
4D Processing of Gated SPECT Images Using Deformable Mesh Modeling1

Jovan G. Brankov, Yongyi Yang, and Miles N. Wernick

Illinois Institute of Technology
Department of Electrical and Computer Engineering

3301 S. Dearborn St., Chicago, IL 60616, USA

                                                          
1 This research was supported by the National Institutes of Health under grant HL65425 and by the Whitaker Foundation.

Abstract

In this work we present a new 4D approach for reducing
noise in gated SPECT perfusion images while preserving
accurate cardiac motion. The method is based on motion-
compensated temporal smoothing using a deformable
content-adaptive mesh to model cardiac motion. We use a
new, fast method for initial mesh generation. This mesh is
then deformed to track cardiac motion and smoothing is
performed along motion tractories through the space-time
coordinate system.

I. INTRODUCTION

The quality of SPECT images is adversely affected by
noise caused by low photon counts. The problem of noise is
especially serious in gated studies, where the counts are
divided into a number of time intervals to obtain an image
sequence [1]. Because of their relatively high noise level,
gated images can potentially benefit most from appropriate
image processing.

In this paper we propose a new spatial-temporal
processing method for gated images that uses motion
tracking based on deformable mesh modeling of the
images. In nuclear medicine, spatial-temporal processing
has become popularly known as four-dimensional (4D)
processing to reflect the use of three spatial dimensions plus
time. Therefore, we will use the terms “4D” and “spatial-
temporal” interchangeably, although our preliminary
studies are based on a single slice of a gated image
sequence, so that we only have two spatial dimensions plus
time.

4D processing is an example of multichannel image
recovery, which we reviewed in [2]. The basic idea of this
approach is to exploit the statistical correlations between
the desired signal components of different image frames in
a sequence or other collection of related images.

Methods of 4D processing have received increasing
interest lately. Our group has proposed several 4D methods
designed for reconstruction of motion-free images, such as
those obtained in dynamic PET studies [3]. Lalush and Tsui
[4] applied 4D image reconstruction to cardiac SPECT
images, but did not incorporate motion estimation explicitly
in their techniques. In the broader image-processing field,
motion-compensated processing is a well-known approach
to reduce the noise in an image sequence [5]. In the nuclear
medicine field, Klein et al. [6] developed a motion-

compensated summing method using motion estimation,
based on the optical-flow method [7,8], for obtaining a
single image from a gated PET study.

In this paper we propose the following method. We
represent the images and account for motion in a gated
SPECT sequence by way of a content-adaptive mesh model
(CAMM) (Fig. 1), which is allowed to deform over time.
We apply temporal smoothing along the trajectories that the
nodes of this mesh traverse through the space-time
coordinate system (see Fig. 2). This approach aims to
reduce noise, while avoiding potential distortions of the
cardiac motion.

Figure 1. Mesh structure used in our experiment.
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Figure 2. Deformable mesh (shown for frames 1, 8, and 16),
and motion trajectories for some selected mesh nodes
throughout the sequence.



II.  METHODS

A. Motion Field Modeling
In a CAMM, the image domain is subdivided into a

number of mesh elements, the vertices of which are called
nodes. By deformation of the individual mesh elements, a
deformable CAMM can be used to describe the image
motion through the inter-frame displacement of the nodes
[9]. Such a deformable CAMM is well-suited for modeling
complex, non-rigid motion, such as that of the heart.

The image domain D  is partitioned into M  non-
overlapping mesh elements, denoted by Dm,

1,2, ,m M= � , defined by the nodes. The image motion is
then derived from the inter-frame displacement of these
nodes as follows. Over a particular element Dm, the motion
field is described as
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where dn and ϕ n x0 5  are the displacement vector and
interpolation basis function associated with node n,
respectively, and N  is the total number of mesh nodes.
Note that the support of each basis function ϕ n x0 5  is limited
only to those elements Dm associated with node n .

In practice the nodal vectors dn  in the motion model in
(1) are unknown, and must be determined from the
observed data. To track the motion between image frames,
a natural approach is to displace the mesh nodes so that the
corresponding mesh elements in the two frames achieve the
best match in terms of their image values.

Let fr x0 5  and ft x0 5  denote, respectively, the image
functions of a reference frame and a neighboring frame in
the sequence, known as the target frame. As a matching
criterion the following objective function is adapted for our
application from [9]:
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where the first term is the matching error accumulated over
all M mesh elements between the two frames, the second
term Ed  is a measure of mesh regularity (to be defined
below), and Wm is a constant chosen for trade-off between
mesh matching accuracy and mesh regularity.

The mesh regularity measure Ed  in (2) is defined as:
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where N  is the total number of mesh nodes in the image,
and ℑn is the set of immediate neighboring mesh nodes that
are connected to node n.

The nodal vectors dn  are then solved numerically by
minimizing the objective function in (2) with a gradient

descent algorithm. More details of the implementation can
be found in [9].

B.  Spatial-Temporal Processing
Let fk  and �fk  denote image frame k (in vector form)

before and after processing, respectively, with k = 1,...,K.

Further, let f f f= 1
T

K
T T

� and � � �f f f= 1
T

K
T

T
�  represent the

entire image sequence before and after processing,
respectively. Then the proposed 4D processing framework
can be described as a separable operation of the following
form:

�f H H f= ⋅s t1 6 (4)

where H s and H t  represent the spatial and temporal
processing operators.

