ASHG EDUCATIONAL SESSION

Observational Study Designs

Moyses Szklo, MD, MPH, DrPH
The Johns Hopkins Bloomberg School of Public Health

NOTHING TO DISCLOSE

Observational Study Designs

- By definition, an observational study is one in which the investigator does not control "assignment" of the potential risk factor of interest (e.g., smoking, cytomegalovirus)
- Good company: Geology, Astrophysics, Ecology, etc.

Observational Study Designs

Cohort

- Case-control
- Traditional (case-based)
- Case-cohort

Cohort study

Losses to follow-up

Initial
cohort...
cohort

Basic Design of a Prospective (Cohort) Study (Observational)

First, classify cohort by
presence of exposure to the suspected risk factor:

Exposure*
Positive
Negative

(*Example: smoking during pregnancy)

Basic Design of a Prospective (Cohort) Study (Observational)

First, classify cohort by
presence of exposure to the suspected risk factor:

(*Example: smoking during pregnancy)

Basic Design of a Prospective (Cohort) Study (Observational)

First, classify cohort by presence of exposure to the suspected risk factor:

Then, follow up subjects to see who develops event (e.g., congenital malformation in offspring)

Exposure*
Positive
Negative
:---:
1200
$2=\equiv \equiv \equiv \equiv \equiv=$
2400

(*Example: smoking during pregnancy)

Basic Design of a Prospective (Cohort) Study (Observational)

First, classify cohort by presence of exposure to the suspected risk factor:

Then, follow up subjects to see who develops event (e.g., congenital malformation in offspring)

(*Example: smoking during pregnancy)
Incidence of event (e.g., congenital malformation):
smokers: 60/1200=5\% non-smokers: 24/2400=1\%

Atherosclerosis Risk in Communities (ARIC) Study

- Cohort (prospective) concurrent study to examine risk factors for subclinical and clinical atherosclerotic diseases
- Approximately 16,000 persons aged 45-64 yrs at baseline (1987-89)
- Multi-center: Jackson (all African-American), Forsyth County, NC (about 15\% African-American), Minneapolis (mostly white) and Washington County, MD (mostly white)
- Follow-up approaches: Periodic visits to ARIC clinic; Annual telephone interviews \rightarrow hospital chart and death certificate reviews

Design of the ARIC Study

Age-, Field Center- and Race-Adjusted Average Annual Coronary Heart Disease (CHD) Incidence Rates/1000, ARIC Cohort Study

Risk Factor	Women		
	Rate	Rate	Men

Diabetes
Difference in CHD risk

Yes		
No	9.2 1.8between women and men decreases substantially when	$\left.\begin{array}{c}13.8 \\ 6.4\end{array}\right)$

Smoking diabetes is present

| Current | 5.3 | CHD risk of former |
| :---: | ---: | ---: | ---: |
| Former | 11.6
 Never
 smokers is similar
 to that of never
 smokers | 5.8 |

First and often best way to analyze data (George Comstock): Before carrying out complex modeling, look at the data and think about what you are seeing!

Measuring an Association Between a Suspected Risk Factor and a Disease

Age-, Field Center- and Race-Adjusted Average Annual Coronary Heart Disease (CHD) Incidence Rates/1000, ARIC Cohort Study

Risk Factor	Women			Men		
	Rate	RR	$\mathbf{A R}_{\text {exp }} / \mathbf{1 0 0 0}$	Rate	RR	$\mathbf{A R}_{\text {exp }} / \mathbf{1 0 0 0}$

Diabetes

Yes	9.2	5.1	7.4	13.8	2.2	7.4
No	1.8	$\mathbf{1 . 0}$	Ref.	6.4	$\mathbf{1 . 0}$	Ref.

