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Overview

Super-scale architectures.
Scalability and fault-tolerance issues.
Cellular algorithms theory.
ORNL/IBM collaboration.
IBM BlueGene\L emulators.
ORNL cellular architecture simulator.
Super-scalable algorithms.
Super-scalable diskless checkpointing.
Conclusions and ideas for the future.



Super-scale Architectures

Current tera-scale supercomputers have up to 
10,000 processors.
Next generation peta-scale systems will have 
100,000 processors and more.
Such machines may easily scale up to 
1,000,000 processors in the next decade.
IBM currently builds the BlueGene\L at 
Lawrence Livermore National Laboratory.



IBM BlueGene\L at LLNL

Up to 64K diskless nodes with 2 processors per node.
Only 256MB RAM per processor.
Additional service nodes (I/O).
Estimated 360 Tera FLOPS.
Over 150k processors.
Global tree network.
3-D torus network.
Gigabit Ethernet.
Operational in 2005.



Scalability Issues

How to make use of 100,000 processors?
System scale jumps by a magnitude.
Current algorithms do not scale well on 
existing 10,000-processor systems.
Next generation peta-scale systems are 
useless if efficiency drops by a magnitude.
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Fault-tolerance Issues

How to survive on 100,000 processors?
Failure rate grows with the system size.
Mean time between failures may be a few 
hours or just a few minutes.
Current solutions for fault-tolerance rely on 
checkpoint/restart mechanisms.
Checkpointing 100,000 processors to central 
stable storage is not feasible anymore.



Cellular Algorithms Theory

Processes have only limited knowledge mostly 
about other processes in their neighborhood.
Application is composed of local algorithms.
Less inter-process dependencies, e.g., not 
everyone needs to know when a process dies.
Peer-to-peer communication with overlapping 
neighborhoods promotes scalability.



Paintable Computing at MIT

In the future embedded computers with a 
radio device get as small as a pigment.
Supercomputers can be easily assembled by 
painting a wall of embedded computers.
Applications are driven by cellular algorithms.



Paintable Computing at MIT

2002 Ph.D. Thesis using a pushpin board.
Applications:

Distributed audio stream storage.
Fault-tolerant holistic data storage.



ORNL/IBM Collaboration

Development of biology and material science 
applications for super-scale systems.
Exploration of super-scalable algorithms.

Natural fault-tolerance.
Scale invariance.

Focus on test and demonstration tool.

Get scientists to think about scalability and 
fault-tolerance in super-scale systems! ?!



ORNL Research Group

Al Geist (PI)
Christian Engelmann (simulator)
Kasidit Chanchio (global max problem)
Ryan Adamson (async. multigrid)
Bill Shelton (LSMS port)
Pratul Agarwal (MD port)



BlueGene\L Emulators

IBM Research:
Processor emulation with OS in a Linux process.

Caltech:
MPI trace file analysis for performance prediction.

UIUC:
Object-oriented message driven emulation of 
logical system architecture in Converse/Charm++.
Adaptive MPI emulation on top of Charm++.
Scalability and performance issues in prototypes.
Emulation fixed on BlueGene\L architecture.



Cellular Architecture Simulator

Developed at ORNL in Java with native C and 
Fortran application support using JNI.
Runs as standalone or distributed application.
Lightweight framework simulates up to 
1,000,000 processes on 9 real processors.
Standard and experimental networks:

Multi-dimensional mesh/torus.
Nearest/Random neighbors.

Message driven simulation is not in real-time.
Primitive fault-tolerant MPI support.



Cellular Architecture Simulator
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Every cell has its own code, memory and neighbors list.
Server hosts cells and initiates the context switch.
Cells communicate asynchronously using messages.



Cheetah at ORNL 
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Super-scalable Algorithms

Extending the cellular algorithms theory to 
real world scientific applications.
Exploring super-scale properties:

Scale invariance
Natural fault-tolerance

Gaining experience in programming models 
for 100,000-processor machines.



