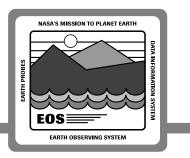


Interconnection Architecture Carl Wheatley

13 - 14 December 1993


Technology Drivers

Based on Mandates and Interoperability/Interconnection Objectives

- Synch. Interprocessing Asynch. Messaging Static Invocation Explicit Static Binding Implicit Static Binding Directory Service Scalability Naming Service Security Service Object Technology Time Synchronization Multivendor Interoperability O/S Transparency
- Event Processing/Maturity Concurrency Internationalized Security Multiple Language Support Legacy Server Integration Dynamic Invocation Dynamic Load Balancing Request Brokering Server Advertising/Scaling Real-Time Collaboration Trading Federation Transparency

Technology Applications of Other Systems

Federated Service Advertising and Retrieval

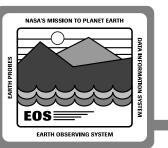
• X/Open XFN, OMG Object Services, S2K Abstracts/Information Repository

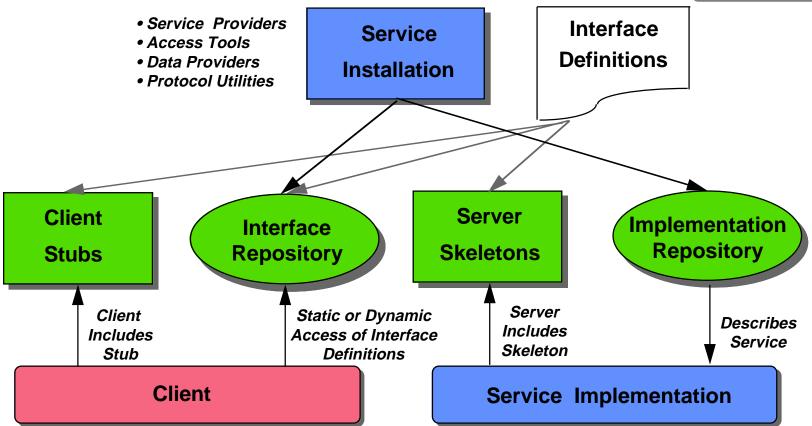
Object and Event Processing Technology Maturation

• OMG Tech. Committee, OSF Liason, COSE/Unix, DME R1.0

Heritage Server Integration

• ANSA C-Lite (Ellery), Project Pilgram Client-Secretary, ODP

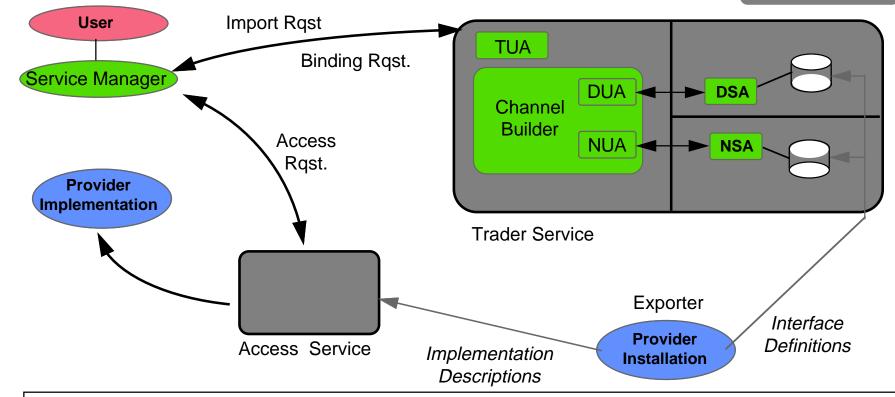

Real-Time Collaboration


• COSE DMS/DIME w/IMA, Research Systems IDL, S2K Protocols, Hollywood, and SPIMS, NIIT ATM integration, Internet Perf. Char. RFP

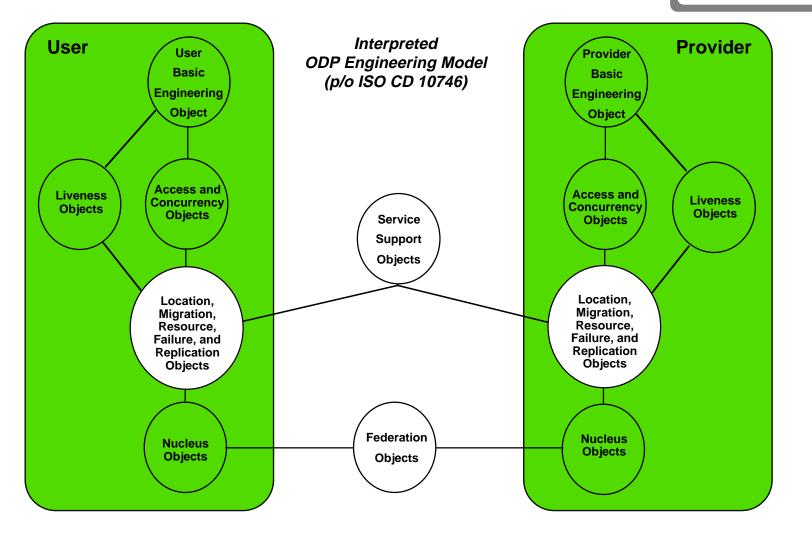
Federation Transparency and Trading

• ODP and OMG, Esprit ANSA

Interface and Server Definition Concept



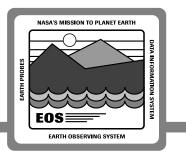
- Infrastructural Core for Server Advertising and Naming Services
- Service attributes and operations are defined in an interface definition language (idl)
- Support for multiple vocabularies through core object model and profile extensions


