
1 Copyright © 2002 by ASME

Proceedings of DETC’02
ASME 2002 Design Engineering Technical Conferences and
The Computers and Information in Engineering Conference

Montreal, Canada, September 29-October 2, 2002

DETC2002/EUC-34506

EMBEDDED REAL-TIME LINUX FOR CABLE ROBOT CONTROL

Frederick M. Proctor and William P. Shackleford
Control Systems Group

National Institute of Standards and Technology
100 Bureau Drive, Stop 8230

Gaithersburg, MD 20899-8230 USA1

                                                          
1 No approval or endorsement of any commercial product by the National Institute of Standards and Technology is intended or
implied. Certain commercial equipment, instruments, or materials are identified in this report in order to facilitate understanding. Such
identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily the best available for the purpose.

This publication was prepared by United States Government employees as part of their official duties and is, therefore, a work of the
U.S. Government and not subject to copyright.

ABSTRACT
Linux is a version of the Unix operating system distributed
according to the open source model. Programmers are free to
adapt the source code for their purposes, but are required to
make their modifications or enhancements available as open
source software as well. This model has fostered the
widespread adoption of Linux for typical Unix server and
workstation roles, and also in more arcane applications such as
embedded or real-time computing.

Embedded applications typically run in small physical and
computing footprints, usually without fragile peripherals like
hard disk drives. Special configurations are required to support
these limited environments. Real-time applications require
guarantees that tasks will execute within their deadlines,
something not possible in general with the normal Linux
scheduler. Real-time extensions to Linux enable deterministic
scheduling, at task periods at tens of microseconds.

This paper describes embedded and real-time Linux, and
an application for distributed control of a Stewart Platform
cable robot. Special Linux configuration requirements are
detailed, and the architecture for teleoperated control of the
cable robot is presented, with emphasis on the resolved-rate
control of the suspended platform.

INTRODUCTION
Linux is a version of the Unix operating system written by
Linus Torvalds in 1991 while a student at the University of
Helsinki in Finland. version 1.0 was released in 1994 and has
grown with assistance from programmers across the Internet

[1]. It includes features commonly expected from modern
operating systems, including multiprocessing, multitasking,
virtual memory, shared libraries, demand loading, memory
management, and TCP/IP networking.

Linux is distributed according to the open source model
[2]. Programmers are free to adapt the source code for their
purposes, but are required to make their modifications or
enhancements available as open source software as well. This
model has fostered the widespread adoption of Linux for
typical Unix server and workstation roles, and also in more
arcane applications such as embedded or real-time computing.

Embedded applications typically run in small physical and
computing footprints, often without keyboards, mice or
monitors, and usually without rotating media such as hard
drives or CD-ROMs that could not withstand harsh
environments. Programmers can configure Linux to run without
any of these devices, and there are several popular embedded
Linux distributions that come pre-configured and include useful
tools for customization. Common customizations include
adding flash memory storage to replace rotating media hard
disks, and replacing the memory- and disk-consuming X
Windows graphics component with stripped-down versions.

Real-time applications require guarantees that tasks will
execute within their deadlines, typically with sub-millisecond
periods. The normal Linux scheduler is optimized for fastest
average response, but does not guarantee task execution by
deadlines. Several groups have made real-time modifications to
Linux. The New Mexico Institute of Mining and Technology
developed Real-Time Linux (NMT RTL) [3]. The Department
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of Aerospace Engineering of the Polytechnic Institute of Milan
developed the Real Time Application Interface (RTAI) [4].
These versions of real-time Linux are available free as patches
to the Linux source code, or through commercial vendors who
provide documentation and support.

Our application, control of a cable robot, had both
embedded- and real-time requirements. We chose Linux as the
basic operating system due to our familiarity with it as a
desktop scientific computing and file server platform, its low
cost and high performance. Many hardware platforms were
considered, which we limited to those based on the Intel
Pentium microprocessor for consistency with the Linux desktop
computers we already used for software development. We were
further limited to those platforms designed for harsh
environments, which for the cable robot application included
large-scale blast-media paint removal. Choices range from
single-board computers in passive backplanes, to more
integrated form factors such as CompactPCI [5] and PC/104
[6]. We chose PC/104 primarily due to our packaging
constraints.

The first part of this paper discusses the use of Linux for
embedded real-time applications, while the second part
describes the robotics application itself. Readers interested in
Linux development need not read the application section in
depth, while those readers with robotics interest need not
thoroughly understand the Linux configuration issues in the
early sections.

