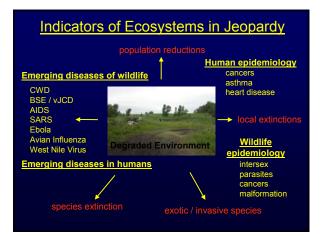

Effects of Multiple Stressors on Aquatic Communities in the Prairie **Pothole Region**


Patrick K. Schoff and Lucinda B. Johnson Natural Resources Research Institute University of Minnesota Duluth

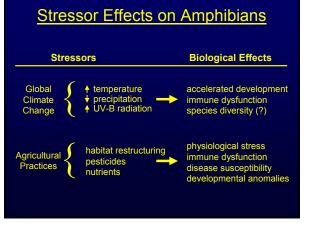
Glenn Guntenspergen US Geological Survey Patuxent River, Maryland

Carter Johnson South Dakota State University Brookings, South Dakota

flood water storage

Anthropogenic Stressors Affecting the Prairie Pothole Region

- Climate change


 increased temperature decreased moisture

UV radiation

- reduced DOC inputs (?)
- Agricultural practices
- excess nutrients
 pesticides

- Habitat restructuring/destruction

 ~50% of wetlands drained in previous century
 remaining wetlands embedded in agricultural matrix

Objectives

- 1. Quantify relationships among differing land use, amphibian community structure and composition in the prairie pothole region
 - hydroperiod (semi-permanent v. seasonal)
 - crop v. grassland
- Quantify relationships among physical and chemical wetland attributes on amphibian organismal and community responses.

 - hydroperiod thermal regime

 - pН

Objectives, cont.

- 3. Quantify the effects of multiple stressors on health and organismal responses of Rana pipiens.
 - shortened hydroperiod
 - increased UV-B radiation
- Predict potential effects of multiple stressors on prairie 4 pothole wetlands and associated amphibian communities.

Stressor Effects on Amphibians

Accelerated Hydroperiod (warmer, less water)

- faster development
- smaller metamorphs
- reduced fat stores = reduced fitness

Increased UV-B radiation (ozone depletion, +/- reduced DOC)

- edema malformations
- impaired immune function

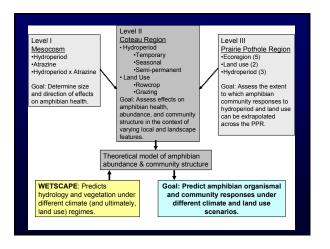
mutagenic effects

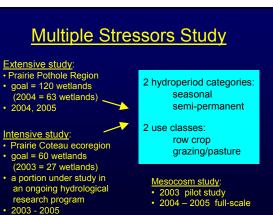
Atrazine (most commonly used herbicide)

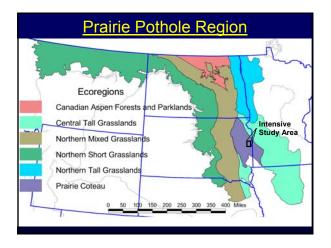
- endocrine disruption (?) gonadal dysmorphogenesis (♂♀) laryngeal muscle reduction (♂) developmental delays

Approach

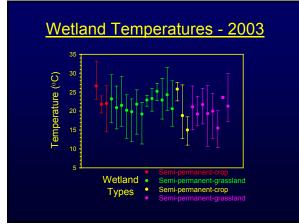
Landscape scale (Extensive study)

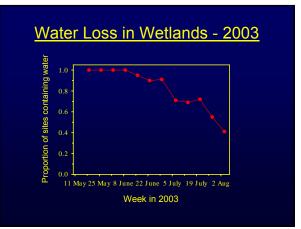

- relationships among amphibian community structure, land use, and wetland hydrologic regime

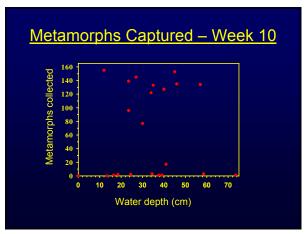

Wetland scale (Intensive study)

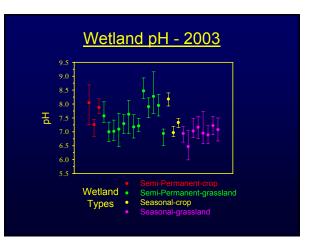

- relationships among individual wetlands (hydroperiod, physico-chemical), land uses (e.g. pesticides), UV-B, amphibian abundance, community structure, and health

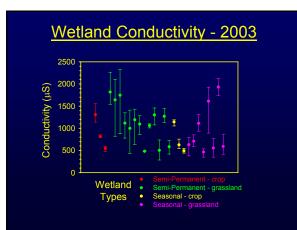
Mesocosm scale

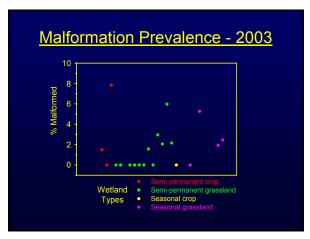

- effects of multiple stressors (hydroperiod and pesticide) on Rana pipiens development and health







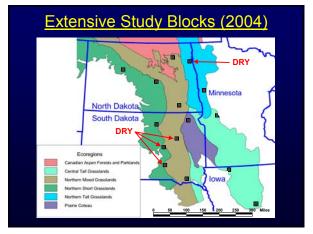

<u>Intensive Study (2003 – 2005)</u>					
Category	Parameter				
Wetland morphology	size; configuration; depth profile; hydrologic regime				
Habitat	vegetative cover maps; land use; distance to wetlands, fields, roads & structures				
Water column	continuous temp; sp. conductance; pH; depth (weekly); spectral scans; UV attenuation; pesticide analysis (atrazine); chlorophyll-A				
Microclimate	temperature; humidity; precipitation; cloud cover; wind speed				
Amphibian community	calling surveys; VES surveys & trapping for amphibian larvae (biweekly)				



