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Scalable Systems Software 
Enabling Technology Center 

 
Executive Summary: In order to address the lack of software for the effective management and 
utilization of terascale computational resources, we propose the creation of a Scalable Systems 
Software Enabling Technology Center. The virtual center will be a multi-institution, multi-disciplinary 
group composed of experts from around the country working as single team to develop an integrated 
suite of machine independent, scalable systems software components needed for the Scientific 
Discovery through Advanced Computing (SciDAC) initiative. The goal is to provide open source 
solutions that work for small as well as large-scale systems. 
 
High-end systems software is a key area of need on the large DOE systems. The systems software 
problems for teraop class computers with thousands of processors are significantly more difficult than 
for small-scale systems with respect to fault-tolerance, reliability, manageability, and ease of use for 
systems administrators and users. Layered on top of these are issues of security, heterogeneity and 
scalability found in today’s large computer centers. The computer industry is not going to solve these 
problems because business trends push them towards smaller systems aimed at web serving, database 
farms, and departmental sized systems.  In the longer term, the operating system issues faced by next 
generation petaop class computers will require research into innovative approaches to systems 
software that must be started today in order to be ready when these systems arrive.  
 
The creation of a Scalable Systems Software Center is a critical, long term investment that will benefit 
not only the DOE high-end computational science and simulation needs of SciDAC, but also other 
government agencies with large-scale computer centers such as DOD, NSF, and NASA. In addition, 
the software produced by the Center will provide many benefits for the myriad of smaller scale 
systems as well as providing a basis for the eventual adoption and deployment of these technologies in 
the commercial marketplace, as has happened with the smaller scale clusters currently being deployed. 
 
The Scalable Systems Software Center will do the research for and produce an integrated suite of 
systems software and tools for the effective management and utilization of terascale computational 
resources particularly those at the DOE facilities. The first step in this process will be to work together 
with vendors and system administrators to specify an agreed upon set of interfaces between the system 
software components. The Center will make a standard software distribution available as open source 
based on these standard interfaces. Wherever possible the components will be machine and operating 
system independent.  
 
In addition to the standard systems software distribution, the Center will be continually involved in the 
research and development of more advanced versions of the components as well as OS modifications 
required to support the scalability and performance requirements of SciDAC applications. Activities 
within the Center will often be focused on the most critical system software needs of SciDAC’s 
flagship, topical, and experimental computing centers. 
 
As part of its software lifecycle plan, the Center will engage vendors such as IBM, Compaq, SGI, 
Scyld, and other major Linux vendors to extend the Center’s system software distribution to their 
platforms and support the specified component interfaces on their systems.  
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1.0 Introduction: 
Presently, one has the ability to physically connect a virtually unlimited number of computers into 
what appears to be one monolithic machine. However, the lack of scalable software systems and 
environments has kept us from effectively exploiting the power of such a configuration. The difficulty 
of dealing with tera-scale systems has relegated those few machine builds to large research facilities 
with a staff to match. One goal of this Scalable Systems Software Center is to build an environment 
whereby a cluster of machines may scale to a very large physical size without the requirement that the 
staff scale along with the machine. The identification and development of key system components that 
enable this scalability is one step in this goal.  
 
Improved scalability is not an optional feature: it is a mandatory requirement.  At current system 
growth rates, average high-end machine size will exceed 8000 processors by 2003.  The flat, serial 
communication model used by existing resource managers is already being stressed by machines with 
only a few hundred processors and will fail well before they reach a few thousand. The problem lies in 
the fact that the amount of data, the number of connections, the amount of time spent handling failure 
conditions, and the like currently all scale linearly with the number of nodes. A vastly improved 
system architecture needs to be developed, based on a robust, possibly hierarchical infrastructure.  
This system would not only scale logarithmically, but will also be designed to intelligently compress 
state and resource configuration data. Additionally, node and communication failures need to be 
automatically handled and routed in a non-serial manner preventing failures from bottlenecking 
communications performance. Security must be incorporated into the system components and 
interfaces to prevent unauthorized access to resources and sensitive information. In order to be of 
maximum benefit to the high performance technical community, these programs should be freely 
distributed, open source where possible and have proper documentation and support. 
 
The importance of operating systems and tools research and development for high end scientific 
computing has been identified in the PITAC report [1]. However, the nation currently does not have 
software infrastructure in place to ensure that the near term issues related to multi teraop operating 
systems and tools and the longer- term requirements of petaop scale operating systems and tools are 
addressed. The technology trends and business forces in the United States computer system industry 
have resulted in radically reduced development and production of systems targeted at meeting the 
most demanding requirements of scientific research and government mission agency applications.  In 
essence, the US computer industry has become focused on computer hardware and software needs of 
business applications and smaller scale scientific and engineering problems.  Minimal attention is paid 
to the special computational needs of the high-end scientific community.  Consequently, achieving the 
performance levels required for agency missions and world leadership in computational science 
currently requires combining large numbers of smaller systems to produce ultra scale (teraop and 
above) computers.  The problems faced by system software and tools for teraop class computers are 
significantly different from the solutions provided by today’s system software.  In addition, the 
operating system issues faced by next generation petaop class computers are extremely difficult and 
require innovative approaches to system software in order to achieve high-sustained application 
performance.  

   
To address this gap in the continued progress of high-end computing, it is necessary to begin creating 
scalable systems software components, which ideally work for small as well as large-scale systems. 
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This proposal goes beyond just creating a bunch of separate scalable components. By defining an 
architecture and interfaces between system components, the Scalable Systems Software Enabling 
Technology Center (ETC) will provide an interoperable framework for the components. This makes it 
much easier to adapt, update, and maintain the components, in order to keep up with improvements in 
hardware and other software.  Publicly documented interfaces are a requirement because it is unlikely 
that any package can provide the flexibility to meet the needs of every site.  So, a well-defined API 
will allow a site to replace or augment individual components as needed. Defining the API’s between 
components across the entire system software architecture provides an integrating force between the 
system components as a whole and improves the long-term usability and manageability of terascale 
systems at computer centers across the country.  
 
The vision and goal of the ETC is to bring together a team of experts with the single goal of creating 
an integrated suite of scalable systems software and tools for the effective management and utilization 
of terascale computational resources particularly those at the DOE facilities. To reach this goal a 
significant amount of research and development must be performed. To keep on track we have divided 
this work into four steps: 
  

1. Collectively (with industry) agree on and specify standardized interfaces between system 
components in order to promote interoperability, portability, and long-term usability.  

2.   Produce a fully integrated suite of systems software and tools for the effective management 
and utilization of terascale computational resources particularly those at the DOE facilities. 

3.   Continue research and development of more advanced versions of the components required 
to support the scalability and performance requirements of SciDAC applications.  

4.  Carry out a software lifecycle plan for the long-term support and maintenance of the reference 
systems software suite. 

 
2.0 Benefits to DOE 
This proposal has significant long-term relevance to Office of Science related problems. DOE operates 
many of the largest computers in the world and some of the largest computer centers. But today each 
computer center uses ad hoc and homegrown systems software solutions. When a problem is solved at 
one DOE computer center today, there is no way to leverage that solution at the other centers. This 
Scalable Systems Software Center provides the opportunity to create and support a common set of 
systems software for large computer centers across the country. Thus allowing the sharing of solutions 
and/or improved components between sites. It will also provide components that some sites don’t 
presently have such as an integrated system monitor. 
 
By defining standardized interfaces, the ETC provides a means for computer centers or vendors to 
create custom versions of components that remain interoperable with all the other system software 
provided by the ETC. 
 
