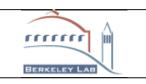
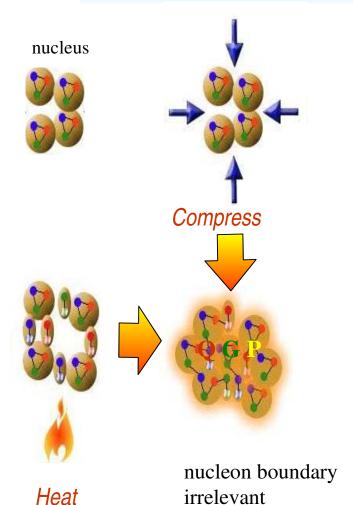


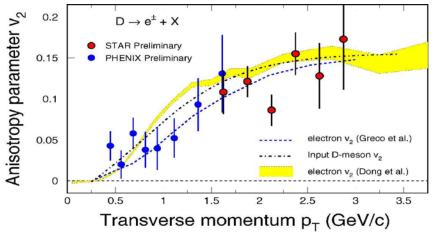
Open charm simulations with the HFT.

(Update)

Alexandre SHABETAI



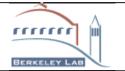

- Physics Motivations
- Is the HFT usefull for reconstuction?
- Where is it in Star
- <u>TOOLS :</u>
 - Minuit
 - Neural Net_
- <u>Resilts</u>
 - Number of events for 3 sigma vs. Position Resolution and thickness
 - Performences
 - Efficiency Study
 - Elliptic Flow
- <u>Conclusion</u>



Physics motivations

Quark Gluon Plasma: **Deconfined** and **thermalized** state of quarks and gluons

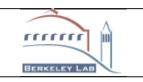
- ✤ Equilibration: hadron yields
- Partonic Collectivity: Spectra of multi-strange baryons at low pt
- Thermalization:
- If heavy quarks flow:
- \rightarrow frequent interactions among all quarks
- \rightarrow light quarks (u,d,s) likely to be thermalized


- ightarrow large stat. and syst. uncertainties
- → Need direct open charm reconstruction !

A. SHABETAI – HFT Workshop LBL 10/05

3

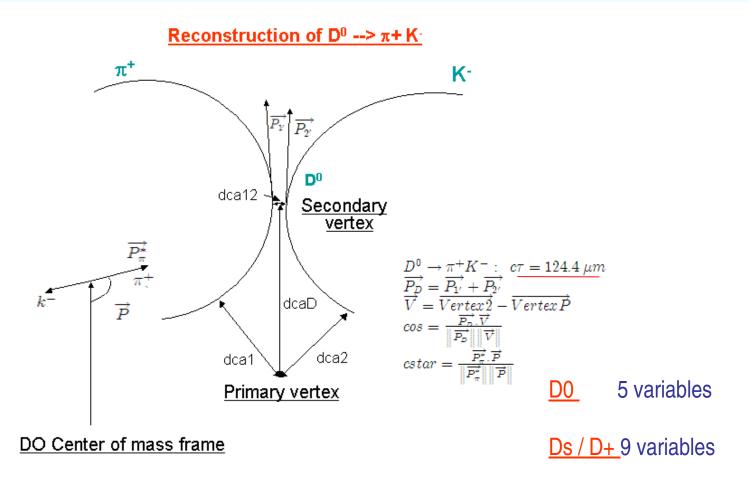
J.C. Collins and M.J. Perry, Phys. Rev. Lett. 34 (1975) 1353.

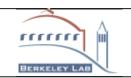


The HFT is The Heavy-Flavor Tracker.

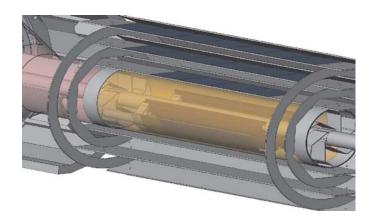
Main purpose : Charm and Beauty studies

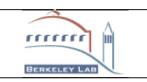
To estimate the physics preformences of the HFT some simulations have been done.