Smoking

Current	5.3	4.1	$\mathbf{4 . 0}$	11.5
Former	1.6	$\mathbf{1 . 2}$	$\mathbf{0 . 3}$	5.8
Never	1.3	$\mathbf{1 . 0}$	Ref.	4.7
	Relative Risk= $^{\text {Incidence }}{ }_{\text {exp }} \div$ Incidence $_{\text {unexp }}$			

$R R>1.0 \rightarrow$ Factor may be a risk factor
$R R<1.0 \rightarrow$ Factor may be protective
$R R=1.0 \rightarrow$ No association

Observational Study Designs

- Cohort
- Case-control
-Traditional (case-based)
- Case-cohort

Traditional Case-Control Study

First, select cases with the disease of interest and disease-free controls:

Traditional Case-Control Study

First, select cases with the disease of interest and disease-free controls:

Cases Controls

Traditional Case-Control Study

Then, ascertain past history of exposure to the suspected risk factor:

First, select cases with the disease of interest and disease-free controls:

Cases Controls

Traditional Case-Control Study

Then, ascertain past history of exposure to the suspected risk First, select cases with the disease of interest and disease-free controls: factor:

Cases Controls

Traditional Case-Control Study

Then, ascertain past history of exposure to the suspected risk First, select cases with the disease of interest and disease-free controls: factor:

	Cases	Controls
Exposed	a	b
Unexposed	c	d
Total	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{d}$

Design

Known variable at study's outset

Unknown variable the study wishes to ascertain
Cohort
Presence of exposure to Incidence of the a suspected genetic or event (disease) environmental risk factor

Risk factor \longleftrightarrow Disease

For the traditional case-control study, the most important concept is that sampling of subjects for inclusion occurs at the end of a potential causal process

Design
Known variable at study's outset

Unknown variable the study wishes to ascertain

Past exposure to suspected risk factor

HOW TO MEASURE AN ASSOCIATION IN A CASE-CONTROL STUDY

Odds Ratios for the association maternal smoking and isolated clubfoot in the offspring, Atlanta, Georgia, 1968-80

Maternal smoking	Cases	Controls
Yes	$132(a)$	$866(b)$
No	$214(\mathrm{c})$	$2163(\mathrm{~d})$
Total	$346(\mathrm{a}+\mathrm{c})$	$3029(\mathrm{~b}+\mathrm{d})$

Relative Risk is the ratio of incidence rates/probabilities. Incidence cannot be calculated in case-control studies, for which the measure of association is the Odds Ratio: ad/bc.

Honein et al. Family history, maternal smoking, and clubfoot: an indication of gene-environment interaction. Am J Epidemiol 2000;152:658-65.

HOW TO MEASURE AN ASSOCIATION IN A CASE-CONTROL STUDY

Odds Ratios for the association maternal smoking and isolated clubfoot in the offspring, Atlanta, Georgia, 1968-80

Maternal smoking	Cases	Controls	OR
Yes	$132(\mathrm{a})$	$866(\mathrm{~b})$	$(132 \times 2163) \div(866 \times$ $2163)=1.54$
No	$214(\mathrm{c})$	$2163(\mathrm{~d})$	
Total	$346(\mathrm{a}+\mathrm{c})$	$3029(\mathrm{~b}+\mathrm{d})$	

Relative Risk is the ratio of incidence rates/probabilities. Incidence cannot be calculated in case-control studies, for which the measure of association is the Odds Ratio: ad/bc.

Honein et al. Family history, maternal smoking, and clubfoot: an indication of gene-environment interaction. Am J Epidemiol 2000;152:658-65.

HOW TO MEASURE AN ASSOCIATION IN A CASE-CONTROL STUDY

Odds Ratios for the association maternal smoking and isolated clubfoot in the offspring, Atlanta, Georgia, 1968-80

Maternal smoking	Cases	Controls	OR
Yes	$132(\mathrm{a})$	$866(\mathrm{~b})$	$(132 \times 2163) \div 866 \times$ $2163=1.54$
No	$214(\mathrm{c})$	$2163(\mathrm{~d})$	
Total	$346(\mathrm{a}+\mathrm{c})$	$3029(\mathrm{~b}+\mathrm{d})$	

When the disease is relatively rare (e.g., <5\%), the Odds Ratio is a good estimate of the Relative Risk

Honein et al. Family history, maternal smoking, and clubfoot: an indication of gene-environment interaction. Am J Epidemiol 2000;152:658-65.