An important benefit of this ETC is that it will create useful software throughout its lifetime beginning 
within a few months after it is started. There is a critical need for scalable system software and even 
before interfaces are finalized, key components will be made available as prototypes.  
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The successful completion of this ETC’s goal will fundamentally improve the way systems software 
will be developed in the future by having well-defined, extensible interfaces and a component 
architecture. In the long term the standardized interfaces may be the most important output of this ETC 
because these interfaces are independent of any particular implementation and can live on beyond the 
lifetime of the ETC. 
 
A final benefit of the ETC is to provide a long-term system software maintenance and support 
solution. The benefit to computer centers is they are not at the mercy of companies going out of 
business and potentially leaving the centers with a software infrastructure that no longer can be 
maintained. Instead, the center can switch to another interoperable component from another vendor or 
use the open source reference implementation supplied by the ETC. 
 
 
3.0 Background 
System software comprises a broad array of components including those for configuration 
management, system monitoring, resource management, and the like. Figure 1 shows the primary 
components of a system software suite required by a terascale computer center. Equally important is 
need for all these components to interoperate with each other. By defining standard interfaces between 
the components it becomes possible for an organization to, for example, swap in a local policy 
accounting system without affecting its interoperability with the rest of the systems suite. A key part of 
this ETC will be to create an interoperable suite of scalable system components. The first step in this 
process is to understand the present state of systems software. 
 
One of the most complex challenges in managing multi-user high performance computers is how to 
efficiently assign the available computational resources (CPU, memory, disk, network) to the users 
that need them in a manner that ensures fairness, ease of use, quick turnaround, and maximum 
utilization of the resources. Resource management consists of a collection of components that must 
work in concert to provide end users the collective resources they need to solve their problem in a 
timely fashion. Among the components are the scheduler, the queue manager, the job manager, the 
accounting system, the meta-scheduler and the user interface.  The scheduler enforces the site-
dependent policies and priorities and decides when, where and how jobs should best be run given these 
constraints. The resource manager is responsible to collect the resource and job configuration and state 
information needed by the scheduler to make intelligent decisions. The job manager is responsible for 
efficiently starting, steering, and terminating jobs. The accounting system encompasses both allocation 
management and the tracking of resource usage. The user interface is responsible for presenting the 
current state of the system to the user in such a way that the user can tune a request in order to receive 
the needed resources in the fastest possible time.  Finally the meta-components provide the capability 
to build hierarchical software systems. They also provide users with a single interface into multiple 
systems distributed across a computer center. 
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Figure 1. Prototype Architecture for System Software Components and Interfaces 
 

Each of the components shown in Figure 1 serves an important function, but perhaps equally 
important is the need for them to work together as an integrated system. This diagram presents the 
major pieces of a systems software effort as well as an initial representation of the interfaces that 
would allow the components to work together. Two components in Figure 1, high performance 
communication and file systems, are addressed in other DOE funded projects and thus are not being 
addressed in this ETC except by their use and in their interfaces to other system components. The 
current trends in HPC technology require that several significant cross-cutting aspects of the design of 
the system software be addressed. These are not feature enhancements but rather are areas that are 
critical to effective utilization of the HPC clusters. These requirements include scalability, robustness, 
security, and SMP support.  The present state and challenges for the pieces shown in the diagram are 
described next. 

 
 
Resource manager 

 
The role of the resource manager is to control and manage the local compute resources, whether they 
be compute nodes, networks, storage systems, etc. It provides an interface to allow job submission, job 
execution and job and resource tracking. It is also responsible for maintaining access control to the 
various compute resources. 

 
A number of commonly used resource management systems exist today for MPP systems.  These 
include PBS [2], LSF [3], Loadleveler, DQS, and Condor [4].  Each resource manager has its own 
particular set of strengths and weaknesses. Although some vendors have provided marginally 
acceptable resource managers for their platforms, currently available resource management solutions 
lack critical features needed in the present generation of high performance technical computing 
systems, such as ultra-high scalability (thousands of nodes), security, robustness, suspend/resume 
capabilities, and resource utilization and tracking support for clustered SMP nodes. Suspend/resume 
and/or checkpoint/restart preemption capability has a tremendous potential for dramatically improving 
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system utilization by eliminating the currently unutilized cycles where nodes remain idle in order to 
enforce fairness, prevent job starvation or preserve interactive response guarantees, but existing 
resource managers have only limited checkpoint/restart capabilities.  

 
One of the more complete systems currently available is the IBM LoadLeveler software developed 
originally for the IBM SP series machines.  Unfortunately LoadLeveler does not presently support 
Linux and is widely considered to have many technical shortcomings, in particular scaling problems 
on systems with large numbers of nodes (i.e., 512 or more).  
 
The Portable Batch System (PBS) is an open source package originally developed for large SMP type 
computers as a joint project between the Numerical Aerospace Simulation (NAS) facility at the NASA 
Ames Research Center and the National Energy Research Supercomputer Center (NERSC) facility at 
Lawrence Livermore National Laboratory.  Currently Veridian is coordinating the development and 
distribution of PBS. The focus of development has shifted to clusters and basic parallel support has 
been added.  David Jackson at PNNL has ported the Maui scheduler to act as a plug-in scheduler to the 
PBS system.  While this combination is proving successful at scheduling jobs on moderate sized 
parallel systems, PBS was not designed for a cluster-like computer and thus lacks many important 
features. The general consensus is that the PBS design will not scale effectively beyond moderate 
sized cluster systems.  The modifications needed to fully meet the requirements stated above would 
necessitate a rewrite of a large portion of the PBS system and thus require a significant development 
effort. It does not appear that Veridian will put forth the effort required to build such a robust 
environment for clusters beyond that typically used in industry. 

 
 
Job Manager 

 
The job manager component is responsible for starting the processes that make up a parallel job once 
the job has been scheduled and the necessary resources allocated to it. The job manager is responsible 
for allowing a parallel job consisting of multiple processes on multiple hosts to be treated as a single 
entity, so that it can be suspended, continued, or terminated collectively as if it were a single process.  
Upon termination, all resources allocated for a job, such as temporary files, shared-memory segments, 
forked processes, etc. must be reliably freed, even if the job terminates abnormally. The system might 
also keep track of those resources that cannot be released  (such as swap, local disk, pinned memory, 
licenses, etc) to prevent node over-allocation as well as to manage/renew authentication credentials 
(i.e., DCE/Kerberos5). It is responsible for managing standard input and output in an efficient and 
scalable way and providing environment variables and command-line arguments to the processes it 
launches. It can provide services to a running parallel job, such as dynamic resizing, 
checkpoint/restart, or job steering. The job manager must, like other components of the system, be 
secure, scalable, and fault tolerant. 

 
The startup of parallel tasks must be done quickly enough to make large interactive jobs feasible. We 
envision the job manager as a set of persistent daemons, permanently in communication with one 
another, and available to communicate asynchronously with other components such as the scheduler 
and queue manager.  (Other architectures are possible but less scalable.) The Job Manager itself may 
consist of separate components to implement security and robustness.  For example, the Job Manager 
might derive its fault tolerance from another daemon that knows how to restart the Job Manager 
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daemon. It might be enhanced to interface a variety of parallel libraries such as MPI or PVM. MPD 
[5], designed and developed in part by Rusty Lusk at ANL, is an implementation of a job manager that 
provides both fast startup of parallel jobs and a flexible run-time environment that supports parallel 
libraries through a small, general interface.  