- $\underline{D^0 \text{ study}}$: $D^0 \rightarrow \pi^+ \text{K}^-$: Number of events for 3 sigmas + Efficiency + flow study
- $\underline{D_{s^+} \text{ study}} : D_{s^+} \rightarrow \phi \pi^+$: Number of events for 3 sigmas + Efficiency study
- $\underline{\mathsf{D}^{+} \operatorname{study}} : \mathsf{D}_{s}^{+} \rightarrow \mathsf{K}^{+}\mathsf{K}^{-}\pi^{+}$: is coming

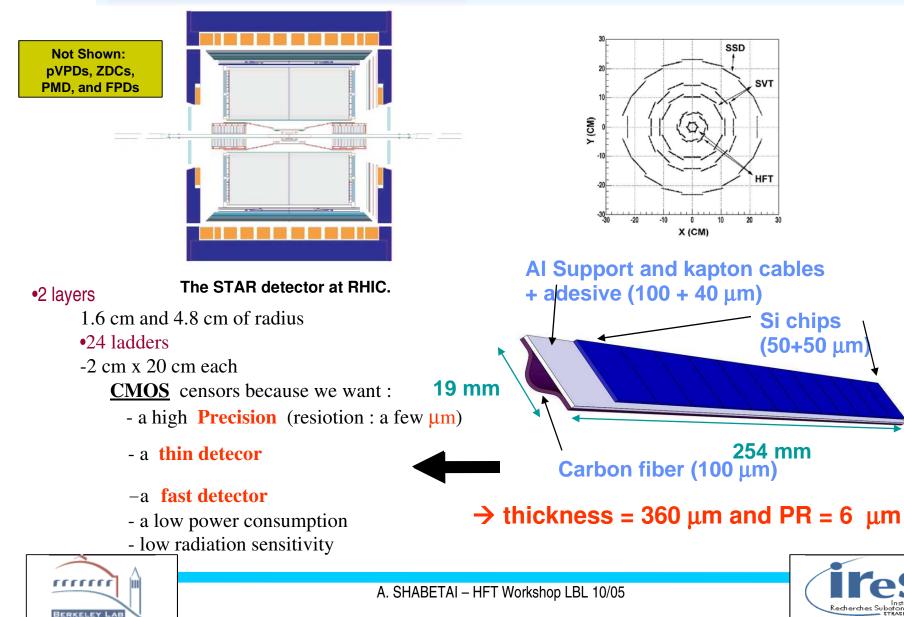


Reconstruction

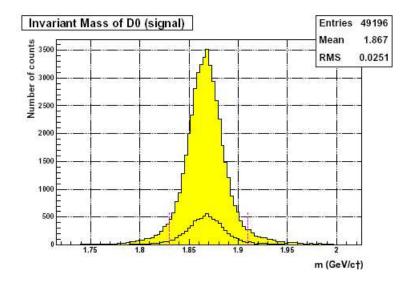

We can't reconstruct the vertex with the the current STAR apparatus !



The detector



The HFT in STAR


3D

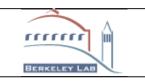
Simulation

- Signal : $exp(-pT^2/T)$ with T = 1.3 GeV
- Background : (MEVSIM) are in diferent files.
 - Central events used
- D°
 - NSigEvents : 1.5 M events
 - NbackEvents w/o Event Mixing : 11 k

<u>Cuts</u>

D0 : cuts for Svt-1 and Svt-Out configuration

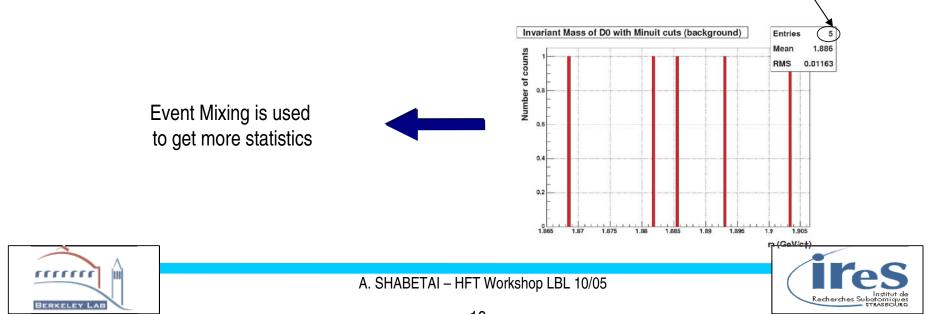
Cuts	Value			
Decay	> 150 µm			
length <i>l</i>				
Δm	± 40			
	MeV/c^2			
DCA _{πK}	< 35 µm			
$\cos(\theta)$	$\theta < 5.0^{\circ}$			



There are lots of variable to study : A Multi-variable method is needed!

