
1

2

Self Adapting Numerical Software Self Adapting Numerical Software
(SANS(SANS--Effort) for Scientific Effort) for Scientific

ComputingComputing

Jack Dongarra
Innovative Computing Lab
University of Tennessee

and
Computer Science and Math Div

Oak Ridge National Lab
http://http://www.cs.utk.edu/~dongarrawww.cs.utk.edu/~dongarra//

3

♦ Diversity of execution environments
ØGrowing complexity of modern microprocessors.
Ø Deep memory hierarchies
Ø Out-of-order execution
Ø Instruction level parallelism

ØGrowing diversity of platform characteristics
Ø SMPs
Ø Clusters (employing a range of interconnect technologies)
Ø Highly parallel systems (> 100K processors)
Ø Grids (heterogeneity, wide range of characteristics)

♦ Wide range of application needs
ØDimensionality and sizes
ØData structures and data types
ØLanguages and programming paradigms

Challenges in Achieving High Challenges in Achieving High
Performance on Today’s SystemsPerformance on Today’s Systems

2

4

Motivation Self Adapting Motivation Self Adapting
Numerical Software (SANS) EffortNumerical Software (SANS) Effort

♦ Optimizing software to exploit the features of a
given system has historically been an exercise in hand
customization.
ØTime consuming and tedious
ØHard to predict performance from source code
ØMust be redone for every architecture and compiler
ØSoftware technology often lags architecture
ØBest algorithm may depend on input, so some
tuning may be needed at run-time.

ØNeed for quick/dynamic deployment of optimized
routines.

5

Where Does the Performance Go? orWhere Does the Performance Go? or
Why Should I Care About the Memory Hierarchy?Why Should I Care About the Memory Hierarchy?

1

100

10000

1000000

19
80

19
82

198
4

198
6

198
8

19
90

19
92

19
94

19
96

199
8

200
0

200
2

20
04

Year

P
er

fo
rm

an
ce

Processor-DRAM Memory Gap (latency) µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)

“Moore’s Law”

Processor-Memory
Performance Gap:
(grows 50% / year)

CPU

DRAM

3

6

Optimizing Computation and Optimizing Computation and
Memory UseMemory Use

♦ Computational optimizations
ØTheoretical peak:(# fpus)*(flops/cycle) * Mhz

Ø Pentium 4: (1 fpu)*(2 flops/cycle)*(2.8 Ghz) = 5600 MFLOP/s

♦ Operations like:
Ø α = xTy : 2 operands (16 Bytes) needed for 2 flops;

at 5600 Mflop/s will requires 5600 MWord/s bandwidth

♦ Memory optimization
ØTheoretical peak: (bus width) * (bus speed)

Ø Pentium 4: (32 bits)*(533 Mhz) = 2132 MB/s = 266 MWord/s

7

Levels Of Levels Of AdaptivityAdaptivity

♦ On the processor-network level: optimization of
the kernels for the specific architecture
§ Processor: investigate processor hardware

characteristics and optimize for them, eg memory
hierarchy.

§ Network: investigate connectivity, latency,
bandwidth, congestion, load

♦ The parallel environment in which the code is
run.
Ø Adaptation to the parallel system or grid

♦ Interfacing to the user code: algorithmic
decisions
Ø Adaptation to user data: investigate user data and

make decisions based thereon

Adaptivity can apply to several levels in
a scientific computing environment

4

8

Performance Tuning MethodologyPerformance Tuning Methodology

Input Parameters
System specifics

Hardware
Probe

Parameter study
of code versions

Code Generation
Performance

database

User options

Installation

Software Installation
(done once per system)

Input Parameters
Size, dim., …

Select best algorithm
Based on input data,

State of hardware
SMP, etc

Execution
Calculate

Run-time

Performance
Monitoring

Database update

Software Execution

9

Software Generation Software Generation
Strategy Strategy -- ATLAS BLASATLAS BLAS

♦ Takes ~ 20 minutes to run,
generates Level 1,2, & 3 BLAS

♦ “New” model of high
performance programming
where critical code is machine
generated using parameter
optimization.

♦ Designed for modern
architectures
Ø Need reasonable C compiler

♦ Today ATLAS in used within
various ASCI and SciDAC
activities and by Matlab,
Mathematica, Octave, Maple,
Debian, Scyld Beowulf, SuSE,…

♦ Parameter study of the hw
♦ Generate multiple versions

of code, w/difference
values of key performance
parameters

♦ Run and measure the
performance for various
versions

♦ Pick best and generate
library

♦ Level 1 cache multiply
optimizes for:
Ø TLB access
Ø L1 cache reuse
Ø FP unit usage
Ø Memory fetch
Ø Register reuse
Ø Loop overhead minimization

See: http://icl.cs.utk.edu/atlas/ for the ATLAS software

5

10

ATLAS ATLAS (DGEMM n = 500)(DGEMM n = 500)

♦ ATLAS is faster than all other portable BLAS implementations and it is
comparable with machine-specific libraries provided by the vendor.

