses (n ¼ 12, error bars represent standard

error of the mean) in face- and house-selective voxels to the four different conditions (from

left to right: suprathreshold face (,10% noise), perithreshold face (,45%), perithreshold

house (,53%), suprathreshold house (,10%)). For the respective preferred category,

both face- and house-selective regions responded more to suprathreshold than to

perithreshold images (face-selective: P , 0.041, paired t-test one-tailed; house-

selective: P , 0.001) while the opposite was true for the non-preferred category (face-

selective: P , 0.013; house-selective: P , 0.002). For face-responsive: suprathreshold

face . perithreshold face . perithreshold house . suprathreshold house (analysis of

variance, linear contrast, P , 0.001); for house-responsive: opposite pattern

(P , 0.001).

Figure 1 Experimental task. Subjects decided whether an image presented on a screen

was a face or a house. By adding noise, the amount of sensory evidence in the stimuli was

varied parametrically. a, Results of behavioural study to assess the amount of noise to add

to the images. Thresholds (82% correct) were about 45% noise for both faces and houses.

b, In the fMRI experiment, we used images of faces and houses that were either easy

(95% correct, suprathreshold, b top) or difficult (82% correct, perithreshold, b bottom).

c, Rapid event-related fMRI design. Stimuli were presented for 1 s, subjects responded

with a button press after a forced delay (response cue shown for 300ms, delay 1–5 s).

Figure 3 Brain regions showing a main effect of task difficulty: orange: easier (low noise

proportion) . harder (high noise proportion); blue: harder . easier. FEF, frontal eye

field; INS, insula; IPS, intraparietal sulcus; PCC, posterior cingulate cortex; SEF,

supplementary eye field; SFG, superior frontal gyrus; SFS, superior frontal sulcus.
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Furthermore, our data suggest that in the human brain such a
computation might be performed in the left posterior DLPFC. This
region fulfilled the two conditions implicit in the Shadlen model of
perceptual decision-making1,2. First, the region showed greater
activity during those trials in which more sensory evidence for
one of the alternative categories was available (suprathreshold
versus perithreshold stimuli), and second, the activity in this region
was correlated with the absolute difference between the signals of
face- and house-selective regions. Finally, signal changes in this
region predicted task performance.

Our results using fMRI in humans parallel those using single-unit
recordings in monkeys. Recording from a similar region in the
posterior DLPFC in monkeys performing a motion discrimination
task, Kim and Shadlen2 found that neural activity increased pro-
portionally to the strength of the motion signal in the stimulus.
Similarly, in our study, the fMRI response was greater when easier
decisions were made than when more difficult ones were made. In
both monkeys and humans, the outputs of visual processing areas
provide the sensory evidence for a decision. In the motion dis-
crimination task, the activity of neurons in cortical area MT,
selectively tuned to opposite directions of motion, represent the
sensory evidence5. Similarly, in our task, the neurons in the ventral
temporal cortex tuned to faces and houses, respectively, represent
the sensory evidence. Recently, it has been shown in electrical
stimulation experiments that the sensory evidence for competing
motion directions is compared during the formation of a decision4.
Similarly, we were able to demonstrate that the sensory evidence for
competing categories in maximally face- and house-responsive
voxels, respectively, is compared during a decision.

As noted, brain regions in an attentional network played a part in
task performance (such as bringing to bear attentional resources),
but they did not show the pattern of responses predicted by the
model derived from single-unit monkey data. Additionally, control
analyses (see Supplementary Information) confirmed that the
correlation between BOLD activity in the DLPFC and the difference
signal could not be explained either by changes in face- and house-
responsive regions alone or by task difficulty, indicating that we
have succeeded in localizing the subtraction operation to the left
posterior DLPFC.