NASA'S MISSION TO PLANET EARTH

Federated Service Access Concept

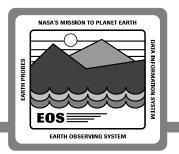
- Chaining and referral of server lookups through X.500-like service
- Interdomain access through multiple protocols
- Namespace composition through multiple naming/directory accesses
- Service instantiation at runtime with potential to alter and mix services

Interconnection Logical Architecture: Open Distributed Processing (ODP)


NASA'S MISSION TO PLANET EARTH

EARTH OBSERVING SYSTEM

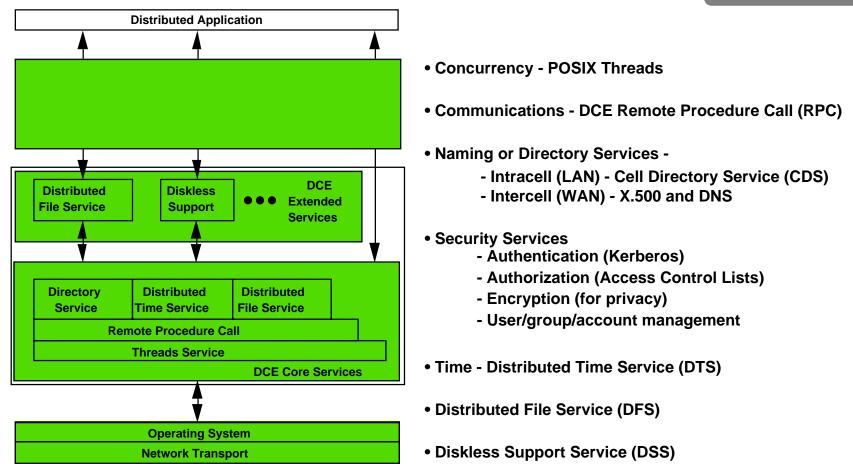
EOS


SYSTEN

Reference Model - Open Distributed Processing (RM-ODP)

- ANSI and ISO activity beginning in 1987
- 1st balloting at Committee Draft (CD) level complete
- Conceptual framework to integrate distribution, interoperability, and portability
- Engineering model defines system infrastructure and relationships
- Formal liaison established between ODP and OMG in June 93
- OMG activities related to ODP
 - Object Management Architecture
 - CORBA Specification
 - Object Services Architecture
 - specific Object Services
- OMG should prove to be common denominator ODP implementation

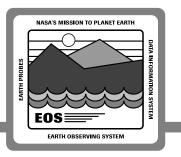
Interconnection Architecture Trade Analysis



Technology Drivers	V0	DCE	S2K	NIIT EDS	DCE w/Ext.	CORBA
Synch. Interprocessing		√				
Asynch. Messaging	\checkmark				\checkmark	\checkmark
Static Invocation		√				
Explicit Static Binding	\checkmark	\checkmark				\checkmark
Implicit Static Binding	?					
Directory Service/Scalability	Р	\checkmark	?			\checkmark
Naming Service/Scalability	Р	F	Р	Р	F	F
Security Service	Р	\checkmark	?	\checkmark		F
Object Technology	?	Р	Р	Р	Р	F
Time Synchronization	?	\checkmark	?			F
Multivendor Interoperability		√				F
O/S Transparency		\checkmark		\checkmark		F
Event Processing/Maturity		Р	?	Р	Р	F
Concurrency		\checkmark		\checkmark	\checkmark	\checkmark
Internationalized Security		F			F	F
Multiple Language Support		F	?		Р	F
Legacy Server Integration						F
Dynamic Invocation				\checkmark	\checkmark	\checkmark
Dynamic Load Balancing			Р			
Request Brokering				Р		
Server Advertising/Scaling			Р	Р	Р	F
Real Time Collaboration				Р	Р	F
Trading						?
Federation Transparency						?

^{193-714-PP4-001} $\sqrt{}$ = Compliance, P = Partial Compliance, F = Future Compliance, ? = Incomplete information

OSF DCE Components and Extensions



- DCE Based on ANSA Predecessor to ODP (EEC Project ESPRIT)
- DCE-Based CORBA Implementations are predominant

193-714-PP4-001

Interconnection Evolution Planning

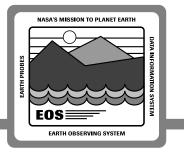
- No requirement to be an Object Programmer
- Support for C, C++, ADA, Fortran, and Smalltalk

Timeline:

DCE - Now Ellery - Now CORBA - Vendor Specific Now Interoperable - mid 94 CORBA Object Services - mid-late 94

Interconnection Architecture Challenges/Issues

Market Acceptance of DCE


- DCE role as CORBA foundation provides pull
- Programmatic Interfaces hide DCE middleware

DCE to CORBA migration still in definition

- OSF and OMG working on issues
- Multiple Object integrations on DCE exist
- Unique ORB implementations limit interoperability
 - CORBA 2.0 to enhance ORB interoperability
 - Enablers include XFN, OMG Object Services, COSE/UNIX work
- Number/complexity of service adapters
 - Convergence of ODP trader and OMG object services work
 - Protocol canonicalization minimizes required interfaces

CORBA/Microsoft Object Wars

• Object bridges to OLE 2.0 built with DCE infrastructure technology

