Overview of the Economics of Climate Change

Billy Pizer
Presidential Management Forum on Global Climate Change

Comparison of Emissions Reduction Goals in Legislation in the 110th Congress (as of July 11, 2007)

This graph depicts emissions targets from some of the major climate change bills in Congress. Targets are based on comparison with historical year emissions. Kerry-Snowe, Sanders-Boxer, and Waxman specify future emissions as a percentage of 1990 emissions. For Lieberman-McCain, Udall-Petri, and Bingaman-Specter, emissions targets for covered sectors are related to historical emissions for those sectors, and total emissions are assumed to match those in the corresponding historical year.
${ }^{1}$ Bill contains flexibility mechanisms which allow actual emissions to rise above the target.

Summary of Market-Based Climate Change Legislation Introduced in the $\mathbf{1 1 0}{ }^{\text {th }}$ Congress

As of July 25, 2007

	Who's Regulated	Allowance Allocation	Price Stability (Safety Valve \& Borrowing)	Offsets	Technology
Bingaman-Specter (S. 1766)	Economy-wide emissions regulation: coal and process emissions at emitters; oil refiners, NG processors, and oil/NG importers; and F-gas producers and importers.	55\% grandfathered to industry (phased out over time). 22\% auctioned to support technology, transition assistance, and adaptation. 14% set aside for CCS and sequestration. 9% to states.	$\$ 12 /$ metric ton CO_{2} safety valve, rising at 5\% per year above inflation.	Unlimited domestic offsets including methane and SF_{6} reductions. Domestic agricultural sequestration offsets limited to 5% of cap. Use of international offsets limited to 10%.	Detailed technology development programs funded from allowance auction revenues (12% of allowances auctioned in 2012, steadily increased to 26% by 2043).
Udall-Petri (based on May draft and discussion with Udall-Petri staff)	Economy-wide emissions regulation: primarily upstream sources (e.g., producers and importers of fuels).	20% grandfathered to industry. 80% auctioned to support RD\&D, developing-country engagement, adaptation and dislocation aid, sequestration, and debt reduction.	$\$ 12 /$ metric ton CO_{2} safety valve, rising at 2\% above inflation in first 2 years, and 2\%8% thereafter.	Unlimited geological sequestration offsets. 5% of allowances set aside to fund biological sequestration and 1% for CCS projects.	Establishes Advanced Research Projects Agency- Energy to fund technology advancement and sequestration projects with 30% of allowances.
Lieberman-McCain (S. 280)	Economy-wide emissions regulation: large downstream at emitter; transport emissions regulated at refinery.	Some allowances given free to covered entities, others auctioned to fund transition assistance, adaptation measures, and technology support. Distribution at discretion of EPA.	Borrowing (with interest) - up to 25% of allowances, for no more than 5 years.	Up to 30% of obligation can be met with domestic sequestration projects and international offsets.	Revenues from some auctioned allowances used to finance advanced technology development, demonstration, and deployment.
Kerry-Snowe (S. 485)	Economy-wide emissions regulation: point of regulation at discretion of EPA Administrator.	Discretion of the President.	No provisions.	Secretary of Agriculture sets rules for domestic biological sequestration.	Each bill includes: vehicular emissions rules; energy efficiency \& renewable standards for electric generation. All but Waxman have additional bill-specific mandates.
$\begin{aligned} & \hline \text { Waxman } \\ & \text { (H.R. 1590) } \end{aligned}$				No provisions.	
$\begin{aligned} & \text { Sanders-Boxer } \\ & \text { (S. 309) } \end{aligned}$	Economy-wide cap on U.S. emissions. Discretion to implement a market-based allowance program to achieve this cap is left to the EPA Administrator.				
$\begin{aligned} & \text { Feinstein-Carper } \\ & \text { (S. } 317 \text {) } \end{aligned}$	Electricity-sector emissions regulated at the power plant. (S. 1168 also regulates $\mathrm{SO}_{2}, \mathrm{NO}_{x,}$ and mercury emissions from power plants.)	85\% grandfathered to industry, based on generation. Free allocation phased out by 2036.	Borrowing (with interest) - up to 10% of allowances, for no more than 5 years.	Up to 25% through int'] offsets; extensive domestic biological sequestration offsets.	Distributes auction revenues to multitude of technology programs.
AlexanderLieberman (S. 1168)		75\% grandfathered to industry, based on heat input.	No provisions.	Domestic offsets in five categories, including methane, SF_{6}, efficiency, and forest sequestration.	New source performance standard for CO_{2} emissions from electric generation units.
$\begin{aligned} & \text { Stark } \\ & \text { (H.R. 2069) } \end{aligned}$	Economy-wide fossil fuel emissions regulated at the point of production.	Equivalent to 100% auction. (This legislation is an emissions tax.) Revenues to the general fund.	Tax on fuels of $\$ 3 /$ metric ton of CO_{2} emissions, rising by $\$ 3$ each year.	Tax refunds for fuels used in processes which sequester carbons (e.g., CCS, or manufacture of plastics).	No provisions.