Observational Study Designs

- Cohort
- Case-control
-Traditional (case-based)
- Case-cohort:
- A case-control study within a defined cohort

Example of case-cohort study

Association between CMV antibodies and incident coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) Study
(Sorlie et al: Arch Intern Med 2000;160:2027-32)
Cohort: 14,170 adult individuals (45-64 yrs at baseline) from 4 US communities (Jackson, Miss; Minneapolis, MN, Forsyth Co NC; Washington Co, MD), free of CHD at baseline.

Followed-up for up to 5 years.

Case-cohort study

Relative Risks of Coronary Heart Disease by Level of CMV Antibodies in the ARIC Study

CMV, P/N ratio
 Relative Risk (95\% CI)

$$
\begin{array}{cc}
0.0-1.9 & 1.00 \text { (reference } \\
2.0-3.9 & 0.82(0.40,1.68) \\
4.0-5.9 & 0.90(0.42,1.90) \\
6.0+ & 1.89(0.98,3.67)
\end{array}
$$

(Sorlie et al: Arch Intern Med 2000;160:2027-32)
Mathematically, the calculation of the odds ratio in a case-cohort study yields the relative risk

Case-cohort Design

"Effect Modification" or Interaction

Maternal smoking	Cases	Controls	OR
Yes	$132(\mathrm{a})$	$866(\mathrm{~b})$	$(132 \times 2163) \div(866 \times 2163)=$
No	$214(\mathrm{c})$	$2163(\mathrm{~d})$	1.54

Family history of clubfoot	Maternal smoking	Cases	Controls	Stratified ORs
Yes	Yes	14	7	3.64
	No	11	20	
No	Yes	118	859	1.45
	No	203	2,143	

Honein et al. Family history, maternal smoking, and clubfoot: an indication of gene-environment interaction. Am J Epidemiol 2000;152:658-65.

"Effect Modification" or Interaction

Maternal smoking	Cases	Controls	OR
Yes	$132(a)$	$866(b)$	$(132 \times 2163) \div(866 \times 2163)=$
No	$214(c)$	$2163(d)$	1.54

Family history of clubfoot	Maternal smoking	Cases	Controls	Stratified ORs
Yes	Yes	14	7	3.64
	No	11	20	
No	Yes	118	859	1.45
	No	203	2,143	

Honein et al. Family history, maternal smoking, and clubfoot: an indication of gene-environment interaction. Am J Epidemiol 2000;152:658-65.

Cohort Vs. Traditional Case-Control Studies

ADV ANTAGES AND DISADV ANTAGES	COHORT	CASE-CONTROL
Calculation of incidence rates and direct calculation of Relative Risks?	Yes	No. Odds Ratios estimate Rel. Risks for diseases with incidence <5\%

Cohort Vs. Traditional Case-Control Studies

ADVANTAGES AND DISADVANTAGES	COHORT	CASE-CONTROL
Calculation of incidence rates and direct calculation of Relative Risks?	Yes	No. Odds Ratios estimate Rel. Risks for diseases with incidence <5\%
Length of study?	Long	Shorter

Cohort Vs. Traditional Case-Control Studies

ADVANTAGES AND DISADVANTAGES	COHORT	CASE-CONTROL
Calculation of incidence rates and direct calculation of Relative Risks?	Yes	No. Odds Ratios estimate Rel. Risks for diseases with incidence <5\%
Length of study?	Long	Shorter
Assessment of multiple exposures?	Yes	Yes

Cohort Vs. Traditional Case-Control Studies

ADV ANTAGES AND DISADV ANTAGES	COHORT	CASE-CONTROL
Calculation of incidence rates and direct calculation of Relative Risks?	Yes	No. Odds Ratios estimate Rel. Risks for diseases with incidence <5\%
Length of study?	Long	Shorter
Assessment of multiple exposures?	Yes	Yes
Assessment of multiple diseases (outcomes)?	Yes	Possible, but usually only one case group is studied