 
Scheduler 

 
The local scheduler is responsible for mapping a sites mission objectives into various scheduling 
decisions. It determines which jobs can run, when and where. It makes optimizations based on local 
policy and resource information. It coordinates its scheduling decisions with the allocation manager to 
verify the validity of all compute resource consumption and interfaces to the resource manager to 
enforce the decision it makes. It also interfaces with the meta-scheduler to provide local resource 
availability and to accept and manage remote jobs. 

 
The Maui Scheduler [6], developed at MHPCC by David Jackson, has gained wide acceptance as an 
exceptionally versatile and performance-boosting scheduler available to large parallel clustered 
systems. It is open-source and is ported to several UNIX platforms including Linux and already 
contains many of the requisites for large-scale resource management. We believe that further 
development of the Maui scheduler presents the best path to address the requirements for the 
scheduling component. Significant gains could be achieved through continued development efforts 
such as suspend/resume preemption and parallel checkpoint/restart support, resource utilization limit 
enforcement (memory, disk, %CPU), extended resource scheduling (network, data, licenses), 
enhanced Quality of Service specification and priority management, and job migration. 

 
Checkpoint/Restart 
The ability to perform a system-initiated checkpoint of the running workload on a system, and later 
restart that workload, provides many benefits to the site administrator.  The typical DOE user 
community, such as that of the LBL-NERSC center, includes a large number of users with applications 
of all sizes in various stages of development.  During early code development, users generally require 
rapid interactive turn-around for test jobs on a small number of processors.  As the code matures, 
larger problems are run on more processors and for a greater duration.  At the far end of the spectrum, 
users want to run very large applications on all the nodes of the system for long periods of time.  Job 
scheduling with fair resource allocation is nearly impossible without some means of multiplexing the 
large, long running jobs with the smaller and shorter running development jobs.  On the NERSC T3E, 
checkpoint/restart and gang scheduling have provided the tools necessary to achieve sustained 90-95% 
utilization with relatively low queue wait times.  The site uses checkpoint/restart to schedule multiple 
workload configurations throughout the week.  Large, long running jobs are scheduled during evening 
and weekend hours while smaller and interactive jobs are run during the workday.  System initiated 
checkpoint/restart allows the administrator to checkpoint one workload to disk and start another.  
Checkpoint/restart also allows the site to perform needed hardware or software maintenance and 
testing with minimal impact on the user community.  
  
We propose to evaluate the technical issues associated with performing system-initiated 
checkpoint/restart on a Linux cluster then implement such a system.  We will restrict our focus to 
parallel MPI applications under the control of the job manager.   
 
Allocation Manager 
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As the high performance scientific computing resources grow in scale and capability, there is an 
increased need to manage the allocation of these resources for a large number of users. The site 
management needs a means to fairly distribute the underlying computing resources (processors, 
memory, disk) to the various users or projects that have access to them. This introduces the need for a 
resource allocation management tool, often referred to as an allocation manager or an allocation bank. 
The allocation manager ensures that users and projects use only the resources allocated to them. 
Without allocation management, projects and users would consume computing resources based solely 
on how aggressively they submitted their workload rather than based on any site managed policies and 
priorities. Besides simply allotting the total amount of a computing resource a user or project can use, 
the site management needs a way to set timeframes for the expenditure of these allocations. This 
capability is necessary in order to prevent year-end resource exhaustion when under spent projects 
simultaneously claim allocation fulfillment. It provides the capability of meting out the resources at a 
fair and predictable rate. By measuring project usage against allocated amounts it allows for insightful 
planning of how much more work can be supported by new projects as old ones expire in regular 
cycles. 

 
There is currently no allocation management utility available that has gained wide acceptance in the 
high performance scientific computing community. By and large, sites have met this need by writing 
rather simplistic homegrown scripts that do little more than track project/account CPU usage in a 
periodic post-processing fashion. In order to fill the need for allocation management, Qbank [7] was 
developed at PNNL by Scott Jackson. QBank has been tested under both AIX and Linux. It is in 
production use at PNNL, MHPCC, University of Utah and is being installed at a number of other sites. 
Much like a bank, where the currency is measured in node-seconds instead of dollars, QBank provides 
an administrative interface supporting familiar operations such as deposits, withdrawals, transfers and 
refunds. It provides balance and usage feedback to users, managers and administrators. Some of 
QBank’s existing capabilities include: dynamically expiring allocations and reservations, earliest 
credit expenditure, quality of service and nodetype billing, multiple accounts per user and multiple 
users per account, default accounts, security authorization, and database persistence. As part of this 
proposal we will develop and integrate QBank with the resource management suite of software. 
 
System Configuration, Build, and Management 
 
As HPC systems reach ever higher node counts, a much greater proportion of the system 
administrator’s time and effort is consumed in activities related to building and updating the nodes, 
synchronizing their configuration and managing the system environment. It is a vital aspect of every 
cluster, yet most cluster users are unaware of its existence. No common set of software for 
configuration and node management yet exist.  Furthermore, it is often difficult to separate the 
architecture of a cluster from the tools that build that architecture and the interfaces that support the 
rest of the system. 
 
One of the challenges in creating a suite of build and configuration tools is that the philosophical 
approach to node management varies dramatically across sites. Specifically, when a new system is 
purchased, the managers of the system make a large number of choices about its architecture.  Their 
decisions are based on requirements for their site and users, available technology, funding, and other 
issues.  They must answer questions such as: 
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• hierarchical vs. non-hierarchical units of nodes 
• local disks on each node vs. diskless nodes 
• booting from standard BIOS vs. augmented or replaced BIOS 
• single cluster-wide process space vs. many process spaces 
• cloned node configuration vs. variable node configuration 
• private vs. public internal network 
• remote power controls or not 
• remote serial console or not 
• choice of processor technology 
• choice of operating system 

 
So, for example, a cluster that only has diskless nodes in it will require a different approach for node 
configuration management than one with fully-populated nodes.  The list of these choices is extensive, 
and the result is that every large cluster in use today is substantially different from every other large 
cluster. 
 
One of the reasons that so many of these choices exist is that these clusters are built from commodity 
parts using, generally, open source operating systems.  Choices abound at all levels, from hardware to 
network to software.  In contrast, every IBM SP site uses configuration tools that are similar to every 
other IBM SP site because the architectural and administrative model for IBM SPs is imposed by IBM 
as a natural result of their controlling the system.  This wide variation of cluster systems, while making 
it very difficult to use common management tools between sites, has resulted in a rich set of cluster 
types for the end user, and has opened the door to further research in innovative management 
techniques and experimental cluster architectures. 
 
One of the many challenges for this center is to develop a suite of common tools and approaches for 
node management that can both continue to support the wide range of choices yet also be used by 
many sites on many clusters. This will not be accomplished by making one tool that fits all systems—
the history of systems administration has demonstrated that this approach does not work.  Rather, it 
will be accomplished by defining the set of interfaces between the configuration management system 
and the other portions of the system software, and then developing a set of software tools that both 
conform to the interfaces and are flexible enough to match a range of architectural choices. 
 
An additional challenge is to support large-scale systems.  The configuration management system is 
the lynch pin between the hardware of the cluster and the system administrator.  It can make the 
difference between a cluster requiring a ten-person team or a two-person team to manage it.  Large 
systems of the future must be manageable by the same number of administrators (or fewer) as today's 
systems. 
 