Impacts

Global mean annual temperature change relative to 1980-1999 ($\left.{ }^{\circ} \mathrm{C}\right)$

† Significant is defined here as more than 40%.

* Based on average rate of sea level rise of $4.2 \mathrm{~mm} /$ year from 2000 to 2080.

Note: "Likely" is defined as greater than a 66% probability of occurrence. Source: IPCC Fourth Assessment Report.

Key Feature: Peak Emissions

CO_{2} Price

CO_{2} prices?

Yearly cost per tons of $C 02$ equivalents	Amount reduced (Gigatons)	
High cost	$<\$ 100$ per ton	$16-31 \mathrm{Gt}$
Medium cost	$<\$ 50$ per ton	$13-26 \mathrm{Gt}$.

What It Means For Consumers

$49 ¢$ more for a gallon of gasoline
$\$ 52$ more a month for electricity from a coal-fired utility
$\$ 44$ more a month for electricity from oil
$\$ 28$ more a month for electricty from gas-fired utility
$\$ 0$ more a month for electricity from nuclear power
$\$ 0$ more a month for electricity from wind or solar power
Average monthly electricity bill ~\$80
CO_{2} emissions price from CCSP: 5! $\sim 650 \mathrm{ppm} \mathrm{CO} \mathrm{CO}_{2}$ e stabilization

CO_{2} emissions price from EMF-21:5 $\sim 650 \mathrm{ppm} \mathrm{CO}_{2}$ e stabilization

Marginal Benefit (Tol)

R. S.J. Tol / Energy Policy 33 (2005) 2064-2074

Marginal Benefits (Nordhaus 2007)

	2010	2100
	2005 US S per ton CO	
No controls		
250 year delay	0.1	4.7
50 year delay	0.1	56.3
Optimal	8.1	56.1
Concentration limits		
Limit to $1.5 \times \mathrm{CO} 2$	27.6	223
Limit to 2 XCO 2	8.9	130
Limit to $2.5 \times \mathrm{CO} 2$	8.1	57.1
Stern Review discountin,	42.0	259

Effect of discount rate uncertainty on discounted climate damages

		Benefits from 1 ton of carbon mitigation	Relative to constant rat
Government	Constant 4\% rate	$\$ 5.74$	-
bond rate (4\%)	Random walk model	Mean-reverting model	$\$ 10.44$
	Constant 2\% rate	$\$ 6.52$	$+82 \%$
2% rate	Random walk model	$\$ 21.73$	$+14 \%$
	Mean-reverting model	$\$ 33.84$	-
		$\$ 23.32$	$+56 \%$
	Constant 7\% rate		$+7 \%$
7% rate	Random walk model	$\$ 1.48$	-
	Mean-reverting model	$\$ 2.88$	$+95 \%$

Costs

Costs Estimates

Table 4. Core price and welfare results: U.S. + World Policy.

	CO_{2}-e Price $\left(\$ / \mathrm{tCO}_{2}\right.$-e $)$			Change in Welfare (\%)		
	$\mathbf{2 8 7}$ bmt	203 bmt	$\mathbf{1 6 7}$ bmt	287 bmt	203 bmt	$\mathbf{1 6 7}$ bmt
$\mathbf{2 0 1 5}$	18	41	53	0.01	-0.04	-0.07
2020	22	50	65	-0.13	-0.32	-0.55
2025	26	61	79	-0.36	-0.69	-1.05
2030	32	74	96	-0.45	-1.08	-1.47
2035	39	90	117	-0.19	-0.77	-1.51
2040	47	109	142	-0.12	-0.92	-1.84
2045	57	133	172	-0.24	-1.28	-1.90
2050	70	161	210	-0.18	-1.45	-1.79

Scenario Comparison

GHG Allowance Prices

Table: Allowance Price Comparisons (2005 \$/tCO2e)

