

IAEA/ANL Interregional Training Course



#### Technical and Administrative Preparations Required for Shipment of Research Reactor Spent Fuel to Its Country of Origin

Argonne National Laboratory Argonne, IL 13 - 24 January 1997

Lecture L.4.1

**Cask Selection** 

#### **Keith Brown**

### **Science Applications International Corp.**

International Atomic Energy Agency Vienna, Austria

Argonne National Laboratory Illinois, USA

# **Cask Selection**

**IAEA/USA Inter-Regional Training Course** 

January 16, 1997 Argonne, Illinois, USA

Keith Brown Science Applications International Corporation

## **Cask Selection Considerations**

- Compatibility with Fuel Assemblies
- Compatibility with Facility
- Availability of Cask
- Personal Preference

## **Compatibility with Fuel Assemblies**

- Physical Dimensions, i.e., will Assemblies Fit in the Basket?
- Fissile Content Grams of U235, Grams of U, Enrichment
- Cool Down Time Requirements
- Decay Heat Load
- Activity and Dose Rates

## **Compatibility with Facility**

- Crane Capacity
- Maximum and Minimum Crane Hook Height
- Allowable Floor Loading and Spent Fuel Pool Depth
- Physical Size of Doorways
- Clearances for Handling the Cask in the Building, Spent Fuel Storage Pool, and/or Hot Cell

## **Current Cask Inventory**

| Cask            | Owner | Available to<br>Ship MTR | Available to<br>Ship TRIGA | Number<br>Available |
|-----------------|-------|--------------------------|----------------------------|---------------------|
| TN7/2           | NCS   | Currently                | No                         | 2                   |
| GNS-11          | NCS   | Currently                | No                         | 2                   |
| IU-04           | TN    | Currently                | Limited                    | 5                   |
| LHRL 120        | ANSTO | Certifiable              | No                         | 1                   |
| TN 6-1, 6-3     | NCS   | Certifiable              | Pending                    | 1 Each              |
| GE 2000         | GE    | Currently                | Pending                    | 2                   |
| NAC-LWT         | NAC   | Currently                | Pending                    | 5                   |
| Transfer System | NAC   | Currently                | Pending                    | 1                   |

## **Future Casks Planned**

| Cask            | Owner | Available to<br>Ship MTR | Available to<br>Ship TRIGA | Number<br>Available |
|-----------------|-------|--------------------------|----------------------------|---------------------|
| GNS (New)       | NCS   | 1997                     | 1997                       | 2                   |
| TN (New)        | TN    | 1998                     | 1998                       | 2                   |
| NL-1/2          | NAC   | NRU, NRX Only            | No                         | 5                   |
| Transfer System | NCS   | 1997                     | 1997                       | 1                   |

## GNS-11

| Aluminum MTR Elements      | <u>LEU</u> | <u>HEU</u> |
|----------------------------|------------|------------|
| Maximum Number of Elements | 33         | 33         |
| Maximum Enrichment         | 20%        | 94%        |
| Maximum U                  | 1635 g     | 335 g      |
| Maximum U235               | 323 g      | 268 g      |
| Maximum Decay Heat Load    | 48.5 W     | 48.5 W     |
| Minimum Cooldown Time      | 360 Days   | 1808 Days  |
| Maximum Activity           | 1 Pbq      | 1 Pbq      |

### <u>TRIGA</u>

Not Currently Certified for TRIGA Fuel

# TN 7/2

### **Aluminum MTR Elements**

| Maximum Number of Elements | 64       |
|----------------------------|----------|
| Maximum Enrichment         | 80-93    |
| Maximum U                  | 363 g    |
| Maximum U235               | 290 g    |
| Maximum Decay Heat Load    | 125 W    |
| Minimum Cooling Time       | 170 Days |
| Maximum Activity           | 740 Tbq  |

### <u>TRIGA</u>

Not Currently Certified for TRIGA Fuel

## NAC-LWT

### Aluminum MTR Elements

Maximum Number of Elements

Maximum Enrichment Maximum U Maximum Decay Heat Load Minimum Cooling Time Maximum Ave. Burnup

### <u>HEU</u>

42 (Cropped) 28(Uncropped) 80-94% 377 g 30 w/Element 3 Years 550,000 MWD/MTU

### <u>LEU</u>

42 (Cropped) 28 (Uncropped) 20% 1722 g 24 w/Element 1 Year 90,490 MWD/MTU

#### <u>TRIGA</u>

Not Currently Certified for TRIGA Fuel - Certification is Planned During 1997

### IU-04

### Aluminum MTR Elements

Maximum Number of Elements Maximum Enrichment Maximum U235 Concentration Maximum Decay Heat Load Minimal Fuel Core Thickness Minimal Cladding Thickness

36 in Basket TN 9083 40 in Basket AA 267 100% 0.73 g/cm <132 w/Element (TN 9083) <80 w/Element (AA 267) 0.5 mm 0.2 mm

# IU-04 (Cont'd)

### <u>TRIGA</u>

| Maximum Number of<br>Elements | Any number that can be placed in basket TN 9083, tight or not (144?) |
|-------------------------------|----------------------------------------------------------------------|
| Cladding                      | Aluminum                                                             |
| Composition                   |                                                                      |
| Uranium                       | 8%                                                                   |
| Zirconium Hydride             | 92%                                                                  |
| Maximal Contents              |                                                                      |
| Uranium Weight                | <199 g/Element                                                       |
| Uranium Enrichment            | 20%                                                                  |

## GE 2000

| Aluminum MTR Elements      | <u>HEU</u>                     | <u>LEU</u>                     |
|----------------------------|--------------------------------|--------------------------------|
| Maximum Number of Elements | 42 (Cropped)<br>21 (Uncropped) | 42 (Cropped)<br>21 (Uncropped) |
| Maximum Enrichment         | 93.2%                          | 20%                            |
| Maximum U235               | 355 g                          | 355 g                          |
| Maximum Burnup             | 533 GWd/MTU                    | 100 GWd/MTU                    |
| Maximum Decay Heat Load    | 35 W                           | 35 W                           |
| Maximum Cooling Time       | 880 Days                       | 880 Days                       |

#### <u>TRIGA</u>

Not Currently Certified for TRIGA Fuel - Application has been Submitted for Certification of up to 84 TRIGA Elements, Enriched Between 20% and 93%, with Aluminum, Inconel, or Stainless Steel Cladding

#### IU-04 in Port Ready For Loading

#### IU-04 After Fuel Loading

### NAC-LWT After Fuel Loading

#### NAC-LWT Transfer Cask

12.00

#### TN-7 Being Lowered into Fuel Storage Pool

GNS-11 Being Loaded with SNF

### GNS-11 Being Prepared for Shipment

#### RBOF Receiving Facility for Aluminum MTR Fuel

erran ers Charallin

ander deven versige deven politik beled de dets **viede deb**e

गावित के राजित विक्रिये विक्रिये के रह

Savannah River Site Receiving Site for Alumium MTR Fuel