The members of this Scalable Systems Software Center are well-equipped to solve these problems. 
Sandia National Laboratory has demonstrated very large and highly-scalable cluster architectures and 
management approaches on Cplant.  Oak Ridge National Laboratory is a part of the Open Source 
Cluster Application Resources project [8], giving them experience in defining cluster architectures for 
use at many sites.  Further, ORNL operates HighTORC, a large cluster, using Cluster Command and 
Control, a suite of tools developed at ORNL to explore management capabilities.  And Argonne 
National Laboratory has developed and released a set of tools called City [9], designed for flexible 
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management of a highly variable set of cluster architectures, as demonstrated on Chiba City, ANL's 
scalability testbed cluster. 
 
System Monitoring 
 
Monitoring is a very important yet undeveloped part of cluster management.  Failure detection, 
location, and follow up tests all rely on the system monitoring tools available to the system 
administrators. The development of scalable tools for the detection of failures, and more importantly 
potential failures, in tera-scale clusters is a critical research area for the Scalable Systems Software 
Center. It is also a high pay-off area of research because many of the other system components rely on 
the information from the monitoring subsystem and because the present state of monitoring tools is 
low. 
  
The state of the art of cluster node monitoring is extraordinarily primitive. The single most-used 
monitoring tool is the ping command: the command sends a simple packet to a remote node, and the 
remote node is supposed to reply. Typically, if a ping command fails, the only option is to reboot the 
node, via reset or power off.  Once the node is rebooted, any information about the problem that 
precipitated the failure is lost.  
 
Even if the ping command succeeds, the node may still be unusable due to other problems. A 
commonly-used problem determination sequence is as follows:  

1. A user notices that a job has not completed in a normal way, and contacts the system 
administrator. 

2. The sysadmin tries to log onto the node, which may or may not succeed. In many cases, even if 
the login succeeds, the sysadmin can not find a cause, and reboots the node as a prophylactic 
measure. 

3. If the login fails, the sysadmin pings the node. Even if the ping works, there is no way to get 
onto the node, so the sysadmin reboots the  node. 

4. If the ping fails, then the only option is to reboot the node. 
 
As this discussion shows, there are only two sensors in use in most clusters: the first sensor is the 
process that supports remote login; the second sensor is the process that responds to remote pings. 
These sensors are almost always used in a reactive manner, i.e., in response to perceived problems, 
and in many cases long after the failure that caused the error. Actually isolating the failure takes 
second place to getting the node back up and running again; the result is a lack of long-term data to 
allow precise problem determination.  
 
For large-scale clusters these mechanisms are not sufficient. We need to move to proactive monitoring 
of cluster nodes, and we need to make much better use of the data that is available.  
There have been some recent attempts at developing system monitoring tools. While not proactive in 
monitoring, VACM [10], an open source project from VAlinux, is one effort to produce a GUI based 
cluster hardware manager. This tool provides services such as direct monitoring of CPU fan speed, 
temperature, and voltage rating. VACM’s most serious flaw to date has been that it could only be 
supported by the more expensive server class Intel Intelligent Platform Management Interface (IPMI) 
compliant motherboards. Other features require even more specific system capabilities such as Intel’s 
Emergency Management Port (EMP). While inexpensive motherboards are beginning to support such 
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features, other systems at the DOE computer centers do not. Thus the challenge here is to generate a 
consensus with respect to an interface definition. Our initial development goal will be to implement 
this interface on the various machines present at DOE sites. We can then combine these tools into a 
monitoring sub-system that will periodically perform data gathering. Once sufficient data has been 
obtained, local sites may build a baseline data set of expected sensor ranges for a given node 
configuration. This will enable one to build a software system to interpret and preemptively diagnose 
potential hardware failures. 
 
A critical research area the Center will have to address is the monitoring of node components outside 
the motherboard. For example, power supplies are one of the most common items to fail in a node, but 
there is no way to presently detect problems with this hardware. This is an area of instrumentation that 
no vendor has begun to address. This is one area where we will have to initiate lobbying efforts 
directed toward convincing vendors of the value in instrumentation of such components. 
 
At a higher level the monitoring system must support multiple views of the cluster.  There is the 
individual hardware monitoring, as already described. There is also the view of the entire set of cluster 
hardware in aggregate.  This large-scale perspective is particularly important for large clusters with 
thousands of nodes.  And at a highest level, the monitoring system should include information about 
each of the components of the cluster, such that an administrator can confirm that the entire cluster, 
from the network to the storage system, from the motherboards to the scheduler, is working correctly. 
 
Some software that does baseline monitoring and presents these views already exists in open source 
form, for example the performance monitoring work at NCSA is based on SGI's Performance Co-Pilot 
[11]. Performance Co-Pilot is slated to go in the next release of OSCAR. The challenge that remains is 
to scale existing tools to large systems and to develop and test abstractions of the cluster monitoring 
data that effectively present the information. 
 
 
Hierarchical Design 

 
The meta-components shown in figure 1 are a necessary part of any scalable systems software 
solution. First, because DOE computer centers often have several large systems in-house and therefore 
it is much more efficient for the system administrators if they can monitor, manage, and schedule their 
resources from a higher level rather than on an individual machine basis. Second, the scalability of the 
components being addressed by the Scalable Systems Software Center will require a hierarchical 
design. The meta-components represent the nodes in an arbitrarily large hierarchical tree while 
components like a job manager are leaf nodes in this tree. The tree may be spanning a single 100 Tflop 
system or several systems in a single computer center or even resources that are geographically 
distributed such as a Grid. This Center is focused on the first two cases but the interfaces to the meta-
components will be defined so that other groups may use these interfaces to build components that link 
our system components to a Grid.  

 
Meta-Scheduler 

 
Only recently have numerous underlying technologies advanced to the point where meta-scheduling 
across loosely coupled and geographically distributed compute systems has become feasible. 
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Tremendous activity in the design and development of data and compute 'grids' have propelled meta-
scheduling to the position of being one of the final major 'missing links', preventing the widespread 
adoption and use of computational resources across organizational boundaries. A number of projects 
do exist, such as Condor and Classified Ads, LSF multi-cluster, and Legion [12].  However, adoption 
of these particular projects has been greatly retarded by their excessive cost, limits of applicability, 
and/or limits of functionality. 

 
 Silver [13] is an open-source prototype meta-scheduler developed by David Jackson. It has evolved 
with the support of PNNL, CHPC, BYU and other labs and universities. It is used by a number of sites 
including PNNL and has been demonstrated at several recent HPC conferences.  It features advanced 
reservations, ultra-high scalability and non-intrusiveness. This non-intrusive design allows the meta-
scheduler to apply high-level scheduling optimizations based on its multi-site state information while 
allowing the underlying local schedulers complete freedom to optimize the local workloads utilizing 
more extensive local information.  We propose to conduct research and develop Silver as the meta-
scheduling agent in the resource management software suite.  

 
Meta-Monitor 
 
As discussed previously system monitoring is in a primitive state, but researchers on the Center team 
have experience developing a meta-monitor that can simultaneously display information from several 
clusters. Al Geist and Jen Schwidder developed a tool called M3C [14] that allows the monitoring and 
managing of multiple clusters. NCSA has a performance monitoring tool called GL-monitor that has 
provided a lot of experience in displaying monitoring information from large clusters. The Center will 
leverage this large experience base in development of the meta-monitor interfaces and components. 
 
Validation and Testing 
 
Testing is likely the most important part of deploying any large-scale system software. This is 
especially true where the software components are continually being developed and enhanced by a 
large, possibly diverse, community.  In order for the components to provide the scalability, robustness, 
reliability, and availability of successful vendor-supplied systems of the past, a rigorous testing 
process needs to be implemented and executed within the Scalable Systems Software Center. 
 