	2015	2020	2025	2030	2035	2040	2045	2050
2) S. 280 Senate Scenario								
ADAGE	\$13	\$16	\$21	\$27	\$34	\$43	\$55	\$70
IGEM	\$15	\$20	\$25	\$32	\$41	\$52	\$67	\$85
3) S. 280 Scenario with Low International Actions								
ADAGE	\$13	\$16	\$21	\$27	\$34	\$43	\$55	\$70
IGEM	\$15	\$20	\$25	\$32	\$41	\$52	\$67	\$85
4) S. 280 Scenario Allowing Unlimited Offsets								
$\begin{aligned} & \text { ADAGE } \\ & \text { IGEM } \end{aligned}$	\$10	\$13	\$16	\$21	\$26	\$34	\$43	\$55
5) S. 280 Scenario with No Offsets								
ADAGE IGEM	\$40	\$51	\$65	\$82	\$105	\$134	\$171	\$219
6) S. 280 Scenario with Lower Nuclear Power Generation								
$\begin{aligned} & \text { ADAGE } \\ & \text { IGEM } \end{aligned}$	\$14	\$17	\$22	\$28	\$36	\$46	\$58	\$74
7) S. 280 Scenario with No Carbon, Capture \& Storage Technology								
ADAGE IGEM	\$19	\$25	\$31	\$40	\$51	\$65	\$83	\$105

Scenario Comparison GDP Impacts (Percentage Change)

Table: GDP Comparisons (\% Change from Reference)

	2015	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 5}$	$\mathbf{2 0 3 0}$	$\mathbf{2 0 3 5}$	$\mathbf{2 0 4 0}$	$\mathbf{2 0 4 5}$	$\mathbf{2 0 5 0}$
2) S. 280 Senate Scenario								
ADAGE	-0.22%	-0.36%	-0.40%	-0.55%	-0.61%	-0.67%	-0.69%	-1.07%
IGEM	-0.79%	-1.04%	-1.32%	-1.60%	-1.94%	-2.30%	-2.73%	-3.21%

3) S. 280 Scenario with Low International Actions
ADAGE IGEM
-0.79\%
$-1.05 \% \quad-1.31 \% \quad-1.60 \%$
1.94\%
$-2.30 \% \quad-2.73 \%$
-3.19\%
4) S. 280 Scenario Allowing Unlimited Offsets

ADAGE								
IGEM	-0.54%	-0.71%	-0.89%	-1.07%	-1.31%	-1.58%	-1.88%	-2.25%

5) S. 280 Scenario with No Offsets

ADAGE								
IGEM	-1.76%	-2.26%	-2.78%	-3.31%	-3.93%	-4.58%	-5.30%	-6.08%

6) S. 280 Scenario with Lower Nuclear Power Generation

ADAGE	-0.23%	-0.38%	-0.42%	-0.58%	-0.63%	-0.70%	-0.72%	-1.11%
IGEM								

7) S. $\mathbf{2 8 0}$ Scenario with No Carbon, Capture \& Storage Technology
ADAGE
-0.57\%
-0.70\%
-0.83\% -0.97\%
-1.14\%
-1.34\%
-1.58\%
-1.82% IGEM

Summary

Target	Impacts (2100)	Price (2030)	Cost (2030)	Benefits
450 ppm $\mathrm{CO}_{2} \mathrm{e}$	$<2^{\circ} \mathrm{C}$	Requires llobal peaking <10 years	$? 3 \% ?$	Avoids risk of major impacts
550 ppm $\mathrm{CO}_{2} \mathrm{e}$	$1-3.5^{\circ} \mathrm{C}$	$\$ 20-60$	$1.0-2.5 \%$	Conssistent with low discounting benefit estimates
650 ppm $\mathrm{CO}_{2} \mathrm{e}$	$1.5-5^{\circ} \mathrm{C}$	$\$ 5-30$	$0.1-1.5 \%$	Consistent with conventional benefit estimates
No limit	$3-8^{\circ} \mathrm{C}$			

End

Comparison of Emissions Reduction Goals in Legislation in the 110th Congress (as of July 11, 2007)

This graph depicts emissions targets from some of the major climate change bills in Congress. Targets are based on comparison with historical year emissions. Kerry-Snowe, Sanders-Boxer, and Waxman specify future emissions as a percentage of 1990 emissions. For Lieberman-McCain, Udall-Petri, and Bingaman-Specter, emissions targets for covered sectors are related to historical emissions for those sectors, and total emissions are assumed to match those in the corresponding historical year.
${ }^{1}$ Bill contains flexibility mechanisms which allow actual emissions to rise above the target.