Scale invariance

Linear scalability.
Peer-to-peer communication patterns are 
based on a small set of neighbor processes.
Neighbors are random, far away or nearby.
Global application state is composed of many 
interdependent local neighborhood states.
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Natural Fault-tolerance

Ability to get the correct answer despite task 
failures and without checkpointing.
May involve redundant computation.
0,1% failure rate (100 of 100,000 processors) 
is still acceptable with 0,5% redundancy.
Failures detected by hardware and ignored or 
accepted by neighbor processes.
Failed processes may be restarted by 
“inserting” new ones at anytime.



Researched Algorithms

Local information exchange:
Local peer-to-peer updates of values.
Mesh-free chaotic relaxation (Laplace/Poisson).
Finite difference/element methods.
Dynamic adaptive refinement at runtime.
Asynchronous multi-grid with controlled or 
independent updates between different layers.

Global information exchange:
Global peer-to-peer broadcasts of values.
Global maximum/optimum search.



Ported Applications

Material Science:
Magnetism simulation using the locally self-
consistent multiple scattering (LSMS) method for 
understanding the interactions between electrons 
and atoms in magnetic materials (Bill Shelton).

Computational Biology:
Molecular dynamics (MD) simulation of biological 
molecules (DNA sequences) for understanding the 
protein-DNA interactions (Pratul Agarwal).



Observations

Partially non-deterministic algorithm behavior.
Unpredictable application running time.
Chaotic relaxation does not always converge.
No exact replay without full message trace.
Communication bound algorithms that require 
high point-to-point bandwidth.
Asynchronous message driven programming 
model similar to discrete event simulations.
Message queues with overwrite.



Super-scalable Fault-tolerance

For non-naturally fault tolerant algorithms.
Does it makes sense to restart all 100,000  
processors because one failed?
The mean time between failures is likely to be 
a few hours or just a few minutes.
Traditional centralized checkpointing is limited 
by bandwidth (bottleneck).

The failure rate is going to outrun the 
recovery and the checkpointing rate.



Diskless Checkpointing

Decentralized peer-to-peer checkpointing.
Processors hold backups of neighbors.
Local checkpoint and restart algorithm.
Coordination of local checkpoints.
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Diskless Checkpointing

In case of a failure:
Rollback to local memory backup if necessary.
Restart from remote memory backup.

Encoding semantics, such as RAID, trade off 
storage size vs. degree of fault tolerance.
Very infrequent checkpointing to central 
stable storage (disk/tape).
Checkpoint and application processes may be 
the same or different.
Possible OS support via library/service.



Choosing Neighbors

Physically near neighbors:
Low latency, fast backup and recovery.

Physically far neighbors:
Recoverable multiprocessor node failures.

Random neighbors:
Medium latency and bandwidth.
Acceptable backup and recovery time.

Optimum: Pseudorandom neighbors based on 
system communication infrastructure.



Backup Coordination

All checkpoints need to be consistent with the 
global application state.
Local states and in-flight messages.
No coordination for checkpoints with no 
communication since last or since start.
Coordination techniques:

Global synchronization
Local synchronization



Global Synchronization

Global application snapshot (e.g., barrier) at 
stable global application state.
Synchronous backup of all local states.
Easy to implement.
Synchronizes complete application.
Preferred method for communication 
intensive applications.



Local Synchronization

Asynchronous backup of local state and in-
flight messages (message logging).
Acknowledgements for messages to keep 
accurate records of in-flight messages.
Additional local group communication.
Different methods to retrieve missed 
messages from neighbors.
More complicated to implement.
Preferred method for less communication 
intensive applications.



Observations

Diskless peer-to-peer checkpointing on super-
scale architectures is possible.
Synchronization methods have different 
strengths and weaknesses.
Timing, latency and bandwidth data 
impossible to obtain from simulator.
Real-time tests with different applications are 
needed for further discussion.
Final real-world implementation requires 
super-scalable FT-MPI or PVM.



Conclusions

Super-scale systems with 100,000 and more 
processors become reality very soon.
Super-scalable algorithms that are scale 
invariant and naturally fault-tolerant do exist.
Diskless peer-to-peer checkpointing provides 
an alternative to natural fault-tolerance.
A lot of research still needs to be done.



Ideas for the Future

Research in OS and/or middleware supported 
super-scale diskless checkpointing.
Development of super-scalable fault-tolerant 
MPI implementation with localized recovery.

Development of super-scalable algorithms for 
specific applications in computational biology, 
material science, climate research …
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