Neural Networks and Minuit are using relations between variables

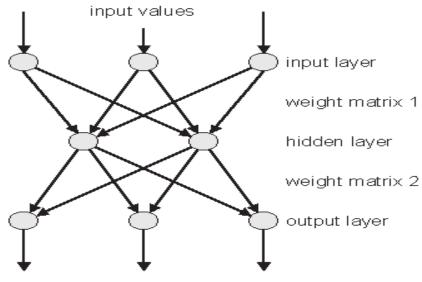
 \rightarrow Results are expected to be better than using a classical method

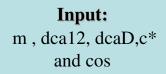


Maximize the Significance \rightarrow

Minimize $N = 3^2 * (S+B) / S^2$

Less background, But sometimes it goes to 0!


n)	n)	dca12 (cm)	dcad (cm)	COS	С*	Inv Mass Min (Gev)	Inv Mass Max (GeV)	nts)
3	80	0.002592	0.011811	0.996943	0.854565	1.772301	1.96769	11853
6	80	0.007934	0.015779	0.999457	0.888059	1.222892	2.517108	12346
18	80	53	0.019841	0.991872	0.802094	1.827590	1.912410	83509



Neural Netork : Why? How? What to expect?

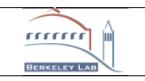
What's a Neural Networks ?