While most vendors are familiar with the stringent testing that needs to occur before a product can be 
released, most researchers are not. Many software designers and implementers in the research and 
development world are accustomed to rapid prototyping or proof-of-concept software where thorough 
and exhaustive testing is left to those who wish to carry the software beyond the research phase. 
 
The lack of testing is also motivated by the small number of (people) resources that are available to 
perform testing and diagnosis. Software engineering textbooks will likely quote that a successful 
software development effort will have a tester-to-developer ratio of at least three-to-one.  Research and 
development sites usually do not have the necessary number of people to devote to the testing process.  
As such, the test group of a home-grown cluster system software is usually composed of the end users.  
Unfortunately, this is a role that few of them are aware that they are playing. 
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Despite these shortcomings, members of this Center have a great deal of experience with the 
development, maintenance, and testing of open source research software, in particular the Maui 
scheduler, CPlant software, MPICH [15], and PVM [16]. Their experience and skill will be leveraged 
inside the Scalable Systems Software Center to develop strategies to insure the correctness of software 
components developed and distributed through the Center. 
 
 
 
4.0 Technical Approach:    
There are several concepts that are important to the long-term success of any effort to improve system 
reliability and management.  First is modularity, since a modular system has many benefits.  For 
example, it is much easier to adapt, update, and maintain, in order to keep up with improvements in 
hardware and other software.  Publicly documented interfaces are a requirement because it is unlikely 
that any package can provide the flexibility to meet the needs of every site.  So, a well-defined API 
will allow a site to replace or augment individual components as needed. Defining the API’s between 
components across the entire system software architecture, provides an integrating force between the 
system components as a whole and improves the long-term usability and manageability of terascale 
systems at computer centers across the country.  
 
In order for the components developed at the Scalable Systems Software Center to be acceptable to 
existing computer centers, they must be compatible with the security infrastructures and policies of the 
computer centers. It would be ineffective for the components to impose a particular security 
framework that the computer centers would then have to install on top of their existing security. Each 
of the components in the system software architecture will be evaluated with respect to its security 
needs and its security interfaces specified such that it will work within existing security infrastructures. 
 
This proposal is a five-year roadmap for system software research and development broken into three 
phases.  
 
  
4.1 Phase 1.  Standardize Interfaces and Initial Components 
The first 18 months of this project has two objectives: First, is to agree on and create an initial 
integrated suite of conforming components (subset of architecture) that will be released and updated 
often throughout this phase. The second objective is to collectively agree on and specify standardized 
interfaces between system components through a series of regular meetings of the principals, industry, 
and managers of terascale computer centers. 
 
The interfaces will be platform independent wherever possible. Before defining the interfaces the team 
needs to converge on an architecture for system software, including tools for hierarchical booting, 
system monitoring, and resource management. As part of specifying interfaces, the homegrown tools 
at various labs as well as packages like PBS and such will be modified to conform to the architecture, 
and thus validate the completeness of the interfaces. These homegrown tools are detailed below. The 
extensions for interoperability are a substantial effort by themselves, but the result will be a 
fundamental advance in system software.  
 
First, using our background with existing queue systems and considering the additional requirements 
of scalability, reliability and security on large systems we will fashion a set of interfaces between each 
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of the components of the queue system. Existing resource management components for which we will 
develop and test these interfaces include PBS (resource manager), MPD (job manager), Maui 
(Scheduler), and QBank (allocation manager). These interfaces will include not only the interfaces 
between the components of the system, but also between the system and the user, (both job-file, 
command-line and GUI consumable), between the system and the user’s application, and between the 
system and external services (such as the meta-scheduler to information service interface). The user 
interface will be modeled on existing queue systems such as PBS and will include a job language 
translation library to ease the transition for users from other systems to our interface. The interface 
between the user’s application and the system will have several features. An important feature is that 
the system must facilitate a truly parallel job startup.  This will require that the system help the user’s 
application perform the initial communication setup among the user level processes. 

 
The second goal will be to determine the optimum way for the components to communicate with each 
other, particularly with the node daemons.  Existing systems utilize a star pattern for communications 
and all communication pipes are transient.  Clearly this is not a scalable approach, but it will take 
some research to determine the best communication patterns to satisfy our requirements of scalability 
and reliability.  A key to the solution will be to maintain a set of communication pipes among the node 
daemons in a pattern such as a simple loop or tree based arrangement. This will allow commands to be 
passed among the nodes quickly, without the need to establish new communication sockets.  The 
pattern must not only produce good scalability, but it must also be a self-healing pattern such that 
down nodes are quickly identified, removed from the communication chain and communications 
rerouted around the down node in the pattern. 
 
We will perform an analysis of the technical issues associated with implementing checkpoint/restart 
within the confines of the software components developed by this ETC on Linux systems.  For 
example, checkpointing and later restarting a process with an open socket connection is, in general, 
impossible.  However, if the socket is connected to the node job manager, a protocol could be defined 
in which both processes cleanly terminate the connection prior to the checkpoint.  A similar argument 
would be made for the MPI connections between the processes of a parallel application.  Intelligence 
could be added to the MPICH device layer to quiesce the communication channels prior to the 
checkpoint operation.  The deliverable for this phase of the project would be a paper describing, in 
detail, the technical issues faced, the limitations we would have to impose on process groups and 
parallel application eligible for checkpoint/restart and the work-arounds possible within the confines 
of the software environment proposed by this ETC.  Included would be the APIs required between the 
various software components for both user-initiated and system-initiated checkpoint and restart 
operations. 
 
During phase 1, we will further define the role of the node configuration component, as it will likely 
consist of many distinct subcomponents working together and then define the interfaces through which 
the configuration component will communicate with other portions of the system software.  
Additionally, we will define the range of configuration choices that we will support, expecting that this 
range will need to be large in order to match the needs of DOE computer centers. 
 
The initial set of solutions will be built from existing tools.  A few of these are commonly available as 
open source (such as CFengine), but the majority of these have been developed at the various 
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participating labs as a part of installing and supporting real clusters.  These tools are described here as 
they currently exist; during phase 1, these will be modified to conform to the defined interfaces. 

 
The City Toolkit from Argonne National Laboratory is a suite of software that was developed to 
support Chiba City. The City toolkit supports centralized, scalable and highly flexible management.  It 
includes a database used for cluster configuration, database replication tools, a configuration sanity 
checker and policy enforcer, a boot mechanism, a set of operating systems used to automatically 
rebuild a node when necessary, remote power and console management tools, and other software. 
 
The Sandia cluster configuration and management tools that are currently used to build and maintain 
the production Cplant machines are based on a hierarchical management strategy that allows may of 
the basic functions, such as booting and installing system software, to occur in parallel.  At the heart of 
the management tools is an object-oriented database that defines roles and groupings for every piece of 
hardware in the cluster and that allows the machine to have an arbitrary management topology.  The 
Cplant tools are designed specifically for a machine that has a large collection of diskless compute 
nodes that do not share a flat Ethernet network.  The tools are also designed to support some 
uncommon features, such as the ability to quickly and easily move a collection of compute nodes and 
their associated management nodes between classified and unclassified networks.   

 
The Open Source Cluster Application Resources (OSCAR) package developed by ORNL, NCSA, 
IBM, Intel, MSC Software, Veridian, DELL, and SGI is designed to provide straightforward 
installation services for standard Beowulf clusters. OSCAR uses a GUI based environment to gather 
the necessary information from a user prior to installation. Information is entered only once and is then 
subsequently used by all components during the OSCAR automated installation. The lack of 
scalability is presently the most limiting factor when using the OSCAR tools to install a large cluster. 