There is evidence that the involvement of the DLPFC in decision-
making processes is not specific to our task but that it generalizes
across different tasks. For example, the same area in the left
posterior DLPFC that we observed in our study was activated in a
positron-emission tomography (PET) study when subjects per-

formed a visual conditional task, such as ‘if you see a red cue,
point to the pattern with stripes, but if you see a blue cue point to
the pattern with red circles’21 (see also ref. 22). Moreover, we found
that when subjects performed the same direction-of-motion dis-
crimination task that was used in the single-unit recording studies,
the identical left posterior DLPFC showed a greater fMRI response
to stronger motion signals, whether the subjects responded with a
button press or an eye movement31. These studies thus indicate that
this prefrontal region has general decision-making functions, inde-
pendent of stimulus and response modalities. Our results are also
consistent with reports that lesions in the posterior DLPFC impair
conditional discrimination tasks in both monkeys and humans21,23.
Others have suggested that the main function of the prefrontal
cortex is to guide activity along task-relevant pathways from lower-
level sensory regions to areas that plan and execute responses24.
Here, we have demonstrated a mechanism for how perceptual
decision-making processes might be instantiated in the human
brain, using a relatively simple subtraction mechanism. What
remains to be shown is how this model can account for additional
variables that affect the decision-making process, such as the
expected value of different options25, the prior probability of the
appearance of different options26 and their internal valuation27.
Ideally, this model and the mechanisms described here will also help
to explain the much more complicated decisions we confront in
everyday life. A

Methods
Subjects
Twelve healthy volunteers participated in the imaging experiment (6 females, mean age
31.1) and 12 healthy volunteers in the behavioural experiment (7 females, mean age 26.8).
All were right-handed, had normal or corrected vision, no past neurological or psychiatric
history and no structural brain abnormality. Informed consent was obtained according to
procedures approved by the NIMH-IRP Internal Review Board.

Visual stimuli
A set of 38 images of faces (face database, MPI for Biological Cybernetics, Germany) and
houses were used. Fast fourier transforms (FFT) of these images were computed,
producing 38 magnitude and 38 phase matrices. The average magnitude matrix of this set
was stored, then stimulus images were produced by calculating the inverse FFT (IFFT) of
the average magnitude matrix and individual phase matrices. The phase matrix used for
the IFFTwas a linear combination of the original phase matrix computed during the
forward fourier transform and a random noise matrix. The resulting images all had an
identical frequency power spectrum28 (corresponding to the average magnitude matrix)
with graded amounts of noise.

Task
Images of faces and houses with low (per cent correct above 95%) and high
(corresponding to the 82%-threshold) proportions of noise, respectively (see Fig. 1b) were

Figure 4 Perceptual decision-making in posterior DLPFC. a, Region in the depth of the left

SFS, showing both a higher response to suprathreshold images of faces and houses

relative to perithreshold images, and a correlation with jFace(t ) 2 House(t )j, suggesting

that this brain region integrates sensory evidence from sensory processing areas to make

a perceptual decision (BA8/9, easier . harder: x ¼ 224/y ¼ 24/z ¼ 36,

z max ¼ 4.20; correlation with jFace(t ) 2 House(t )j: x ¼ 222/y ¼ 26/z ¼ 36,

zmax ¼ 3.66, coordinates in MNI system refer to local cluster maxima, and z max to the

corresponding z-value). b, Signal changes in the posterior portion of the DLPFC predicted

task performance (r ¼ 0.413, P ¼ 0.004). Points represent average BOLD change and

performance for each condition (suprathreshold face, perithreshold face, perithreshold

house and suprathreshold house) and subject.
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presented using the Psychophysics Toolbox (www.psychtoolbox.org) under Matlab
(Mathworks). Stimuli were projected for 1 s onto a back-projection screen using an LCD
projector (Sharp). Subjects decided whether an image was a face or a house and responded
with a button press after a forced delay, which was included to make the task as analogous
to the studies in monkeys as possible (those experiments typically include a forced delay1)
(compare Fig. 1c). The sequence of events was optimized using rsfgen (AFNI, http://
afni.nimh.nih.gov).