Summary of Market-Based Climate Change Legislation Introduced in the $\mathbf{1 1 0}{ }^{\text {th }}$ Congress

As of July 25, 2007

	Who's Regulated	Allowance Allocation	Price Stability (Safety Valve \& Borrowing)	Offsets	Technology
Bingaman-Specter (S. 1766)	Economy-wide emissions regulation: coal and process emissions at emitters; oil refiners, NG processors, and oil/NG importers; and F-gas producers and importers.	55\% grandfathered to industry (phased out over time). 22\% auctioned to support technology, transition assistance, and adaptation. 14% set aside for CCS and sequestration. 9% to states.	$\$ 12 /$ metric ton CO_{2} safety valve, rising at 5\% per year above inflation.	Unlimited domestic offsets including methane and SF_{6} reductions. Domestic agricultural sequestration offsets limited to 5% of cap. Use of international offsets limited to 10%.	Detailed technology development programs funded from allowance auction revenues (12% of allowances auctioned in 2012, steadily increased to 26% by 2043).
Udall-Petri (based on May draft and discussion with Udall-Petri staff)	Economy-wide emissions regulation: primarily upstream sources (e.g., producers and importers of fuels).	20% grandfathered to industry. 80% auctioned to support RD\&D, developing-country engagement, adaptation and dislocation aid, sequestration, and debt reduction.	$\$ 12 /$ metric ton CO_{2} safety valve, rising at 2\% above inflation in first 2 years, and 2\%8% thereafter.	Unlimited geological sequestration offsets. 5% of allowances set aside to fund biological sequestration and 1% for CCS projects.	Establishes Advanced Research Projects Agency- Energy to fund technology advancement and sequestration projects with 30% of allowances.
Lieberman-McCain (S. 280)	Economy-wide emissions regulation: large downstream at emitter; transport emissions regulated at refinery.	Some allowances given free to covered entities, others auctioned to fund transition assistance, adaptation measures, and technology support. Distribution at discretion of EPA.	Borrowing (with interest) - up to 25% of allowances, for no more than 5 years.	Up to 30% of obligation can be met with domestic sequestration projects and international offsets.	Revenues from some auctioned allowances used to finance advanced technology development, demonstration, and deployment.
Kerry-Snowe (S. 485)	Economy-wide emissions regulation: point of regulation at discretion of EPA Administrator.	Discretion of the President.	No provisions.	Secretary of Agriculture sets rules for domestic biological sequestration.	Each bill includes: vehicular emissions rules; energy efficiency \& renewable standards for electric generation. All but Waxman have additional bill-specific mandates.
$\begin{aligned} & \hline \text { Waxman } \\ & \text { (H.R. 1590) } \end{aligned}$				No provisions.	
$\begin{aligned} & \text { Sanders-Boxer } \\ & \text { (S. 309) } \end{aligned}$	Economy-wide cap on U.S. emissions. Discretion to implement a market-based allowance program to achieve this cap is left to the EPA Administrator.				
$\begin{aligned} & \text { Feinstein-Carper } \\ & \text { (S. } 317 \text {) } \end{aligned}$	Electricity-sector emissions regulated at the power plant. (S. 1168 also regulates $\mathrm{SO}_{2}, \mathrm{NO}_{x,}$ and mercury emissions from power plants.)	85\% grandfathered to industry, based on generation. Free allocation phased out by 2036.	Borrowing (with interest) - up to 10% of allowances, for no more than 5 years.	Up to 25% through int'] offsets; extensive domestic biological sequestration offsets.	Distributes auction revenues to multitude of technology programs.
AlexanderLieberman (S. 1168)		75\% grandfathered to industry, based on heat input.	No provisions.	Domestic offsets in five categories, including methane, SF_{6}, efficiency, and forest sequestration.	New source performance standard for CO_{2} emissions from electric generation units.
$\begin{aligned} & \text { Stark } \\ & \text { (H.R. 2069) } \end{aligned}$	Economy-wide fossil fuel emissions regulated at the point of production.	Equivalent to 100% auction. (This legislation is an emissions tax.) Revenues to the general fund.	Tax on fuels of $\$ 3 /$ metric ton of CO_{2} emissions, rising by $\$ 3$ each year.	Tax refunds for fuels used in processes which sequester carbons (e.g., CCS, or manufacture of plastics).	No provisions.

SO_{2} Market

NO_{x} OTC Current Vintage Price

Permit v. Electricity Price

Coal at different prices

Household costs at different prices