 
Management tools such as ORNL’s command line based Cluster Command and Control (C3) suite 
[17] as well as the web based cluster management application Managing and Monitoring Multiple 
Clusters (M3C) will also be included in the phase 1 standardization process. 
 
Like much of the rest of the Phase 1 activities, the critical goal for monitoring component is to 
correctly identify the interfaces with the rest of the system software. Existing monitoring tools from 
the various groups will be improved and extended to integrate information from most of the other 
components of the system. Through this process right and wrong ways of defining the interfaces will 
be revealed. The long-term goal for the monitoring system is to settle on one interface (graphical and 
textual) that is necessary for the basic operation of the cluster.  Work will also take place on the 
system-monitoring infrastructure; ideally there will be one daemon for monitoring purposes per node. 
 
In addition to working on conventional cluster nodes, i.e. nodes that use a hard disk to store the 
operating system and associated files, we will also ensure that this Center's software works with a new 
type of cluster node that boots Linux from on-board FLASH (i.e. BIOS) non-volatile memory. These 
nodes can boot Linux in 1-2 seconds and become active as functioning cluster nodes in less than 10 
seconds -- even the very first time they are installed in a cluster. A number of DOE Labs are now 
working with LinuxBIOS, including LANL, LLNL, and Sandia. Now that feasibility has been 
demonstrated, the next step is to build on this technology.  
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These nodes are much more easily controlled and managed than existing cluster nodes. For this reason 
we call them manageable nodes.  The issues concern how to make these nodes work with the software 
to make clusters easier to manage.  In Phase 1, we will modify the LinuxBIOS to support the software 
developed as part of this effort, and at the same time ensure that the software can be used in concert 
with LinuxBIOS-based nodes. 
 
The Unix environment provides a rich set of cryptic yet familiar commands for operations, such as cp, 
mkdir, ls, ps, grep, find, etc.  In a distributed parallel environment, particularly a large one in 
which there is no globally shared file system; system administrators as well as application developers 
require a simple way to invoke these operations in parallel across an entire cluster [18]. In phase 1 a 
scalable, self-correcting fault tolerant implementation of such user utilities will be investigated. 
 
Validation and verification for systems software is an undeveloped area because computer centers had 
little to compare against. The Scalable Systems Software Center will have to make testing, validation 
and verification a key part of its research effort as well as a key part of its software maintenance.  
First, because the creation of a standard distribution will likely require selection among tools with the 
same functionality. In order to assess the comparative strengths and weaknesses of these 
implementations, functionality and performance tests will be needed.  Ideally, these tests would be 
able to assist in quantitatively and qualitatively measuring the appropriateness of one component 
implementation over another. For many of the components in Figure 1 there isn’t even evaluation 
criteria much less validation tests.  In Phase 1 we will do research on the types of tests and evaluation 
criteria that will be needed over the lifetime of the Center. These evaluation criteria will themselves be 
evaluated as they are applied to the process of selecting initial components to go in the distribution.  
 
The Scalable Systems Software Center will have three types of deliverables: standard interface 
specifications, research papers and presentations on scalable system components, and software for 
distribution for computer centers across the nation. The Center milestones are aligned with the three 
phases of the research plan. Initial output of software from the Center will begin just a few months 
after startup and will continue throughout the five-year lifetime of the Center. 
 
Phase 1 Milestones and Deliverables 

 
• (6 months) Distribute a series of interface, component, capability descriptions provided for node 

build, configure, and manager software. 
• (6 months)  Detailed technical report on process checkpoint/restart for Linux systems.  
• (9 months) Compliant node build implementations from various sites with support for both 

diskless and local disk support cluster architectures. Tested up to 1024 processors 
• (12 months) Establish and release initial resource management interface specifications 
• (12 months) Establishment of the CVS repository and module structure, agreement on 

documentation conventions.  
• (12 months) Finalized API for system initiated checkpoint restart of parallel MPI jobs on Linux 

systems. 
• (18 months) Release v1.0 of the Center’s resource management system based on existing open 

source code and the results of the scalability testing. 
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4.2 Phase 2.  New Capabilities and Full Systems Suite 
The next 24 months will focus on research and creation of components that have no existing versions, 
for example checkpoint/restart, as well as continuing improvements in efficiency and scalability of the 
most critical system components. The determination of which components are most critical will be 
based on feedback from system administrators, managers, and power users of the SciDAC computer 
centers. New scalable versions of components will be developed, validated, and swapped into the 
Center’s system software distribution. Avenues for long-term support for the distribution will be 
investigated through the industry participants in the first phase.   
 
We will fully implement the set of interfaces determined during phase 1, tested as a system and 
released as a full suite of resource management software. Work will begin on more scalable and fault 
tolerant versions of the resource manager components and to integrate these components into the 
security model.  
 
The job manager component will add support for jobs written for multiple libraries, such as MPI-2, 
Global Arrays [19], and other one-sided communication libraries. It will implement additional services 
as determined by customer feedback, as well as offer standard interfaces to tools that need the 
cooperation of the job manager, such as parallel debuggers and steering tools.  
 
A new queue manager component will be implemented that fully tracks the state of both jobs and 
nodes eliminating the need for other components, such as the scheduler, to directly interact with the 
nodes.  Full versions of the node daemons will provide true parallel command startup, tracking and 
termination.  

 
 The resource manager will implement the scalable communication infrastructure as designed in phase 
1. It will provide resource limit enforcement to ensure that users stay within their requested resource 
allotment (something increasingly important for multiple jobs sharing SMP nodes). Also during phase 
2 we will extend the interface between the system and the user’s application to allow bi-directional 
communication.  This will be useful in directing application level checkpoint/restart as well as provide 
new features such as the ability of the job to request an extension of its job reservation, or perhaps to 
allow jobs to expand and/or contract their resource usage (dynamic job support).  Other research will 
examine the possibility of allowing users to specify fuzzy resource requests (resource preferences).  

 
The scheduler will likewise be enhanced to provide support for these capabilities: resource limit 
enforcement and tracking, suspend/resume preemption and parallel checkpoint/restart, interactive 
support/job steering, and dynamic job support. In addition it will provide enhanced Quality of Service 
specification and priority management. 

 
The meta-scheduler will begin research and development in the area of intelligent data pre-staging, a 
critical element for the efficient use of distributed resources to be successful. Also, peer to peer 
interaction between meta-schedulers will enhance the effectiveness of meta-scheduling by extending 
the view and reach of each meta-scheduler allowing greater resource access, a larger selection of jobs 
to choose from, and improved load balancing across systems. 

 
The allocation manager will be enhanced to track, allocate and charge for SMP resources such as 
memory, network and disk. As part of the scalability improvements necessary to support thousands of 
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processors, we propose to implement in-memory data-caching for time-critical read-only queries like 
quotes and balance checks. Also a new method to break up large tables needs to be devised to ensure 
good performance for accounting queries. 
 
During phase 2, the emphasis in the configuration component of the system will be to: 

• Merge, where it makes architectural sense, existing tools into only a few sets of tools.  One likely 
approach to this will be to develop a generic framework for tools that supports multiple "plug-ins" 
appropriate to the type of cluster being managed. 

• Enhance reliability by distributing knowledge and supporting fault tolerance. 
• Support new capabilities necessary for the rest of the environment. 
 

