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A new method is presented to generate an unstructured 20-node brick element mesh for arbitrary structures.  Based on a
triangulation of the structure’s surface, a 20-node master mesh is generated encompassing the structure. The elements intersected
by the triangulation are determined, catalogued, cut and remeshed according to their cutting topology. The new elements external
to the structure are discarded, while the others are tied to the uncut subsurface mesh by means of multiple point constraints
(MPC’s). Alternatively, the remeshing procedure can be continued into the subsurface element layers to obtain a pure 20-node
brick element mesh, without any MPC’s. Additional smoothing further improves the mesh quality.
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Due to the availability of cheap computing power, three-
dimensional analyses of complex structures are standard.
However, the generation of a suitable mesh is still a
formidable task, especially if hexahedral elements are
preferred. Thus, compared to the computational time, the
effort needed to generate the mesh generally dominates the
overall process time. In the past, several proposals have been
made to simplify the meshing job, ranging from modular
building blocks [1] to finite octree techniques [2], midpoint
division [3] and mesh projection near the free boundary [4].
An overview of these different techniques is given by the
Handbook of Grid Generation [5]. However, the ultimate
goal of a fully automatic tool to create a purely hexahedral
mesh containing a reasonable number of elements for an
arbitrary structure is still way off.

Here, a new technique is presented based on a cutting
procedure originally developed for automatic crack
propagation calculations [6][7]. The idea is to encompass the
structure by a simple 20-node brick element mesh, the so-
called master mesh, and to cut away all element parts not
belonging to the structure. To this end, the structure’s surface,
which does not have to be connected,  is described by a
triangulation to be provided by the user.  Based on this
triangulation, the master mesh is generated in an automatic
way. Then, all elements cut by the triangulation are
determined and catalogued according to their cutting
topology. Complex topologies are reduced to a set of seven
simple topologies, for which a standard remeshing scheme is

available. After remeshing, the new elements external to the
structure are removed and a 20-node brick element mesh
remains. However, since only the intersected elements were
remeshed, there is a mesh density jump between the surface
and subsurface elements in the structure. This jump can be
taken care of by the use of multiple point constraints
(MPC’s), or, if the user prefers a pure 20-node brick element
mesh, by continuing the remeshing into the deeper mesh
layers until exhaustion. Then, a 20-node brick element mesh
without any MPC’s remains. The quality of the mesh can be
further improved by smoothing. The use of 20-node brick
elements has its origin in fracture mechanics applications
[6][7]. However, it is expected that the method might work
equally well with 8-node brick elements.
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In order to mesh a structure, a suitable description of its
shape must be available. In the present procedure the internal
and/or external surfaces of the body must be provided in
triangulated form. This type of description was chosen
because of its simplicity, its flexibility and ready availability.
Indeed, nearly all finite element preprocessors have the
capability to mesh an arbitrary surface by triangles. While
triangulating the surface, care has to be taken to model the
details of the structure with sufficient accuracy. Since the
triangulation of the surface is the only input to the procedure,
the final hexahedral mesh quality largely depends on the
quality of the triangulation. Characteristics missed by the
triangulation will be lacking in the hexahedral mesh too.



A first step in the meshing procedure constitutes a careful
analysis of the triangulation in order to detect topological
characteristics such as edges and vertices. Edges and vertices
are important since they constitute the backbone of the
structure, and they should be accurately modeled by the
hexahedral mesh. They are stored in linked lists for further
use.

Once the triangulation has been analyzed, the master mesh is
generated in an automatic way. It basically consists of a
structured 20-node brick element mesh with the element
edges parallel to the three Cartesian coordinate axes.
Alternatively, the user is free to provide his own master
mesh. This can be advantageous in order to exploit certain
characteristics of the structure such as the axisymmetry in
predominantly axisymmetric structures. Or, the present
procedure can be used to insert additional details such as
holes into an existing 20-node brick mesh. In that case the
existing mesh can be used as master mesh. Without user
intervention, the element size of the master mesh depends on
the mean triangle side length in the triangulation.
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Once the master mesh is generated, all its edges are
catalogued according to whether they are cut by the
triangulation or not. An edge of a 20-node brick element
contains two end nodes and one middle node. If the
intersection point on such an intersected edge lies very close
to one of the end nodes, all elements having this edge in
common will be likely to yield very long and narrow or
maybe very small elements after cutting. Thus, a first step
aims at an improvement of the cutting geometry by moving
the nodes of the intersected edges in such a way that the
intersection point lies closer to the geometric middle point
along the edge.

