
Super-scalable Algorithms

January, 2003

Next Generation Supercomputing on
100,000 and more Processors

Christian Engelmann

This document describes activities performed under contract number DE-AC0500OR22750 between the U.S. Department of Energy and Oak Ridge Associated Universities.

Overview

Super-scale architectures.
Scalability and fault-tolerance issues.
Cellular algorithms theory.
ORNL/IBM collaboration.
IBM BlueGene\L emulators.
ORNL cellular architecture simulator.
Super-scalable algorithms.
Super-scalable diskless checkpointing.
Conclusions and ideas for the future.

Super-scale Architectures

Current tera-scale supercomputers have up to
10,000 processors.
Next generation peta-scale systems will have
100,000 processors and more.
Such machines may easily scale up to
1,000,000 processors in the next decade.
IBM currently builds the BlueGene\L at
Lawrence Livermore National Laboratory.

IBM BlueGene\L at LLNL

Up to 64K diskless nodes with 2 processors per node.
Only 256MB RAM per processor.
Additional service nodes (I/O).
Estimated 360 Tera FLOPS.
Over 150k processors.
Global tree network.
3-D torus network.
Gigabit Ethernet.
Operational in 2005.

Scalability Issues

How to make use of 100,000 processors?
System scale jumps by a magnitude.
Current algorithms do not scale well on
existing 10,000-processor systems.
Next generation peta-scale systems are
useless if efficiency drops by a magnitude.

101100 102 103 104 105 106

Fault-tolerance Issues

How to survive on 100,000 processors?
Failure rate grows with the system size.
Mean time between failures may be a few
hours or just a few minutes.
Current solutions for fault-tolerance rely on
checkpoint/restart mechanisms.
Checkpointing 100,000 processors to central
stable storage is not feasible anymore.

Cellular Algorithms Theory

Processes have only limited knowledge mostly
about other processes in their neighborhood.
Application is composed of local algorithms.
Less inter-process dependencies, e.g., not
everyone needs to know when a process dies.
Peer-to-peer communication with overlapping
neighborhoods promotes scalability.

Paintable Computing at MIT

In the future embedded computers with a
radio device get as small as a pigment.
Supercomputers can be easily assembled by
painting a wall of embedded computers.
Applications are driven by cellular algorithms.

Paintable Computing at MIT

2002 Ph.D. Thesis using a pushpin board.
Applications:

Distributed audio stream storage.
Fault-tolerant holistic data storage.

ORNL/IBM Collaboration

Development of biology and material science
applications for super-scale systems.
Exploration of super-scalable algorithms.

Natural fault-tolerance.
Scale invariance.

Focus on test and demonstration tool.

Get scientists to think about scalability and
fault-tolerance in super-scale systems! ?!

ORNL Research Group

Al Geist (PI)
Christian Engelmann (simulator)
Kasidit Chanchio (global max problem)
Ryan Adamson (async. multigrid)
Bill Shelton (LSMS port)
Pratul Agarwal (MD port)

BlueGene\L Emulators

IBM Research:
Processor emulation with OS in a Linux process.

Caltech:
MPI trace file analysis for performance prediction.

UIUC:
Object-oriented message driven emulation of
logical system architecture in Converse/Charm++.
Adaptive MPI emulation on top of Charm++.
Scalability and performance issues in prototypes.
Emulation fixed on BlueGene\L architecture.

Cellular Architecture Simulator

Developed at ORNL in Java with native C and
Fortran application support using JNI.
Runs as standalone or distributed application.
Lightweight framework simulates up to
1,000,000 processes on 9 real processors.
Standard and experimental networks:

Multi-dimensional mesh/torus.
Nearest/Random neighbors.

Message driven simulation is not in real-time.
Primitive fault-tolerant MPI support.

Cellular Architecture Simulator

CellCell

Queue Server ThreadReceiver Thread

Cell

Sender

Deliver

Send

SendReceive

TCI/IP Network

Every cell has its own code, memory and neighbors list.
Server hosts cells and initiates the context switch.
Cells communicate asynchronously using messages.

Cheetah at ORNL

Each dot is a full
processor/OS

768 IBM Power 4
5 Tera FLOPS

Earth
Simulator

Super-scalable Algorithms

Extending the cellular algorithms theory to
real world scientific applications.
Exploring super-scale properties:

Scale invariance
Natural fault-tolerance

Gaining experience in programming models
for 100,000-processor machines.

Scale invariance

Linear scalability.
Peer-to-peer communication patterns are
based on a small set of neighbor processes.
Neighbors are random, far away or nearby.
Global application state is composed of many
interdependent local neighborhood states.

Neighbors List

Program Data

Program

Natural Fault-tolerance

Ability to get the correct answer despite task
failures and without checkpointing.
May involve redundant computation.
0,1% failure rate (100 of 100,000 processors)
is still acceptable with 0,5% redundancy.
Failures detected by hardware and ignored or
accepted by neighbor processes.
Failed processes may be restarted by
“inserting” new ones at anytime.