During this phase of development we will investigate both broadcast and multicast capability of 
network switches to improve performance when invoking parallel cluster operations. We will also take 
advantage of hardware support of operations where it is available. 
 
The monitoring subsystem will be expanded, via the interfaces defined in phase one, to present a view 
of the overall system, including queue information, network performance, storage capacity, state of 
external links, and detailed node hardware information.  It will also be modified in order to support 
large scalability.  This will most likely require an updated architecture for hierarchical monitoring, 
possibly using multicast as a way of communicating monitoring information. 
 
We will implement checkpoint/restart on a Linux cluster based on the analysis performed in phase 1.  
This work will build upon the existing infrastructure available at the time.  For example, Scyld's bproc 
can dump and restore the memory image of a process for migration to a remote node or for remote 
execution.  It currently cannot handle open files.  During the time frame of this work, global file 
systems are likely to be available insuring a consistent state and name-space for all files on all nodes 
of the cluster.  We would take advantage of this to allow the restarting of processes on nodes different 
from where they were checkpointed.  The result of this phase of the project would be a working, but 
possibly limited, implementation of parallel checkpoint/restart on Linux clusters running the software 
proposed in this ETC. 
 
In phase 2 the evaluation criteria and validation tests will be expanded and utilized to determine when 
improved components should be swapped into the standard distribution. As part of the Center’s 
software maintenance, the team will document evaluation criteria for new components that are added 
to the standard distribution. These criteria will be used to develop validation tests for future optimized 
versions of the components.  Testing of a multi-component software system of the type we envision 
involves both tests of single components and integrated tests of multi-component subsystems.  Each 
single component of the system is complex enough to deserve a fairly sophisticated testing strategy.  
Many participants in the project have experience in testing software for reliability as it is being 
developed.  We plan to develop a testing harness that can be used by various developers.  One 
example of such a system is that used by the MPICH [20] implementation of MPI.  
 
Once each component and its interfaces have been tested, the more difficult task of integration tests 
must be performed. The primary approach will be to use existing systems to run real job mixes on.  
The Chiba City machine at Argonne, for example, is specifically configured so that an entirely new 
collection of system software, including a new version of the OS itself, can be quickly loaded onto a 



 20

collection of nodes for testing. Once the software is demonstrated to be reliable and robust it will be 
tested in real production environments such as the DOE topical centers. This will allow testing on the 
largest systems available at any given time. If these tests demonstrate superior components, then the 
software could be left on these production systems and form a natural process of transitioning the 
products of the Scalable Systems Software Center into real use.   
 
Phase 2 Milestones and Deliverables 

 
• (20 months) Release v2 of the interface specification adding interfaces for completely new 

components, such as the Meta-scheduler, and including feedback on the v1 specification from 
users and the implementation.  

• (24 months) Tru64 & AIX initial support  
• (24 months) The job manager can start 100 processes in 1 second, and 1000 processes in 5 

seconds 
• (24 months) Deliver "Plug-in" framework for systems management tools. 
• (28 months) Resource manager and scheduler add support for resource limit enforcement, 

dynamic jobs, and checkpoint/restart 
• (30 months) Release a full implementation of the v1.0 interface specification on all components. 
• (30 months) Set up user-oriented maintenance system for responding to problem reports 
• (36 months) A new meta-scheduler component employing data-staging 
• (36 months) Node management software tested on 4000 processors 
• (42 months) Able to support loss of up to 25% of the cluster, including the management nodes. 
• (42 months) Initial implementation of parallel checkpoint/restart of an MPI application on a 

Linux cluster. 
 

 
4.3 Phase 3.  Advanced Scalability and Software Support  
The last 18 months is marked by getting vendors to support the Scalable System Software distribution 
on their platforms and by advanced research into the scalability needs of petascale systems software. 
As vendors take over the support of the stable software release, the Center can begin to focus on the 
next generation of computers and the creation of system software components needed for this future 
technology. The Scalable Systems Software Center will be a catalyst for fundamentally changing the 
way future high-end systems software is developed and distributed. 
 
The full resource management implementation will be updated as needed to run on the current state of 
the art systems.  Some components may need to evolve in order to manage jobs on many thousands of 
nodes.  This will require innovative approaches to fault tolerance, scalability and security. However, 
the API should remain unchanged. 
 
The resource manager communication infrastructure will be enhanced to intelligently compress state 
and resource configuration data.  Additionally, node and communication failures will automatically be 
handled and routed around in a non-serial manner preventing failures from bottlenecking 
communications performance. 

 
This is a period in which enhanced scheduling algorithms for the scheduler and meta-scheduler will be 
investigated and implemented. Every scheduling decision will consider the cost on underlying network 
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bandwidth, available data staging space, computational throughput, and start time. The scheduler and 
meta-scheduler will be enhanced to support co-allocation of scarce resources (network, data, licenses) 
and locality scheduling. The resource manager and scheduler will be enhanced to allow locally 
submitted jobs to migrate to systems where they could run sooner. The meta-scheduler and allocation 
manager will be augmented to allow for monitoring, tracking, allocation and accounting across site 
and system boundaries. 
 
In order to support petascale systems, the hierarchical model of cluster architecture that is common 
today will blossom into multiple levels of hierarchy. To keep pace the Center will do research on node 
configuration systems that are able to operate at multiple hierarchical levels.  Any kind of 
centralized resource (such as a database of configuration information) must be fully replicated and 
reliably distributed to multiple servers, each of which are fault tolerant and able to fail over to other 
similar systems. 
 
We will continue to extend and improve the implementation provided in Phase II as well as to 
experiment with how best to use this capability in production.  Tools and scripts to automate the 
management of various job queue configurations will be provided.  The LBL-NERSC center currently 
uses an integrated collection of PERL scripts to automatically control its batch configuration on its 
T3E.  Multiple configurations can be defined and scheduled throughout the day or week.  During a 
configuration change, the existing workload is checkpointed to disk and the jobs associated with the 
newly selected configuration are restarted.  These tools would be ported to the software environment 
proposed under this ETC. 
 
The monitoring system will become the primary interface for operational management of the system.  
It will also have hooks for applications to use, as part of support for the checkpoint/restart system.  
And, if at all possible, it will be used to support some amount of predictive fault detection, based on 
analysis of common fault patterns.  This ability will be necessary on future systems with tens of 
thousands of nodes. 
 
The development of scalable systems software, if it is to achieve the highest levels of performance, 
must proceed in tandem with the development of low-level communications mechanisms.  We plan to 
cooperate with the developers of other cluster software packages to provide higher-level abstract 
communications and distributed systems facilities where necessary.  Examples of such work include 
the development of a kernel level block device driver or a mechanism for remote procedure calls.  
These areas require future standardization. 