Figure 1 shows how this mesh modification procedure works.
Element edge p3-p4-p5 is cut by the triangulation in a point
close to p3. The distances from the intersection point I to p3
and p5 are d1 and d2 respectively. The nodes are labeled
such that d1≤d2. The quantity d=(d1+d2)/2 is the mean of d1
and d2. If |d-d1|/d<0.2, the intersection point is deemed close
enough to the middle node and no modification is made.
Else, the radii R1=(d1+d)/2 and R2=(d2+d)/2 are calculated
for future use.

Whether p3 and p5 are really moved depends on the
existence of suitable element sides p1-p2-p3 and p5-p6-p7.
Focusing on p1-p2-p3, an element side is looked for which:

1. does not belong to the elements containing side p3-p4-
p5.

2. makes an angle α≤60° with the extension of p3-p4-p5
(Figure 1).

3. is not cut twice or more by the triangulation.

If no suitable side p1-p2-p3 is found, node p3 is not moved.
If more than one suitable side is found, the one with the
smallest α is taken. If the search for p1 and p2 was
successful, the distance d3 from p1 to the intersection point I
is determined. If R1>0.75*d3, which can occur if element

side p1-p2-p3 is much smaller than p3-p4-p5, node p3 is not
moved. Finally, if p1-p2-p3 is not cut, R3 is determined by
R3=(d3+R1)/2 and node p3 is moved to a position on p1-p2-
p3 on a distance R1 from I, node p2 is moved on a distance
R3 from I. On the other hand, if p1-p2-p3 is cut in the
intersection point J (Figure 1), the distance d5 between the
intersection points is calculated and R1 is replaced by
R1=min(R1,0.50*d5). If R1≤d1, node p3 is not moved. Else,
R3 is determined and nodes p2 and p3 are moved in the same
way as for the uncut side. Mutatis mutandis, the same
procedure applies to element side p5-p6-p7. Finally, all
midside nodes not already moved belonging to any sides of
which one of the end nodes was moved, are moved into the
middle of their end nodes. The new position of p2, p3, p4, p5
and p6 is shown by the gray circles in Figure 1. Simple
examples of the effect of the procedure are available in [6].
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After the mesh has been modified to improve the cutting
geometry, all cut elements are catalogued according to the
way in which they are cut. A distinction is made between
simple and complex cutting topologies. A topology is simple
if the following two conditions are satisfied:

1. each edge of the element is cut at most once by the
triangulation,

2. the topology leads to at most two parts after cutting.

First, a check is performed whether any edge of the element
at stake is cut more than once. If so, the element is replaced
by newly generated elements having edges cut at most once,
using a procedure discussed in the next section. In that stage,
the topology belongs to one of the categories shown in Figure
2. To determine the category to which a specific element
belongs, all vertex nodes of the element are labeled with 0 or
1, according to whether the node lies inside or outside the



structure. If there are more 1’s than 0’s the labels are reversed.
The vertex nodes in Figure 2 with the black circles represent
1, the others 0. Thus, comparison with the schematic
drawings in Figure 2 allows for a unique classification of the
element at stake. The notation 1-7 in Figure 2 means that one
corner node lies on one side of the triangulation, whereas all
other seven nodes lie on the other side. The numbers in
brackets show the number of variations for each scheme. For
instance, for topology 1-7(a) there are eight ways in which to
choose a corner node.