output values

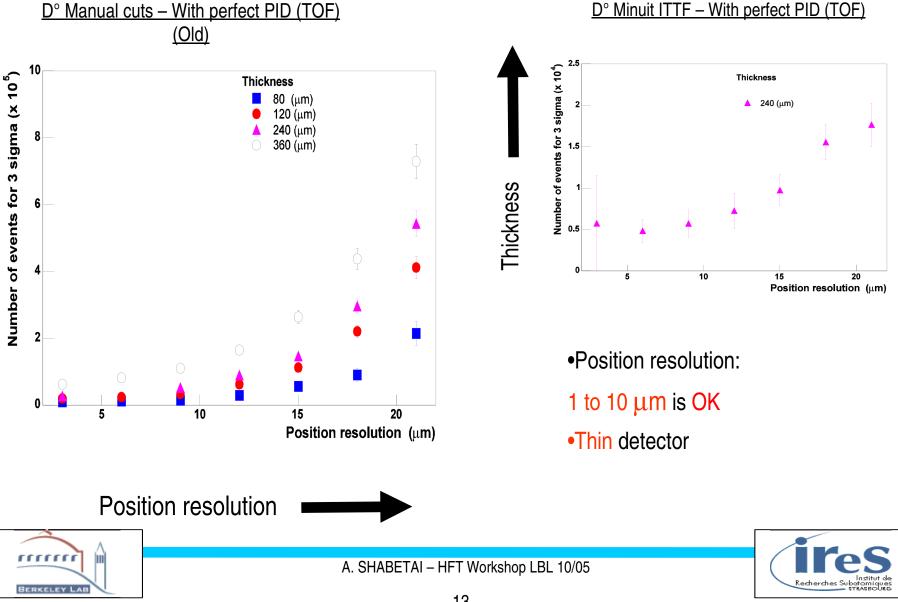
lmì

111111

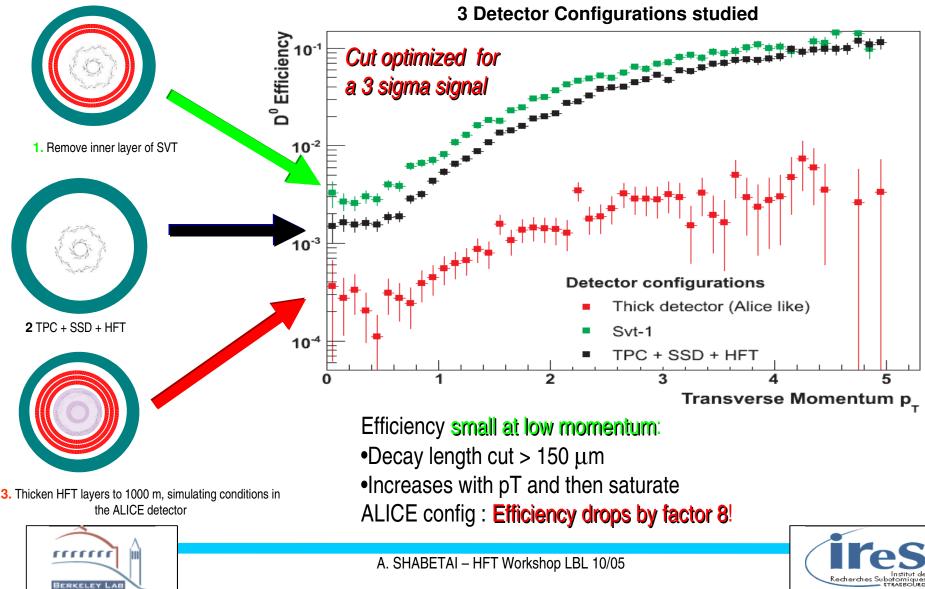
BERKELEY LAB

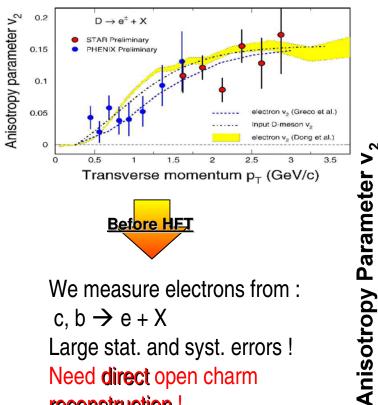

How to use it :

It takes a TTree as input (merges signal and background) You can set weights manually (I did not). Set the number of <u>hidden neurons (12 in 1 layer)</u> Set 2 EventLists : training and test Output : • signal (0) • background (1)

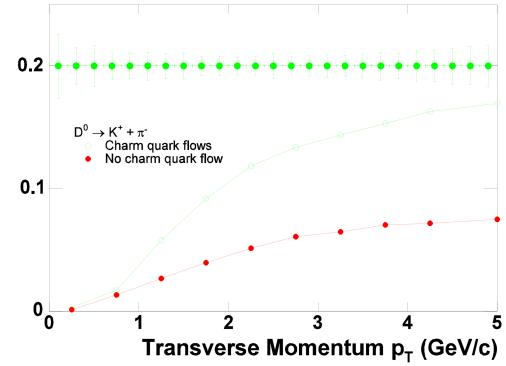


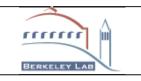
Performances


Sub detectors	D ⁰ N evt for 3 σ	D_{s}^{+} N evt for 3 σ (SVT-1 config.)
TPC+SVT	12.6 M	500 M (K ⁰ _s + K ⁺)
TPC+SVT+TOF	2.6 M	100M
TPC+SVT+HFT (PR = 6 μm thickness = 240 μm)	100k (manual) 8 k Minuit	1.5 M Manual (φ+π ⁺) eff. 2 10 ⁻⁵
TPC+SVT+HFT + Perfect Pid (TOF) (PR = 6 μm)	Manual: 80k now Minuit 5 k (thickness = 360 µm)	Manual 7.7M Minuit 800 k (ϕ + π ⁺) (thickness = 360 µm)


Acceptance*Efficiency/BR

Elliptic Flow


2



Need direct open charm reconstruction !

 $D0 \rightarrow \pi + K^{-}$ Stat. uncertainties small → Probe charm quark With

Au + Au, 50M central events



✓ $D_s^+ \rightarrow \phi \pi^+$ (cτ=147 µm) ✓ $D^+ \rightarrow K^+K^-\pi^+$ (cτ=311 µm)

> 3 body decay More **sensitive** : Larger stat. **errors** ! But ct > D0

> > What about **B** physics ?

The HFT will be a Thin detector (< 0.36% X₀) using CMOS sesnsors.

It will enable us to do precise measurements

>Precise measurement of D0-spectra (possible with about 5k

events for 3 sigmas)

The HFT will enable v2 (elliptic flow) measurement (not possible w/o)

□ Enables other D-meson measurement

➤i.e. Ds : Spetra (starts to be possible with about 800k event for 3 sigmas)