 
The ideal scalable systems design environment would include a suite of simulator tools that are 
capable of performing scalability tests for HPC systems that are envisioned a few years into the future. 
As the system goes into production, these same simulators can give better intuition to the end user 
about how their application is behaving in this environment, and they can allow the system designers 
to refine their design for better performance. These tools can run the gamut from full system 
simulators closely modeling the actual hardware and software in a system to more focused, discrete 
simulators that address a single design problem.  One aspect in our phase 3 research of systems 
software for petascale computers, we will explore the development of a suite of simulator tools that 
could be used to test system components at a scale beyond available hardware.  
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Phase 3  Milestones and Deliverables 
 

• (48 months) Release v3 of the system fully implementing the v2 interface specification. 
• (48 months) The resource manager implements a fault tolerant communication subsystem 
• (48 months) Maintain web site and mailing list for responding to problems 
• (54 months) The job manager runs for 30 days continuously on the largest available system 
• (54 months) Incorporate feedback on previous implementations and validate the system on the 

latest systems available at this point in time. 
• (54 months) Production release of parallel checkpoint/restart capability for MPI applications on a 

Linux cluster. 
• (60 months) Administrative tools to automate workload configuration changes using 

checkpoint/restart. 
• (60 months) Able to support loss of up to 50% of the cluster without impacting the remaining 

nodes or jobs. 
• (60 months) The scheduler and meta-scheduler support co-allocation and job migration. 
• (60 months) Scalability tests on the largest system in the DOE SC system 

 
 
5.0 Management Plan: Being a virtual center, the management of the work becomes an important 
aspect to guarantee success. The need for consensus on interfaces requires numerous group 
discussions and meetings. Team members will meet by teleconference biweekly and in person 
quarterly for progress reports and decision-making. Decisions will be made by a consensus of the 
project PIs with the Center coordinator acting as arbitrator and final decision maker when a consensus 
isn’t reached. 
 
6.0 Primary areas of interest of the team members: 
 
The Scalable Systems Software Center is organized as a single team working together on a collective 
goal. Primary areas of interest of the team members is listed in the following table.  
ORG Name Primary tasks 
ANL  

Rusty Lusk    
Remy Evard   
JP Navarro    
Daniel Nurmi  
Narayan Desai  
David Ashton  

 
Job manager, testing 
Node Configuration 
Configuration, Job manager 
Config, Monitoring, testing 
Config, Monitoring, Job mgr 
App env 

PNNL  
Scott Jackson  
David Jackson 
Kevin Walker  

 
Resource mgmt, security 
Resource mgmt, App env 
Resource mgmt, testing 

Ames  
Brett Bode  
Brian Smith   
Daniel Greig   
Cedric Collins  

 
Resource mgmt, App env 
Resource mgmt, testing 
App env, testing 
Resource mgmt 
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TBD  
ORNL  

Al Geist    
Stephen Scott  
Jens Schwidder  
Brian Leuthke   
Michael Brim  

 
Coordinator, Monitoring 
Config, App env, Job mgr 
Monitoring, testing 
Config, security, testing 
App env, Job manager 

LANL  
Ron Minnich  
TBD 
TBD 

 
Monitoring, Node manager 
 
 

LBL  
Eric Roman  
Paul Hargrove 
Michael Welcome 

 
App env, testing 
App env- checkpt/restart 
App env-checkpt/restart 

SNL  
Neil Pundit    
Ron Brightwell 
Rolf Reisen    
Lee Ward     
 Doug Doerfler  
Lee Ann Fisk  

 
Validation, simulation 
Config, monitoring 
App env, Job manager 
App env, monitoring 
Validation, testing 
Config, resource mgmt 

NCSA  
Rob Pennington  
Avneesh Pant 
Mike Showerman 

 
Validation, simulation 
Resource mgmt, testing 
monitoring 

 
 
7.0 Facilities and Institutional Resources: 
While there are several small systems (less than 200 processors) scattered across the team for software 
development and testing. For larger scalability tests, time on Chiba City at Argonne will be available 
as well as time on the NCSA cluster. For even larger scale tests, time on the flagship and topical center 
computers will be obtained, but only after the software has proven reliable and robust in smaller scale 
situations. 
  
Chiba City is a 256 node PC cluster designed to support scalable computer science, and as such, has a 
constantly changing configuration.  It ranges from a standard set up in which all of the computation 
nodes are running a standard Linux distribution, to one in which a user may have root on a set nodes 
while another is running some other operating system on a different set of nodes. 
 
NCSA is presently installing a 512 node Pentium III Linux cluster. This large cluster will be available 
for performing scalability studies on the system components under development. In addition, by the 
end of 2001 NCSA will have a 320 processor Itanium cluster, which will provide another architecture 
on which to port the scalable systems software.  
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DOE needs the components developed by the Scalable Systems Software Center to be able to run on 
the tera-scale machines that exist in the DOE computer centers. The largest machines are IBM SPs and 
Compaq Alpha clusters.  Nodes on the large Compaq Alpha cluster at ORNL have also been offered to 
the Scalable Systems Software Center for software development and testing on this platform. The 0.5 
teraflop Compaq cluster runs Tru64 Unix and standard production software from Compaq.  In addition 
the ORNL computer center has offered access to nodes on their  IBM SP. The 1 TF IBM runs AIX and 
includes the standard production software from IBM.  
 
Between the smaller development clusters, larger PC clusters, and the Compaq and IBM systems, the 
Scalable System Software Center has access to all the required resources for the research, 
development, and deployment of the software produced by the Center. 
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an assistant professor of mathematics at Northern Illinois University, but moved into the eventually 
into Computer Science Department, where he eventually became full professor and Acting Chairman 
of the Department.  In 1982, Lusk joined Argonne National Laboratory (ANL) as a computer scientist, 
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emphasis on clusters.  Prior to this, he was the head of the NT Cluster Group at the NCSA, which has 
responsibility for the NT Supercluster.  The group is focused on supporting high performance 
computing on a large NT cluster and making it a production system for NCSA users. This work 
includes software infrastructure development and deployment, evaluating systems, interconnects and 
storage area networks, and applications porting and testing. In addition to experience with clusters, he 
has worked on mass storage system performance analysis and usage patterns as part of the High  
Performance Data Management group at the NCSA and oversaw the transfer across the vBNS of over 
2 TB of user's data to NCSA from the Pittsburgh Supercomputing Center for the PACI program.  Prior 
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His research and development activities are focused in the design and implementation of systems 
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production use at many of the country's largest supercomputer and cluster systems including a high 
percentage of the largest IBM SP and Linux clusters.  Mr. Jackson has also developed scaleable cluster 
resource management and meta-scheduling software including the Wiki resource manager and Silver 
metascheduler to support the upcoming needs of the computational grid community.  His research 
interests lie in the areas of optimizing resource utilization under real-world system constraints and 
developing highly robust, scaleable system management software architectures. 
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Science. He has worked for numerous high performance computing centers providing resource 
management and scheduling services including PNNL, Lawrence Livermore National Laboratory, San 
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Diego Supercomputer Center, NCSA, MHPCC, and the Center for High Performance Computing.  He 
has also worked as a consultant at IBM's AIX System Center.  He is active in the Grid Forum 
scheduling working group and is the lead of the SP-XXL scheduling and resource management 
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systems software. He has been highly instrumental in improving PNNL’s MPP1 system to register 
continued utilization improvements of 10% per year since its inception. Mr. Jackson is an active 
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member of The Open Cluster Group (http://www.OpenClusterGroup.org)  – dedicated to bringing 
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has been a Ph.D. student in Stanford University's Scientific Computation and Computational 
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included work in the operating systems area, working closely with SGI, Sun and the Linux and 
FreeBSD core teams on operating systems enhancements for clusters; the compiler area, building 
runtime support for parallel compilers for clusters; the applications area, building scalable applications 
for government and commercial applications; and in the hardware area, in the design of the Memory 
Integrated Network Interface (MINI), which pioneered many of the concepts commonly in use today 
in user-level network interfaces. Ron is the inventor of the LinuxBIOS, a project he started 18 months 
ago at LANL. The LinuxBIOS is a complete replacement for the normal PC BIOS, and boots the PC 
into Linux in 1-2 seconds. This work has found immediate application in embedded environments, 
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Currently, two commercial cluster companies have adopted the LinuxBIOS as the foundation of the 
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