♦ Looking at sparse operations

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

AMD Athlo
n-6

00

DEC
 ev

56-
533

DEC
 ev

6-5
00

HP9
000

/73
5/1

35

IBM PP
C604

-11
2

IBM Po
wer2

-16
0

IBM Po
wer3

-20
0

Inte
l P-

III 9
33

MHz

Inte
l P

-4 2
.53

 GHz w
/SS

E2

SG
I R100

00i
p28

-20
0

SGI R
120

00i
p3

0-2
70

Su
n U

ltra
Sp

arc
2-2

00

Architectures

M
FL

O
P

/S
Vendor BLAS
ATLAS BLAS
F77 BLAS

11

Efforts To Go Beyond Dense Kernel OperationsEfforts To Go Beyond Dense Kernel Operations

♦ Kernels
Ø Sparse matrix-vector

multiply (SpMV): y=A*x
Ø Sparse triangular solve

(SpTS): x=T-1*b
Ø y=AAT*x, y=ATA*x
Ø matrix triple-product

(R*A*RT), Powers (y=Ak*x), …

♦ Optimization techniques
(implementation space)
Ø Register blocking
Ø Cache blocking
Ø Multiple dense vectors (x)
Ø A has special structure (e.g.,

symmetric, banded, …)
Ø Hybrid data structures (e.g.,

splitting, switch-to-dense, …)
Ø Matrix reordering

Register blocking

(100 Mflop/s
)

Cache blocking

(80 Mflop/s
)Reference code

(50 Mflop/s
)

♦ Optimizes for processor characteristics
for multigrid software
Ø Integration of smoother and residual,

prolongation/restriction
Ø Gauss Seidel Smoothers (3 steps)

6

12

LAPACK For ClustersLAPACK For Clusters
♦ Developing middleware which couples cluster system

information with the specifics of a user problem to
launch cluster based applications on the “best” set of
resource available.

♦ Using ScaLAPACK as the prototype software, but
developing a framework

~ Mbit Switch,
(fully connected)

~ Gbit Switch,
(fully connected)

Remote memory server,
e.g. IBP (TCP/IP)

Local network file server,
SUN’s NFS (UDP/IP)e.g. 100 Mbit

Users, etc.

13

User has problem to solve (e.g. Ax = b)

Natural
Data (A,b)

Middleware

Application Library (e.g. LAPACK,
ScaLAPACK, PETSc ,…)

Natural
Answer (x)

Structured
Data (A’,b’)

Structured
Answer (x’)

User Interface/MiddlewareUser Interface/Middleware

7

14

Time to solution of Ax=b (n=60k)

0

5000

10000

15000

20000

25000

32 34 36 39 42 45 47 49 51 54 56 58 62 64

Number of processors

T
im

e
(s
ec

o
n
d
s)

Naive
LFC

LFC Performance ResultsLFC Performance Results

Increasing
margin

of potential
user error

Using up to 64 of
AMD 1.4 GHz

processors
at Ohio

Supercomputer
Center

15

Self Adapting for Message PassingSelf Adapting for Message Passing
♦ Communication libraries
ØOptimize for the specifics of one’s configuration.
ØA specific MPI collective communication algorithm

implementation may not give best results on all platforms.
ØChoose collective communication parameters that give best

results for the system when the system is assembled.

♦ Algorithm layout and implementation
ØLook at the different ways to express implementation

Root

Sequential Binary Binomial
Ring

TUNING
SYSTEM

Different
Algorithms,
Size msgs

Best
Algorithm,
Block msgs

8

16

Fault Tolerance in the ComputationFault Tolerance in the Computation
♦ The next generation of

DOE ASCI computers
are being designed with
131,000 processors
(IBM Blue Gene L)

♦ Failures for such a
system is likely to be
just a few minutes
away.

♦ Application
checkpoint/restart is
today’s typical fault
tolerance method.