Cohort Vs. Traditional Case-Control Studies

ADVANTAGES AND DISADVANTAGES	COHORT	CASE-CONTROL
Calculation of incidence rates and direct calculation of Relative Risks?	Yes	No. Odds Ratios estimate Rel. Risks for diseases with incidence <5\%
Length of study?	Long	Shorter
Assessment of multiple exposures?	Yes	Yes
Assessment of multiple diseases (outcomes)?	Yes	Possible, but usually only one case group is studied
Ability to assess rare outcomes (e.g., Reye's sindrome, aplastic anemia)	Poor	Better

Cohort Vs. Traditional Case-Control Studies

ADVANTAGES AND DISADVANTAGES	COHORT	CASE-CONTROL
Calculation of incidence rates and direct calculation of Relative Risks?	Yes	No. Odds Ratios estimate Rel. Risks for diseases with incidence <5\%
Length of study?	Long	Shorter
Assessment of multiple exposures?	Yes	Yes
Assessment of multiple diseases (outcomes)?	Yes	Possible, but usually only one case group is studied
Ability to assess rare outcomes (e.g., Reye's sindrome, aplastic anemia)	Poor	Better
Ability to assess rare exposures (e.g., asbestos)	Greater	Poor

Cohort Vs. Traditional Case-Control Studies

ADVANTAGES AND DISADVANTAGES	COHORT	CASE-CONTROL
Calculation of incidence rates and direct calculation of Relative Risks?	Yes	No. Odds Ratios estimate Rel. Risks for diseases with incidence <5\%
Length of study?	Long	Shorter
Assessment of multiple exposures?	Yes	Yes
Assessment of multiple diseases (outcomes)?	Yes	Possible, but usually only one case group is studied
Ability to assess rare outcomes (e.g., Reye's sindrome, aplastic anemia)	Poor	Better
Ability to assess rare exposures (e.g.,	Greater	Poor
asbestos)	+++	+
Cost?		

Cohort Vs. Traditional Case-Control Studies

ADVANTAGES AND DISADVANTAGES	COHORT	CASE-CONTROL
Calculation of incidence rates and direct calculation of Relative Risks?	Yes	No. Odds Ratios estimate Rel. Risks for diseases with incidence <5\%
Length of study?	Long	Shorter
Assessment of multiple exposures?	Yes	Yes
Assessment of multiple diseases (outcomes)?	Yes	Possible, but usually only one case group is studied
Ability to assess rare outcomes (e.g., Reye's sindrome, aplastic anemia)	Poor	Better
Ability to assess rare exposures (e.g., asbestos)	Greater	Poor
Cost?	+++	+
Probab. of selection/information bias?	+	+++

Cohort Vs. Traditional Case-Control Studies

ADVANTAGES AND DISADVANTAGES	COHORT	CASE-CONTROL
Calculation of incidence rates and direct calculation of Relative Risks?	Yes	No. Odds Ratios estimate Rel. Risks for diseases with incidence <5\%
Length of study?	Long	Shorter
Assessment of multiple exposures?	Yes	Yes
Assessment of multiple diseases (outcomes)?	Yes	Possible, but usually only one case group is studied
Ability to assess rare outcomes (e.g., Reye's sindrome, aplastic anemia)	Poor	Better
Ability to assess rare exposures (e.g., asbestos)	Greater	Poor
Cost?	+++	+
Probab. of selection/information bias?	+	+++
Time sequence (exposure \rightarrow outcome)	Clear	Can be unclear

- Population attributable risk:

The excess risk in the population that can be attributed to a given risk factor.

- Population attributable risk: The excess risk in the population that can be attributed to a given risk factor.

Levin's formula:
\%Pop $A R=\frac{p_{\mathrm{e}}(R R-1)}{\mathrm{p}_{\mathrm{e}}(R R-1)+1} \times 100$
(Levin: Acta Un Intern Cancer 1953;9:531-41)

Prevalence of diabetes $=614 / 7289=0.084$

$$
\% \text { PopAR }=\frac{0.084(6.3-1)}{0.084(6.3-1)+1} \times 100=30.8 \%
$$