In this paper, a spatial low-pass Butterworth filter
(described in the next section) is used for the operator H s in
Eq. (4).

The temporal processing operator H t  is implemented as
a finite impulse response (FIR) filter along the motion
trajectories. For each voxel x  in frame k the image value is
processed by H t  according to the following equation:
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where d x,k l 0 5  denotes the relative motion between voxel x
in frame k and its corresponding voxel in frame k+l . The
filter coefficients ( )th l  are defined as:
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where γ  is a parameter used to control the degree of
temporal smoothing, and C is a normalization constant
defined so that the filter has unity DC response. Filters that
are more optimal will be considered in future studies.

III.  EXPERIMENTS

A.  Evaluation Data
The proposed spatial-temporal processing algorithms

were tested using the 4D gated mathematical cardiac-torso
(gMCAT) D1.01 phantom [10]. The field of view is 36 cm;
the pixel size is 5.625mm. Poisson noise, at a level of 4
million total counts for the entire sequence was introduced

to represent a clinical 99mTc  study. In this preliminary
study, a single slice (No.70) was used. This slice had

approximately 45.5 10×  counts per frame (a total of 16
frames). No attenuation correction was used.

B. Mesh generation
The mesh structure was constructed using a new method

we have proposed [11]. A total of 389 mesh nodes were
used in the mesh shown in Figure 1, which is only about
one-tenth the number of pixels. Note that the algorithm
automatically places the mesh nodes densely in the
important heart region, and sparsely in the background.



C. Motion Field Estimation
The noisy projection data were first reconstructed by

using the maximum-likelihood expectation-maximization
(MLEM) algorithm [12]. In this step image frames were
reconstructed in an independent, frame-by-frame fashion.
To help suppress the noise level in the reconstructed
images, individual frames were smoothed spatially with an
order-5 Butterworth filter with a cutoff frequency of 0.3
cycles/pixel. Afterward, level equalization was applied to
enhance the image features in the relatively weak right-
ventricular region.

The resulting sequence was then used for motion
estimation based on (2), where the parameter mW  was set to

0.95. The mesh structure in Fig. 1 was used as the initial
mesh. In our experiment the nodal positions were updated
only for nodes belonging to a circular region of interest
containing the heart. This served to reduce the
computational burden.

In Figure 2 we show the deformable mesh obtained by
the procedure described above. For illustration purposes,
mesh structures are shown for frames 1, 8, and 16. In
addition, the motion trajectories of some selected mesh
nodes are also shown throughout the sequence.

D. Results
In this section we present results obtained from

processing of images reconstructed using the MLEM
algorithm. For comparison, the following processing
methods were considered: (1) spatial-only filtering
(“Spatial”), in which an order-5 Butterworth filter with a
cutoff frequency of 0.3 cycles/pixel was applied to the
reconstructed images; (2) the proposed 4D processing
method (“ST-DM”), applied to the MLEM reconstructed
images; and (3) the same smoothing filters as in (2), except
that motion compensation was omitted (“ST-NM”). The
purpose of evaluating the third method is to demonstrate
that, while temporal smoothing without motion
compensation can reduce noise, it yields a significant
degradation of the representation of cardiac motion.

In Figure 3 we present some reconstructed images for
visual evaluation. Note that “Original” is the phantom
degraded by the system blur to represent an approximate
best case image for comparison. The image results suggest
that both ST-NM and ST-DM can significantly reduce the
noise level in the reconstructed images. However, the
images from the ST-NM method suffer from significant
motion distortion. This is evident when viewing the images
as a cine loop (movie),2 but it can also be measured
quantitatively. Failure to compensate for motion (in the ST-
NM method) also reduces the frame-to-frame variation in
the left ventriclar volume (Figure 3), which we expect will
distort measurements of ejection fraction.

To quantify these observations, we plot in Figure 4 the
time activity curves (TAC) for a small region in the left
ventricular wall vs. the frame number, computed for images
obtained by the three methods. The total squared errors
between the original TAC and TACs obtained by the
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http://www.iit.edu/~branjov/3D01.htm

Spatial, ST-NM, and ST-DM methods were 3.45, 0.50 and
0.28, respectively. Again, the best performance was
achieved by the proposed ST-DM method. In future studies
we will evaluate quantitatively the effect of the algorithms
on ejection fraction measurements, perfusion-defect
detection, and apparent wall motion.

IV.  DISCUSSION

In this paper we demonstrated that one can improve the
quality of the reconstructed images in gated SPECT by use
of spatial-temporal processing with deformable content-
adaptive mesh modeling. Such an approach can effectively
suppress the noise in the images without distorting cardiac
motion. By the time of the conference, we hope to extend
our implementation to 3D volumetric reconstruction of
gated image sequences.
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Figure 3. Results obtained by maximum-likelihood expectation-maximization. “Spatial” denotes spatial
smoothing only. “ST-NM” denotes spatial-temporal smoothing without motion compensation. “ST-DM” denotes the
proposed spatial-temporal smoothing with motion compensation achieved using a deformable mesh. “Original”
denotes the phantom degraded by the system blur to represent an approximate best-case image for comparison.

Figure 4. Time activity curves (TAC) for a small region in the left ventricular wall vs. the frame number. Note the
failure of ST-NM to capture the motion at frame 8 and 9.