Figure 2 contains simple as well as complex topologies.
Knowing that the element sides are cut at most once, a
topology is simple if it leads to AT MOST two parts after
cutting. This does not mean that a complex topology always
leads to more than two parts. For instance, topology 2-6(b)
can lead to two or three parts, depending on the actual
triangulation. The fact that it CAN lead to more than two
parts is sufficient to classify this topology as complex.
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The only 1-7 topology is a simple one, 1-7(a). Cases 2-6 and

3-5 correspond each to one simple topology (a) and two
complex topologies (b,c). Finally, case 4-4 corresponds to
four simple and three complex topologies. Topology 4-4(d) is
actually the mirror configuration of topology 4-4(c).
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Once all intersected elements have been catalogued, the
complex topologies are reduced to simple ones by cutting in
between opposite element faces. This is performed in two
steps. First, the elements with double cut edges are identified
and cut in between the intersection points such that the newly
generated elements have edges cut at most once. In the
present implementation, edges cut more than twice are not
covered. Although this can easily be changed, it might be
advisable to use an overall finer master mesh in that situation.

Cutting by a plane in between two element faces generates
two new elements which have to be connected with the
surrounding elements. If the user wishes to avoid multiple
point constraints, the cutting has to be pursued throughout
the complete element layer until the free boundary of the
master mesh is reached. This results in one element layer
completely cut in two. On the other hand, if MPC’s are
allowed, the cutting of the layer can be stopped at elements
which satisfy the following two conditions:

1. they contain no double cut edges

2. their edges which would be intersected by an extension of
the cutting plane are not intersected by the triangulation.

This generally results in a subset of the element layer being
cut in half and reduces the ultimate amount of elements.
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Figure 3 shows an element in the form of a cube of which
two wedge-like parts were removed by an appropriate
triangulation. Before removal, two of the top edges were cut
twice by the triangulation. The double cutting was reduced to
simple cutting by dividing the element with a cutting plane
parallel to the y-z plane. Then, the two new elements were
remeshed and the wedges removed. Remeshing is treated in
the next section.



Once all edges are cut at most once, all intersected elements
belong to one of the topologies in Figure 2. The complex
topologies are reduced to simple ones by introducing the
cutting planes indicated by the dashed lines (Figure 2). In
most cases a cutting in two new elements suffices. Topology
4-4(g), where eight new elements are generated, can actually
also be reduced by cutting in four. However, a division in
eight was preferred out of symmetry reasons. This
configuration is very rare anyway.
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An example of reducing complex topology 2-6(b) to two
simple 1-7(a) topologies is given in Figure 4. Again, a
subsequent remeshing and removal of external parts was
performed after cutting.
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At this stage, all intersected elements belong to simple
topologies. For each of these topologies a remeshing scheme
has been developed satisfying the following requirements:

1. only genuine 20-node brick elements are generated

2. compatibility between different topologies is assured

3. the curvature of the structure’s surface, expressed by
differently oriented triangles in the triangulation, can be
adequately modeled

4. edges and vertices are accurately modeled.

The ensuing remeshing schemes are similar to the midpoint
subdivision proposed by Li et al. [3]. However, the new
nodes in the middle of the faces are generated using slightly
different rules to improve the shape of the resulting elements.
The remeshing for topology 3-5(a) is shown in Figures 5 and
6.

In all schemes only genuine 20-node brick elements are
generated without recourse to tetrahedrons or other element
types. All faces of the newly generated elements have four

different nodes. Furthermore, by remeshing topologically
identical faces of the master mesh element in exactly the
same way, compatibility between different topologies is
guaranteed.

So far, the triangulation was treated locally as a cutting plane.
However, in reality, adjacent triangles are not necessarily
coplanar and can model a curvature, an edge or a vertex. The
curvature of the triangulation is taken into account by
projecting the newly generated nodes within the cutting
surface onto the triangulation.
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Modeling edges and vertices is more intricate. Looking at
Figure 5, the slant cutting plane is remeshed using 5 element
faces having one node in common. All nodes within the
cutting plane can be freely used to provide an accurate
picture of the triangulation. Thus, the node in the middle can
be moved onto a vertex, if the triangulation contains such a
vertex. Similarly, all nodes connected to this vertex node can
be positioned exactly on edges in the triangulation.  This is
illustrated in Figure 7, where a sharp vertex was modeled
using topology 1-7(a). All remeshing schemes are such, that