♦ However, checkpoint &
system reboot time
approaching MTTF

M
TT

F
(h

ou
rs

)

0

20

40

60

80

100

120

140

100 300 500 100
0

400
0

160
00

640
00

0.9999

0.99999
0.999999

1 hour reliability

System Size Q BG/L

17

Algorithm Based Fault Tolerance Using Algorithm Based Fault Tolerance Using
Diskless Check PointingDiskless Check Pointing

♦ Not transparent, has to be built into the
algorithm

♦ N processors will be executing the computation.
Ø Each processor maintains their own checkpoint locally

♦ M (M << N) extra processors maintain coding
information so that if 1 or more processors
die, they can be replaced

♦ Look at M = 1 (parity processor)

♦ FT-MPI based on MPI 1.3 with FT similar to
what was done in PVM.

9

18

How Diskless Check How Diskless Check PointingPointing WorksWorks

♦ Similar to RAID for disks.

♦ If X = A XOR B then this is true:
X XOR B = A
A XOR X = B

19

Diskless Diskless CheckpointingCheckpointing
♦ The N application

processors (4 in this
case) each maintain their
own checkpoints locally.

♦ M extra processors
maintain coding
information so that if 1
or more processors die,
they can be replaced.

♦ Will describe for m=1
(parity)

♦ If a single processor
fails, then its state may
be restored from the
remaining live processors

P0 P1

P3P2

P4

P4 = P0 ƒ P1 ƒ P2 ƒ P3

Parity
processor

Application
processors

10

20

Diskless Diskless CheckpointingCheckpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P1 = P0 ƒ P2 ƒ P3 ƒ P4

21

Diskless Diskless CheckpointingCheckpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P0

P3P2

P4
P1

P4 takes on the identity of P1
and the computation continues

11

22

Algorithm BasedAlgorithm Based

♦ Built into the algorithm
ØNot transparent
ØAllows for heterogeneity

♦ Developing prototype examples for
ScaLAPACK and iterative methods
for Ax=b

23

PCG Iterative Equation SolverPCG Iterative Equation Solver

♦ Given a large, sparse matrix A and a
vector B, determine the vector x such
Ax=b.

♦ Chose an initial vector x and iteratively
refine it until Ax=b to some error
tolerance.

♦ A is stored as a compressed set of
arrays and 5 vectors needed to carryout
the iteration.

♦ Each iteration the 5 vectors are updated
using the original matrix A and right
hand side b.

12

24

CG Data StorageCG Data Storage
Think of the data like this

A b 5 vectors

25

Parallel versionParallel version
Think of the data like this Think of the data like this

on each processorA b 5 vectors

A b 5 vectors

.

.

.

.

.

.

No need to checkpoint
each iteration, say every k
iterations.

13

26

Diskless versionDiskless version

P0 P1

P3P2

P4

P0

P1

P2

P3 P4

27

Diskless Diskless CheckpointingCheckpointing ExperimentsExperiments
PCG; n = 264144

17 Sparc Processors

2.7%
3.8%6%

23%
46%

222%

0

1000

2000

3000

4000

5000

6000

7000

8000

10 50 100 500 1000 2000

k (Iteration per Checkpoint)

R
un

in
g

Ti
m

e
(s

ec
)

Time w/o Checkpoint
Time with Checkpoint

0

10

20

30

40

50

60

70

k (Iteration per Checkpoint)

O
ve

rh
ea

d
 p

er
 c

h
ec

kp
o

in
t (

se
c)

14

28

Diskless Diskless CheckpointingCheckpointing
♦ Diskless checkpointing can be a viable

technique for fast frequent checkpointing.
♦ Converts disk overhead into network

overhead
♦ For numerical libraries, the checkpointing

interval can have little effect on total
overhead.

♦ Can apply to other algorithms like matrix
decompositions, i.e. LU, QR, Cholesky.
ØInteresting issues about when failure occurs need

to roll back computation to checkpoint
ØUndo computation to last checkpoint and then

recover

29

Research DirectionsResearch Directions
♦ Self Adapting Numerical Software
♦ Fault tolerant algorithms
♦ Parameterizable & Annotated

libraries
♦ “Grid” (network) enabled strategies

A new division of labor between
compiler writers, library writers, and
algorithm developers and application
developers will emerge.

15

30

Collaborators / SupportCollaborators / Support

♦ ATLAS
ØClint Whaley, FSU
ØAntoine Petitet, Sun

♦ LFC
ØKenny Roche, UTK
ØPiotr Luszczek, UTK
ØJeffery Chen, UTK

♦ SALSA/BeBOP
ØVictor Eijkhout, UTK
ØDavid Keyes, CU
ØBill Gropp, ANL
ØJim Demmel, UCB
ØKathy Yelick, UCB

♦ Diskless Checkpointing
Ø Jim Plank, UTK

Ø Thanks

NSF
Next Generation Software (NGS)