CONFIGURING EMBEDDED LINUX
Considerable flexibility is provided with Linux to eliminate
unneeded parts of the kernel (the operating system proper) and
system- and user programs in order to reduce memory- and disk
consumption [7]. Indeed, many commercial products run Linux
internally and do not resemble desktop computers at all, for
example, set-top boxes, television video recorders, personal
digital assistants (PDAs), and game consoles.

Embedded Linux Distributions
It is possible to use a full-blown multi-user Linux system as an
embedded system, but it typically provides unwanted services
(e.g., password login) and takes more memory and mass
storage than may be available. Many Linux distributions
streamline the system considerably, both reducing the time to
boot and resource consumption; a web list is maintained at [8].
We selected BusyBox Linux [9], distributed free under the
open source model.

Kernel Customization and Development Cycle
Linux distributions (e.g., Red Hat, Mandrake and SuSE) come
with pre-configured kernels set up for most commonly-
encountered configurations. These distributions also provide
the source code to the kernel (in C and assembly), so that users
can customize what is included and excluded. Most Linux users
need not change any kernel configuration, although some
choose to leave out features they know they won’t need. A few
modify the source code themselves as hobbyists, researchers or

out of curiosity. In our embedded development, we did not
need to modify the source code, although we did need to
change the configuration. The steps involved are relatively
straightforward:

1. run the graphical configuration tool and select what is to be
included or excluded. Linux provides the make utility to
automate this, and the kernel source code comes with a
makefile with all the rules necessary for configuration.

2. Recompile the kernel, again using make.
3. Install the kernel on the target system.

Details have been omitted to keep the discussion focused on the
process. The documentation that comes with embedded Linux
distributions describes the installation and configuration
processes in adequate detail.

Steps (1) and (2) can be done on a system other than the
target embedded system for speed and convenience. The result
of these steps is the executable kernel file, typically on the
order of a megabyte or so in size, that can be put on a floppy
and taken to the target embedded system for step (3). The target
system can be fitted with peripherals such as floppy disk drives,
hard disk drives or CD-ROMs during the development stage to
make this process easier. Once the kernel and application code
are stable and installed, these peripherals can be removed.

Diskless Operation
Perhaps the most common embedded customization is the
replacement of rotating media hard disks with solid-state read-
write storage [10]. These solid-state devices range in size from
a few megabytes up to hundreds of megabytes and are suitable
for storing the full Linux operating system and any user
application code. One example is Compact Flash [11], solid-
state media with a built-in IDE interface that serves as a direct
replacement for normal IDE hard disks. Another example is
DiskOnChip [12], which contains PC BIOS replacement code
for dealing with the chip as a normal hard disk. However, these
routines are useless with Linux, which does not use the PC
BIOS, so special drivers for DiskOnChip devices are required.
Recent releases of the Linux kernel (2.4 or higher) include
these drivers as part of the Memory Technology Devices
(MTD) subsystem. We used DiskOnChip in our system as it
was provided with the PC/104 microprocessor module we
selected.

Flash technology is limited in the amount of writes that can
be done. Several solutions to this problem exist. Linux can be
configured to use various file systems that sit atop the raw
media. The typical Linux file system is ext2, and DOS FAT can
be configured for compatibility with older PC-based drives.
File systems specially designed to do “wear leveling” are
available. Wear leveling spreads out writes across the
underlying physical media transparently, so that repeated writes
of a single file will actually take place at different spots in
flash. One example is the Journalling Flash File System (JFFS)
[13]. The DiskOnChip device builds wear leveling into the on-
chip driver (TrueFFS), and so can accomplish wear leveling
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with any file system. With these techniques, flash media can
last far longer than the expected lifetimes of most embedded
applications, on the order of hundreds of years depending on
the amount of data written.

Linux requires that some directories be writeable during
normal operation, such as those holding log files. In embedded
operation these may not need to persist between reboots. In this
case, these directories can be mounted onto RAM disks,
directing writes away from flash.

Booting
PCs normally boot by running the boot loader located on the
first sector of the hard disk. Various boot loaders exist that can
boot Linux, most commonly SYSLINUX [14], LILO [15], or
GRUB [16]. These can be configured to boot one of several
operating systems loaded onto partitions on one or more hard
disks, enabling boot-time selection choices for Linux or other
operating systems.

LILO (the Linux Loader) is one of the most popular boot
loaders for Linux. LILO was chosen for the cable robot project
as it was both already part of the Linux distribution we use
(Red Hat Linux) and has support for booting from DiskOnChip
devices using the doc-lilo extension to LILO [17].