they can model exactly one sharp 3-dimensional vertex, if the
need arises. The number of edges which may be attached to
the vertex depends on the topology. For instance, topology 1-
7(a) can accommodate 3 edges, whereas it is clear from
Figure 5 that topology 3-5(a) can model 5 edges. More edges
can be taken care of through additional cutting. The modeling
of multiple vertices within one and the same master mesh
element is to be handled by choosing a finer master mesh.

The situation for edges is similar. Each remeshing scheme
can model at most one edge not containing a vertex within
the element, or as many edges coinciding in a vertex as there
are element faces within the cutting plane. However, multiple
edges can be accounted for by additional cutting. This is
generally necessary for two close (nearly) parallel edges, as is
the case at the free borders of plates or shells. This additional
cutting can be done after reduction to simple topologies and
before remeshing.
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After remeshing of the simple topologies, the resulting mesh
consists of original master mesh elements external and
internal to the structure, reduced master mesh elements
external and internal to the structure and remeshed master
mesh elements (possibly after reduction) internal and external
to the structure. Now, all elements external to the structure
are discarded. Then, a thin layer of fine remeshed elements
close to the triangulation remains, covering  original and
reduced  (but not remeshed) coarse master mesh elements.
The connection between both is usually done by means of
multiple point constraints. Due to remeshing, the uncut faces
of a remeshed element are divided into four new element
faces. For instance, this applies to the back faces of Figure 7.
These four faces are tied by means of MPC’s to the one
underlying master mesh face.

Alternatively, if the user wishes to avoid MPC’s, the
remeshing can be continued into the structure by dividing
each underlying master mesh element into eight parts.
Ultimately, a MPC-less mesh is obtained by continuing this

procedure until exhaustion. This, of course, increases the
number of elements in the final mesh. However, since peak
stresses usually occur at the surface of the structure, a couple
of additional layers is usually sufficient.

Thus, a 20-node element mesh has been created for the
structure at hand. Further improvement can eventually be
obtained by smoothing the mesh.  Smoothing existing meshes
is really a field of its own. Here, merely two methods are
presented aiming at satisfying two totally different criteria.

The first smoothing procedure aims at improving the
Jacobian determinant in the integration points of the mesh. A
negative Jacobian determinant points to negative volumes
and leads to a crash of every finite element code. Thus, a
procedure is started which identifies such integration points,
and moves the corner nodes of the elements concerned while
maximizing the Jacobian determinant in the element and its
neighbors.  The middle nodes of the elements are kept within
a reasonable distance from the geometric middle point. The
optimization algorithms used are very robust and based on
the Nelder-Mead method [8]. Experience has shown that the
method is very effective, but does not necessarily lead to
visually pleasing meshes.

The second method uses a weighted Laplace smoothing
procedure as described by Blacker and Stephenson [9]. Here,
the nodes in the mesh are moved depending on the position
of their neighbors. Examples of its application are shown in
[7]. It leads to visually improved meshes, but does not
guarantee the positiveness of the Jacobian determinant. It
looks as if a combination of both smoothing procedures
might yield an optimum technique. However, further research
is needed.
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In this section, three examples are given highlighting the
applicability and efficiency of the method.
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The first example is a turbine disk segment (Fig 8). It is a
predominantly axisymmetric structure with U-shaped notches
in the rim area and a drive arm in between bore and rim. The



master mesh was a rectangular grid parallel to the Cartesian
axes. If the disk segment were larger, an axisymmetric master
mesh would probably be preferable. The size of the triangles
in the triangulation was adapted to the local accuracy
requirements.