Malformations - 2003

Survey

- 27 wetlands
 7 dry
 8 with < 10 metamorphs captured (n = 14)
 12 with >10 metamorphs captured (n = 1475) (avg. = 123; range = 22 155)


Malformation prevalence:

- 1475 45
- 0-7.8% 3.1%
- metamorphs
 metamorphs
 metamorphs
 malformed individuals
 prevalence range
 overall prevalence
 (Midwest study = 2.0%)

Total	12	1475	45	3.1%
Seasonal grassland	2	277	6	2.2
Seasonal crop	1	153	12	7.8
Semi-permanent grass	sland 8	913	25	2.4
Semi-permanent crop	1	132	2	1.5
Wetland Category	Wetlands	Metas.	Malfs.	Prev. (%)

Extensive Study (2004 - 2005)

Category	Parameter		
Wetland morphology	size; configuration; depth profile; hydrologic regime		
Habitat	vegetative cover maps; land use; distance to wetlands, fields, roads, & structures		
Water column	temperature; pH; spectral scans; water color @ 440 nm		
Microclimate	temperature; humidity; precipitation; cloud cover; wind speed		
Amphibian community	calling surveys; VES surveys & trapping for amphibian larvae		

Mesocosm Scale

Goal - replicate environmentally relevant multiple

- stressor exposure under controlled conditions:
 - 1. accelerated hydroperiod
 - 2. atrazine

Hydroperiod

1. normal hydroperiod – drawdown tied to field conditions 2. accelerated hydroperiod – drawdown at increased rate

Atrazine

- 1. 0.1 μ g/L found by Hayes and others to cause 2. 20 μg/L – commonly found in ground and surface water in corn-growing areas
 3. 200 μg/L – occasionally found in surface water

Mesocosms - 2003

"Pilot year" for mesocosms (late start limited options)

- survival · density
 - temperature
 - feeding
 - atrazine exposure tests:
 - control, no addition
 solvent (acetone)

 - 3) atrazine, 20 µg/L
 - 4) atrazine, 200 µg/L

- Results: limited development • no metamorphs
- suspect water source

Interpretation:

- late collection of tadpoles
 - long holding time in aquarium
 high temperatures in mesocosms

Mesocosms - 2004

Modifications:

- lake water addition of shade cloth
- · insulated tubs with straw
- successful early egg mass collection
- limited holding time (larvae transferred at Gosner stage 20+)

Mesocosms - 2004

Treatments (stressors):

hydrology: normal or accelerated atrazine: 0, 0.1, 20,200 µg/L

9 treatment categories:

- normal hydrology,
 accelerated hydrology,
 normal hydrology,

- normal hydrology,
 normal hydrology,
 normal hydrology,
 normal hydrology,
 accelerated hydrology,
 accelerated hydrology,
 accelerated hydrology,
 accelerated hydrology,

no additions no additions solvent control (acetone) atrazine 0.1 µg/L atrazine 20 µg/L atrazine 200 µg/L atrazine 0.1 µg/L

T +30C

atrazine 20 µg/L atrazine 200 µg/L

Modeling Climate Change

	Historic	T +3ºC	P +20%	P - 20%	
Algona, IA Central Tall Grasslands					
Crookston, MN Northern Tall Grasslands					
Minot, ND Northern Mixed Grasslands					
Watertown, SD Prairie Coteau					
		and and a section	and states and the	-second and	
	CLOSED HEMI OPEN				

Modeling

-Air temp -Precip.

+

EPIC

Lateral

WETSCAPE

WETLAND SURFACE WATER

SUBMODEL (WetSim 2.0)

-ET (Blaney-Criddle) -Snowpack (Century)

▲ Groundwater elevation

-Wetland inflo

Wetland GROUNDWATER SUBMODEL

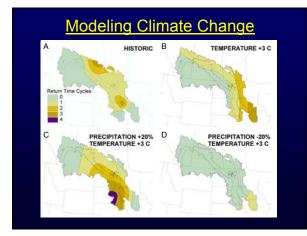
∆ Volume/Stage

Influx

-Stage

Hydroperi dynamic

Multi-basin wetland complex model based on WETSIM (Poiani et al. 1996) Consists of interacting submodel components:


surface water, groundwater, and vegetation. • Simulates changes in water

level and vegetation cover for prairie wetland complexes that include 3 hydrologic classes:

- · semi-permanent,
- seasonal,

 temporary
 HADCM3 climate scenarios
 will be used to parameterize model

5

Challenges

- 1. Site availability and landowner cooperation.
 - farmer/rancher sensitivity to researchers
 lack of "crop" wetland sites
- 2. Who would do wetland research in a drought?
- 3. UV monitoring in continually windy conditions.
- 4. Availability of target frog (*Rana pipiens*) eggs for mesocosms; variability due to local weather & short-term climate conditions.
- 5. Mesocosms:
 - frog survivalmetamorph development

This research has been supported by the U.S. EPA Science to Achieve Results (STAR) Multiple Stressors Initiative.

Acknowledgments

Dr. Catherine Johnson, National Forest Service Dr. Nels Troelstrup, South Dakota State University

Jennifer Olker Milan Angela Rohweder

Dena Shelley Katie Brown **Deborah Endriss** Chandler Schmutzer Denise Gregorie Janna Goldrup Sarah Syria Patti Kramer