An initial RAM disk is required when booting from
DiskOnChip since the basic BIOS cannot extract data from
these devices as it could from direct disk replacements like
Compact Flash. The initial RAM disk is a compressed image of
the Linux kernel and files necessary for booting that is created
by the boot loader (LILO in our case), and later decompressed
and loaded into a section of RAM [18]. The RAM disk appears
for all intents and purposes like a normal disk, and full bootup
continues from this point.

For highly embedded systems with immediate-on
requirements, boot time can be reduced drastically by
eliminating the BIOS. LinuxBIOS [19] is an open-source
project aimed at replacing the normal BIOS with a small
amount of hardware initialization and a compressed Linux
kernel that can be booted from a cold start in a few seconds.
BIOS replacement with LinuxBIOS can be done by burning the
LinuxBIOS appropriate for the chipset into ROM and replacing
the original BIOS chip; by downloading new BIOS firmware if
the BIOS chip allows this; or by using DiskOnChip. We did not
have immediate-on requirements and did not port LinuxBIOS
to our processor board, since this requires a significant time
investment.

It is also possible to configure Linux to boot across the
network. This is commonly done on networked computer
clusters, where perhaps hundreds of computers run with no
local hard disk, keyboard, mouse or monitor. The advantage is
that no boot media is required at all (neither disks nor flash),
and a single kernel can be used for all cluster processors which
makes kernel modification and deployment easier. In non-
networked embedded systems this is of course not possible.

GRAPHICS SUPPORT
Graphics configuration for embedded system is one area that
merits special attention. Typically Linux distributions provide
the XFree86 implementation of X Windows [20], with
bitmapped color graphics, mouse and keyboard input, and
window managers. While indispensable for desktop systems,
XFree86 consumes tens of megabytes of disk space and
memory and may be unsuitable for a small-footprint embedded
system. Other alternatives to XFree86 exist that provide all the
common functions needed by graphical embedded systems,
such as keyboard and mouse input, bitmap graphics, and
multiple windows, leaving out more sophisticated functions.
Examples include GGI [21], DinX [22],
MicroWindows/NanoX [23] and Qt/Embedded [24]. The X
Windows server normally available that maps graphics calls to
the underlying chipset is not used by these systems. Instead,
they map to the hardware using either low-level SVGA
graphics functions via svgalib [25], or through the newer Linux
Frame Buffer device [26]. The Frame Buffer is a software layer
ported to common video chipsets that enables program
portability for graphics software that does not need full X
Windows functionality. The advantage of the Frame Buffer
interface over svgalib is that it supports more colors and higher
resolutions than allowed by the SVGA specification. The
disadvantage is that it has been ported to fewer boards, and
requires additional configuration.

For our controller, we chose Qt/Embedded, a C++
application programming interface that provides common
widgets (e.g., labels and pushbuttons) and can be compiled for
both X Windows and Frame Buffer implementations (as well as
Microsoft Windows and the Macintosh). Having dual X
Windows and Frame Buffer compile options allowed us to
debug the graphical user interface (GUI) conveniently on our
desktop machines running X Windows, and then do the final
port to the embedded system quickly.

CONFIGURING REAL-TIME LINUX
Both versions of real-time Linux described earlier, RTL and
RTAI, are patches to the Linux kernel source code that add a
real-time scheduler and insert a layer between the original
kernel and interrupt sources. This layer defers the handling of
interrupts by Linux until the real-time scheduler determines that
no real-time tasks are ready to run. Real-time and non-real-time
processes are strictly separated from a scheduling viewpoint, so
that any real-time process will interrupt any kernel code when
ready to run, and the Linux kernel will not preempt any real-
time process. Interprocess communication mechanisms such as
semaphores, shared memory and FIFOs are used to link real-
time and non-real-time code.

The same steps are taken to install either real-time Linux
version:

1. patch the kernel source code using the patch utility, or
obtain a pre-patched kernel. If a pre-patched kernel is used,
it will likely not have any embedded customizations done
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earlier. In this case the embedded customizations should be
done to the pre-patched kernel.

2. Recompile the kernel, identical to step (2) for embedded
system configuration earlier.

3. Install the kernel, identical to step (3) for embedded
systems.

Details have been omitted to keep the discussion
focused on the process. The documentation that comes
with each RT Linux system describes the installation
and configuration processes in adequate detail.