Due to the small thickness of the drive arm, double cut edges
arose. These were reduced to simple cut edges by intersecting
the master mesh elements as explained in previous
paragraphs. This led to a local refinement of the final mesh,
as can be seen in Figure 8 and 10. Subsequently, the
intersected elements were remeshed according to their
topology and tied to the underlying master mesh elements
using MPC’s. No additional element layers were remeshed
nor any Laplace smoothing  performed. The final mesh
contained 45139 nodes and 8731 elements. Figures 8, 9 and
10 show that the structure’s details are accurately modeled:
local curvature (note the small radii in the bore area), edges
and vertices of the structure are well represented.
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A stress calculation was performed under centrifugal loading.
In figures 8 and 9 the hoop stress is plotted, in Figure 10 the
axial stress is shown. The fringe plots are smooth and show

the expected stress fields. At the bottom of the U-notch a
hoop stress concentration arises with maximum value in the
middle of the rim (Figure 9). In the drive arm bending
stresses are generated involving tensile stresses at the top and
compressive stresses at the bottom of the arm.

The second and third example are similar to two structures
shown on a web site by Robert Schneiders [10].
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Example two is shown in Figure 11 and represents a
connecting element between two axles. It is characterized by
holes of different size and a relatively complex connection of
the straight part and the lower hole.

The master mesh was generated automatically, and mesh
modification was applied to improve the cutting topologies.
All topologies were simple, so no additional cutting was
necessary. Only the surface layer was remeshed and tied to
the underlying structure using MPC’s. No smoothing was
applied. The final mesh contained 41408 nodes and 7986
elements.
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The overall mesh looks good. The curvature and edges of the



structure are well modeled. This also applies to the difficult
connection of the straight part and lower ring (Figure 12).
Additional Laplace smoothing could further improve the
visual quality of the mesh.

Tensile forces were applied along the uppermost line within
the upper rings, while the lowermost line in the lower ring
was held fixed. The fringe plot in Figure 11 shows the normal
stress in y-direction and looks very smooth. The usual stress
concentrations  near the loading points and fixed points arise.
The local stress increase near the holes is also to be expected.

The last example (Figures 13, 14 and 15) is characterized by
quite a few sharp edges and vertices.  Here, a relatively fine
master mesh was generated such that all topologies were
simple. Again, the usual mesh modification was performed to
improve the geometry of the intersected elements. Then, the
intersected elements were catalogued according to their
cutting topology and remeshed. One additional layer of
elements was remeshed, pushing the MPC’s one layer deeper.
No additional smoothing was performed.

)LJXUH�����6WDLUV�OLNH�VWUXFWXUH�ZLWK�KROH

)LJXUH�����'HWDLO�RI�WKH�KROH

The resulting mesh is shown in Figure 13. The edges and
vertices are well modeled, and so is the hole at the top of the
structure. Due to the fine size of the master mesh, the final
mesh contained 65538 nodes and 14128 elements. A stress
calculation was performed for tensile forces in z-direction
applied to the hole while the bottom plane was completely
fixed. Figures 13 and 14 show the normal stress in z-
direction. Concentrated compressive stress occurs at the
location of the force application, while increased tensile
stresses are observed around the hole and at geometric
discontinuities. The elements in Figure 14 having dihedral
angles greater than pi could be further removed using the
method of “pillowing doublets” in [11].
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Figure 15 shows the external edges and vertices of the
structure as detected by a finite element post-processing tool.
They correspond exactly to the edges and vertices detected by
the automatic meshing program based on the triangulation. In
addition, Figure 15 also shows INTERNAL edges and
vertices. These correspond to the transition of the fine
remeshed zone to the underlying original master mesh zone.
This is the interface where the MPC's are applied. By
additional remeshing this interface might be further pushed
inwards. However, the stress field pictures show that there is
really no need for additional remeshing. The computational
time for this linear elastic stress calculation on an state-of-
the-art SGI workstation was about 1500 seconds. Starting
from a coarser master mesh can further reduce this CPU-time.
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A new method was presented to generate 20-node brick
element meshes for arbitrary structures in a fully automatic
way. The method excels due to its relative simplicity, its
automatic execution, its ability to generate pure 20-node
brick element meshes and the control over the depth of the
remeshing procedure. Several examples have shown the



efficiency of the method.
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