Researched Algorithms

Local information exchange:
Local peer-to-peer updates of values.
Mesh-free chaotic relaxation (Laplace/Poisson).
Finite difference/element methods.
Dynamic adaptive refinement at runtime.
Asynchronous multi-grid with controlled or
independent updates between different layers.

Global information exchange:
Global peer-to-peer broadcasts of values.
Global maximum/optimum search.

Ported Applications

Material Science:
Magnetism simulation using the locally self-
consistent multiple scattering (LSMS) method for
understanding the interactions between electrons
and atoms in magnetic materials (Bill Shelton).

Computational Biology:
Molecular dynamics (MD) simulation of biological
molecules (DNA sequences) for understanding the
protein-DNA interactions (Pratul Agarwal).

Observations

Partially non-deterministic algorithm behavior.
Unpredictable application running time.
Chaotic relaxation does not always converge.
No exact replay without full message trace.
Communication bound algorithms that require
high point-to-point bandwidth.
Asynchronous message driven programming
model similar to discrete event simulations.
Message queues with overwrite.

Super-scalable Fault-tolerance

For non-naturally fault tolerant algorithms.
Does it makes sense to restart all 100,000
processors because one failed?
The mean time between failures is likely to be
a few hours or just a few minutes.
Traditional centralized checkpointing is limited
by bandwidth (bottleneck).

The failure rate is going to outrun the
recovery and the checkpointing rate.

Diskless Checkpointing

Decentralized peer-to-peer checkpointing.
Processors hold backups of neighbors.
Local checkpoint and restart algorithm.
Coordination of local checkpoints.

Local Backup

Program Data

Program

Neighbors List

Neighbors Backup

Diskless Checkpointing

In case of a failure:
Rollback to local memory backup if necessary.
Restart from remote memory backup.

Encoding semantics, such as RAID, trade off
storage size vs. degree of fault tolerance.
Very infrequent checkpointing to central
stable storage (disk/tape).
Checkpoint and application processes may be
the same or different.
Possible OS support via library/service.

Choosing Neighbors

Physically near neighbors:
Low latency, fast backup and recovery.

Physically far neighbors:
Recoverable multiprocessor node failures.

Random neighbors:
Medium latency and bandwidth.
Acceptable backup and recovery time.

Optimum: Pseudorandom neighbors based on
system communication infrastructure.

Backup Coordination

All checkpoints need to be consistent with the
global application state.
Local states and in-flight messages.
No coordination for checkpoints with no
communication since last or since start.
Coordination techniques:

Global synchronization
Local synchronization

Global Synchronization

Global application snapshot (e.g., barrier) at
stable global application state.
Synchronous backup of all local states.
Easy to implement.
Synchronizes complete application.
Preferred method for communication
intensive applications.

Local Synchronization

Asynchronous backup of local state and in-
flight messages (message logging).
Acknowledgements for messages to keep
accurate records of in-flight messages.
Additional local group communication.
Different methods to retrieve missed
messages from neighbors.
More complicated to implement.
Preferred method for less communication
intensive applications.

Observations

Diskless peer-to-peer checkpointing on super-
scale architectures is possible.
Synchronization methods have different
strengths and weaknesses.
Timing, latency and bandwidth data
impossible to obtain from simulator.
Real-time tests with different applications are
needed for further discussion.
Final real-world implementation requires
super-scalable FT-MPI or PVM.

Conclusions

Super-scale systems with 100,000 and more
processors become reality very soon.
Super-scalable algorithms that are scale
invariant and naturally fault-tolerant do exist.
Diskless peer-to-peer checkpointing provides
an alternative to natural fault-tolerance.
A lot of research still needs to be done.

Ideas for the Future

Research in OS and/or middleware supported
super-scale diskless checkpointing.
Development of super-scalable fault-tolerant
MPI implementation with localized recovery.

Development of super-scalable algorithms for
specific applications in computational biology,
material science, climate research …

Super-scalable Algorithms

January, 2003

Next Generation Supercomputing on
100,000 and more Processors

Christian Engelmann

	Super-scalable Algorithms
	Overview
	Super-scale Architectures
	IBM BlueGene\L at LLNL
	Scalability Issues
	Fault-tolerance Issues
	Cellular Algorithms Theory
	Paintable Computing at MIT
	Paintable Computing at MIT
	ORNL/IBM Collaboration
	ORNL Research Group
	BlueGene\L Emulators
	Cellular Architecture Simulator
	Cellular Architecture Simulator
	Super-scalable Algorithms
	Scale invariance
	Natural Fault-tolerance
	Researched Algorithms
	Ported Applications
	Observations
	Super-scalable Fault-tolerance
	Diskless Checkpointing
	Diskless Checkpointing
	Choosing Neighbors
	Backup Coordination
	Global Synchronization
	Local Synchronization
	Observations
	Conclusions
	Ideas for the Future
	Super-scalable Algorithms