REAL-TIME DEVELOPMENT
Because Linux processes and real-time processes are
scheduled separately, with real-time processes having
higher priority, any Linux code (even the kernel) can
be preempted by real-time code. For this reason, real-
time code cannot make Linux system calls, device
driver calls, or otherwise interrupt the flow of Linux
processes. For example, real-time code cannot call the
malloc function to allocate heap storage, since the
kernel call that implements this may be in the middle
of updating the memory allocation table when
interrupted by the real-time process, corrupting the
table. It is possible to re-code the Linux kernel so that
its system calls can be interrupted by themselves
(termed “reentrancy”), but this was not a design goal
of Linux’ developers as it was with commercial real-
time operating system vendors. As a result, real-time
Linux requires its own copies of device drivers for
hardware resources, and these resources cannot be
shared with normal Linux processes. RT Linux drivers
for serial communication and various industrial
communication buses exist, so this limitation affects
the design of the system, and does not impose a
burden on the programmer. However, there are far
fewer device drivers for RT Linux, so any hardware
considered should be checked for available RT Linux
drivers.

THE CABLE ROBOT AND CONTROLLER
In our application, we control a large-scale moving platform
suspended by six wire rope cables arranged in a Stewart
Platform configuration [27, 28, 29]. The intent of the platform
is to carry construction and maintenance equipment, such as
paint sprayers or removers, throughout a large work volume
typical of ships or aircraft. This is shown in Figure 1. Servo-
controlled winch motors mounted on the platform lengthen or
shorten the cables. Individually, a cable will move the platform
in a non-intuitive way. When coordinated properly, all six
cables can effect straight-line motion of the platform, indeed
any motion desired.

The anchor points of the cables to the wall or ceiling must
be measured with respect to a ground-based coordinate system.
The anchor points of the cables to their winches on the platform
must likewise be measured with respect to a platform-based

coordinate system. The controlled position is then the position
of the platform origin relative to the ground origin, which
moves around as the cables lengthen and shorten. These
calibration measurements need only be done once, when the
platform is installed at the facility.
Amplifiers with built-in velocity servos power the winch
motors. The amplifiers provide a serial interface over which
velocity commands and position feedback are sent. Depending
on the configuration, a single serial link may connect to a single
amplifier serving a single motor, or several amplifiers each
controlling several motors may share a single serial link. This
complicates the communication protocol and reduces the
available bandwidth for control, and requires the use of RS-485
multidrop serial signaling instead of the usual RS-232 single-
drop serial signaling supported for example by a PC’s COM1
port. These signaling types are jumper-selectable on the PC/104
modules.

Figure 1. Cable robots capable of six-degree-of-
freedom motion, in an aircraft maintenance
application. Winches on the moving platforms
lengthen or shorten cables in a coordinated way to
move the platform in an intuitive coordinate system.
Computer control calculates the transformations from
user coordinates to cable lengths.

Control Method
The controller implements resolved-rate teleoperation, in which
a joystick generates the desired velocity of the moving platform
in Cartesian space (X, Y, Z, roll, pitch, and yaw). This desired
velocity is transformed into cable speeds through the inverse
Jacobian function:

W = J-1 V (1)

where W is the 6x1 cable speed vector, V is the 6x1 Cartesian
velocity vector, and J-1 is the 6x6 inverse Jacobian transform
matrix that depends on the current Cartesian position of the
moving platform. This is an instantaneous relationship. In a
sampled system, where some time elapses between successive
recalculations of the inverse Jacobian matrix, the cable speeds
will be constant during this interval. As a result, the moving
platform will accumulate position errors and require correction.
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Normally the operator would compensate for these errors,
which are small, but in our case the Cartesian roll and pitch
velocities are forced to zero to keep the platform level.
However, as errors accumulate, the platform will go out of
level and require some compensation.

It is possible to correct these automatically, since the actual
Cartesian position (including roll and pitch) are continually
computed by reading the cable lengths from the motor encoders
and running these through the forward kinematics function:

C = T (2)

where C is the actual 6x1 Cartesian position vector,  is the 6x1
cable length vector, and T is the 6x6 matrix for the forward
kinematic transform. Since actual roll and pitch are known,
velocities in the compensating direction can be automatically
computed and used in place of the nominal zero values to drive
the platform toward level continually.

This method will not work to level the platform in the
presence of perturbations that cannot be sensed by the motor
encoders, such as cable stretch or slack due to unbalanced
platform loading. To compensate for these errors, a level sensor
is used to drive the compensating roll and pitch velocities
instead of the kinematic leveling just described.