Data acquisition and analysis
Whole-brainMRI datawere collected on a 3TGE Signa (GEMedical Systems). Echoplanar
data were acquired using standard parameters (Field of view, 200mm; matrix, 64 £ 64;
25 axial slices, 5mm thick; in-plane resolution, 3.125mm; repetition time, TR, 2.0 s; error
time, TE, 30ms; flip angle, 908). Five to eight runs of 162 volumes each were acquired. The
first four volumes were discarded to allow for magnetization equilibration. To minimize
headmotion, we used both a bite bar and a vacuum head pad. AT1 weighted volume (MP-
RAGE) was acquired for anatomical comparison.

MRI data were analysed using a mixed effects approach within the framework of the
general linear model (GLM as implemented in FSL 5.0, http://www.fmrib.ox.ac.uk/fsl).
Pre-processing was applied: slice-time correction, motion correction, non-brain removal,
spatial smoothing using a kernel of 8mm full-width at half-maximum, mean-based
intensity normalization of all volumes by the same factor; highpass temporal filtering
(gaussian-weighted least-squares straight line fitting, with sigma ¼ 50.0 s). Time-series
statistical analysis was carried out using FSLwith local autocorrelation correction29. Trials
in which subjects gave no response or an incorrect response were pooled together and
modelled as a regressor of no interest (error trials). Hence, similar to the studies in
monkeys, only correct trials were used to model regressors for the four conditions
(suprathreshold face, perithreshold face, perithreshold house and suprathreshold house).
The average number of trials was 215.5 ^ 29.7 (mean ^ s.d.) for suprathreshold face,
190.17 ^ 31.6 for perithreshold face, 194.7 ^ 30.8 for perithreshold house and
202.8 ^ 26.8 for suprathreshold house, respectively. Time series were modelled using
event-related regressors for each of the four conditions as well as error trials, and
convolved with the haemodynamic response function (gamma variate). Contrast images
for each condition and the contrasts of interest for each subject were computed and
transformed, after spatial normalization, into standard (MNI152) space. Group effects
were computed using the transformed contrast images in a mixed effects model treating
subjects as random. The resulting Z statistic images were thresholded at Z . 3.1,
corresponding to P , 0.001, uncorrected. For display purposes, statistic images are shown
with Z . 2.6, corresponding to P , 0.005. In each subject we determined voxels in the
temporal cortex that were more responsive to faces than to houses, and vice versa. The
region analysed included the lingual, parahippocampal, fusiform and inferior temporal
gyri 70 to 20mm posterior to the anterior commissure in Talairach brain atlas coordinates
(see ref. 30). To test in which voxels the BOLD signal significantly covaried with
jFace(t) 2 House(t)j, we set up an additional model using the following three regressors:
(1) the difference between the regressors for the suprathreshold and the perithreshold
conditions used in the GLM analysis described above ((suprathreshold
face þ suprathreshold house) 2 (perithreshold face þ perithreshold house)); (2) the
absolute difference between the time series in face- and house-responsive voxels in each
subject (jFace(t) 2 House(t)j); and (3) the product of the first and second regressors,
representing the interaction between (jFace(t) 2 House(t)j) (physiological signal) and
task-related parameters (psychological factor, hence psychophysiological interaction).
Contrast images and group effects were computed as described above.We did not find any
voxels in which changes in activity significantly covaried with the psychophysiological
interaction term.
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Daily rhythms of physiology and behaviour are precisely timed
by an endogenous circadian clock1,2. These include separate bouts
of morning and evening activity, characteristic of Drosophila
melanogaster and many other taxa, including mammals3–5.
Whereas multiple oscillators have long been proposed to orches-
trate such complex behavioural programmes6, their nature and
interplay have remained elusive. By using cell-specific ablation,
we show that the timing of morning and evening activity in
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