Towards Quantum Simulations in ion traps

DF

$H=J \sum_{i, i, j} \sigma_{i}^{z} \sigma_{j}^{z}+B^{x} \sum_{i} \sigma_{i}^{x}$ quantum Ising model

$$
H=J^{x} \sum_{\langle i, j\rangle} \sigma_{i}^{x} \sigma_{j}^{x}+J^{y} \sum_{\langle i, j\rangle} \sigma_{i}^{y} \sigma_{j}^{y} \text { XY model }
$$

$$
H=J^{x} \sum_{\langle i, j\rangle} \sigma_{i}^{x} \sigma_{j}^{x}+J^{y} \sum_{\langle i, j\rangle} \sigma_{i}^{y} \sigma_{j}^{y}+J^{z} \sum_{\langle i, j\rangle} \sigma_{i}^{z} \sigma_{j}^{z} \begin{gathered}
\text { Heisenberg } \\
\text { model }
\end{gathered}
$$

quantum-spin Hamiltonians describe the evolution quantum-spin Hamiltonians - magnets

- high Tc superconductors quantum Hall ferromagnets - ferroelectrics
realizing Quantum Simulations on:

universal quantum computer	analog quantum computer
quantum dynamic of a system is translated into an quanten-algorithm consisting of gate-operations	choose a system, that can be controlled and manipulated, governed by the same Hamiltonian as the system to be simulated
motivation: test the security of our standard encoding = work towards the implementation of Shor's algorithm (factorizing large numbers) BUT: pre-condition 1000 logical qubits ~ 100 ancilla qubits per logical qubit (for necessary fault-tollerance)	similar techniques, but: less severe constraints on fidelities: not aiming for results of quantum algorithms but robust effects, e.g.quantum phase transitions (30-50 qubits sufficient to outperform classical computers
\$ 10^{5} qubits necessary could be used to perform universal quantum simulations	shortcut analog quantum simulator

complete control of parameters (e.g. quantum Ising model):

proposal PRL 2004
D. Porras and I. Cirac

amplitude of J (and $B_{\underline{x}}$):
|, respectively.

$$
\text { Raman rate, conditional optical dipol force and }|J| \text {, respectively. }
$$

$$
|J| \sim F_{\text {dipol }}^{2} \sim \Omega_{\text {Raman }}^{2}
$$

range of interaction

$$
\begin{aligned}
& \text { long range ferromagnetic interaction } \\
& \text { induced by axial conditional force }
\end{aligned}
$$

short range antiferromagnetic interaction ($\mathrm{J}<0$) induced by radial conditional force
interaction range tu
radial confinement
e.g. dipolar decay ($-1 /{ }^{3}{ }_{j \text { jitheighbor }}{ }^{4}{ }_{5} 5100{ }_{100}$
second nearest neighbor interaction
second nearest neighbor interaction
strongly suppressed (red set of data)