In the case of the Stewart Platform, the inverse Jacobian
transformation J-1 is closed form. However, the forward
kinematic transform T is not closed form, and iterative
calculations must be performed to get an estimate of the true
Cartesian position C. The iterative algorithm requires an initial
estimate of the Cartesian quantity it is trying to compute in
order to converge. During normal operation, this estimate is
simply the last Cartesian position computed, which changes
little from cycle to cycle. However, at the beginning, we need a
matched pair of cable- and Cartesian positions in order to begin
the iterations. This is accomplished by a homing procedure as
follows:

1. Select a Cartesian position to be the natural home position
CH. This is often the point where the platform rests when
idle or where it picks up loads. It may be the ground origin,
but need not be.

2. Compute the corresponding cable lengths at the home
position H using the closed-form inverse kinematic
transform,

H = T-1 CH (3)

where T-1 is the inverse of the 6x6 forward kinematic
transform T from Equation 2.
Steps (1) and (2) are done once, when the system is set up
and calibrated, and saved in a configuration file or
otherwise preserved as static system parameters.

3. When starting up the controller from an unknown position,
jog the cables individually until they are at their home
position H. This can be a tedious process. If possible, the

cables can be marked so that their home lengths are
obvious.

4. When all cables are at their home positions, signify to the
controller that homing has been done. At that time the
iterative forward kinematic calculations will have a valid
estimate and can maintain an estimate throughout
operation.

It is possible to run the platform in a degraded but still useful
mode, in which the home position was only approximated. In
this case, operator commands to move the platform along a
straight line will result in somewhat skewed behavior.
However, Cartesian teleoperation in this skewed mode may be
more intuitive than individual cable motion, and can be used to
bring the platform to its true home position more quickly than
by moving individual cables. Once the platform is brought to its
true home, step (4) is performed.

If the controller can preserve its last Cartesian position
upon shutdown and restore it when starting up later, then the
homing procedure need be done only once when the system is
first set up and calibrated.

Controller Description
Our controller is a PC/104-based system with a Geode
Pentium-compatible processor, running BusyBox Linux, kernel
2.4.1, with the RTL 3.0 real-time patch. Mass storage is a 96-
megabyte DiskOnChip. The graphics system consists of a serial
touch screen on an 800x600-pixel display, running the
Qt/Embedded window interface. Additional PC/104 I/O
modules provide up to 8 serial connections, and some digital-
and analog I/O. Portions of the system are shown in Figure 2.

Figure 2. PC/104 modules for computing and I/O,
and an assembled stack.

Serial connections to the motor amplifiers vary depending on
the applications we have built, in one case using six dedicated
56-kbps links, one for each motor, and in another using two 9.6
kbps links, one for each of two amplifiers that can drive three
motors. Velocity command messages and associated overhead
occupy about 30 bytes. In the first configuration, all motor
commands can be sent each controller cycle, for a lower bound
on the control cycle of about 5 milliseconds. In the second
configuration, motor commands are sent out in pairs, for a
lower bound on the complete control cycle of about 100
milliseconds. Note that the longer the period, the longer the
time interval over which the relationships between Cartesian-
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and cable velocities will deviate from their exact values at the
start of the interval. This will induce more drift in the roll and
pitch directions (as well as the others), and cause the platform
to go out of level to a greater degree. So, although the control
period does not affect stability (velocity servo control is done in
the amplifiers), it does affect kinematic fidelity.

The Cartesian position is saved at shutdown and restored
upon powerup, so that homing need be done only once at
installation time or periodically after maintenance. No other
information is written to the flash disk. Using the lifetime
model provided by the flash disk’s manufacturer, writing this
small amount of data daily onto approximately 60 megabytes of
free wear-leveled storage yields a lifetime far in excess of the
device’s quoted 148 years of mean time between failure.

SUMMARY
Linux is an operating system distributed freely following the
open source model, and has been ported to a wide variety of
processor architectures. Real-time extensions exist, making it
attractive for embedded control. Considerable flexibility in
configuration is provided by Linux and embedded/real-time
distributions. Flash media can be used in place of rotating
media hard disks, and streamlined graphics environments
provide sophisticated GUI support with modest resource
requirements. A PC/104 embedded platform running embedded
real-time Linux was used to control a Stewart Platform cable
robot, with serial links for velocity control of distributed
motors. Kinematic considerations make homing an issue, but
state information is saved between shutdown and startup that
reduces the burden on users.
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