PHENIX

- Accomplishments
- Status
- Plans
- Issues

Barbara Jacak for the PHENIX Collaboration*

slides can be found at:

http://www.phenix.bnl.gov/WWW/publish/jacak/sp/presentations/DOErev_jul07/

* thanks for material: E. O'Brien (Operations Manager), A. Drees (Upgrade Manager), B. Zajc, M. Grosse-Perdekamp, M. Leitch (2007 Run Coord.)

and J. Nagle (Trigger Coord.)

Two Broad Physics Thrusts of PHENIX

- nuclear matter under extreme conditions p+p: baseline/benchmark pQCD d+Au: control for initial state nuclear effects A+A: hot, dense ~perfect fluid strong flow, jet quenching, quarks recombine \rightarrow hadrons, medium response to jets hard probes of soft medium! spin structure of the nucleon first measurement of A₁₁ \rightarrow gluon polarization
- \rightarrow detector, trigger, high rate DAQ for e, μ , γ , high p_T

accomplishments

Baseline PHENIX Configuration

Central Arm Tracking Drift Chamber Pad Chambers **Time Expansion Chamber Muon Arm Tracking** Muon Tracker **Calorimetry PbGI PbSc** Particle Id Muon Identifier RICH TOF TEC **Global Detectors** BBC ZDC/SMD Local Polarimeter Forward Hadron Calorimeters

NTC MVD

Online Calibration and Production

have since added aerogel, TOF-W, MPC, RXNP, HBD

The PHENIX Run History

The RHIC machine performance has been very impressive:

Collided 4 different species in 7 years

•AuAu, dAu, pp, CuCu

Most machine design luminosity specs have been surpassed !

≻6 energies run

•9.2 GeV, 19 GeV, 22.5 GeV, 62.4 GeV, 130 GeV, 200 GeV

PHENIX	Year	Species	s ^{1/2} [GeV]	∫Ldt	N _{tot} (sampled)	Data Size
Run1	2000	Au-Au	130	1 μb ⁻¹	10 M	3 TB
Run2	2001/02	Au-Au Au-Au p-p	200 19 200	24 μb ⁻¹ 0.15 pb ⁻¹	170 M <1 M 3.7 G	10 TB 20 TB
Run3	2002/03	d-Au p-p	200 200	2.74 nb ⁻¹ 0.35 pb ⁻¹	5.5 G 6.6 G	46 TB 35 TB
Run4	2003/04	Au-Au Au-Au	200 62.4	241 μb ⁻¹ 9 μb ⁻¹	1.5 G 58 M	270 TB 10 TB
Run5	2005	Cu-Cu Cu-Cu Cu-Cu p-p	200 62.4 22.4 200	3 nb ⁻¹ 0.19 nb ⁻¹ 2.7 μb ⁻¹ 3.8 pb ⁻¹	8.6 G 0.4 G 9 M 85 G	173 TBTransferred48 TB0.6 PB of data1 TBto Japan via262 TBGrid for
Run-6	2006	р-р р-р	200 200 62.4	10.7 pb ⁻¹ 0.1 pb-1	233 G 10 G	Analysis in 310 TB 2005/06
Run-7	2007	Au-Au	200	813 μb ⁻¹	5.1 G	650 TB

High scientific productivity WHILE RUNNING!

- 60 physics papers published: 41 PRL, 10 archival submitted 19 papers in 2006
- highly cited PHENIX has produced
 20% of the 50 most cited nucl-ex papers <u>of all time!</u>
 22% of the 50 most cited nucl-ex papers in 2006
- PHENIX White paper (Nucl.Phys. A757,184, 2005) 2nd most cited nucl-ex paper in 2006 50th most cited of "all HEP" in 2006 (355 citations)

 Most RHIC cited paper, with 388 citations is
 "Suppression of hadrons with large transverse momentum in central Au+Au collisions at s(NN)**(1/2) = 130-GeV" Adcox, et al., PRL 88, 022301 (2002)

over 1000 citations per year!

recent results: icons of physics at RHIC!

π^{0} suppressed to high p_{T} , direct γ at very high p_{T} ?

colored probes interact, γ do not...

QGP

heavy quarks lose energy & flow along too

relaxation time short → small viscosity

Phys. Rev. Lett. 98, 172301 (2007)

the medium responds to deposited energy

di-hadron data show:

strong modification of away-side jet shape

Phys. Rev. Lett. 98, 232302 (2007)

low mass dilepton excess seen at RHIC!

Spin: the surprises continue!

arXiv 0704.3599 (accepted for publication)

charm and bottom identification by displaced vertices

 $\gg \pi^0$, γ , Jet identification with larger acceptance

PH米ENIX

PHENIX is a superb training ground

54 Ph.D. theses + 12 Masters/Diploma theses

+ 83 Ph.D. students working

awards in past ~1 year

Sakaguchi	Takao	2007	NPA Young Scientist award for best poster
Okada	Hiromi	2007	RHIC/AGS Thesis Award
Grau	Nathan	2007	RHIC/AGS Thesis Hon. Mention
Gunji	Taku	2007	RHIC/AGS Thesis Hon. Mention
Boyle	Kieran	2007	RHIC/AGS Poster Award
Bayse	Austin	2007	SPS Outstanding Student Award
Riabov	Victor	2007	Russian Federation President's Competition
Desmond	Ed	2006	BNL Engineering Award
Velkovska	Julia	2007	Alfred P. Sloan Fellowship
Biggs	Carter	2006	BNL staff Spotlight Award
Csanad	Mate	2006	PAM Dirac Diploma at Erice School
Csorgo	Tamas	2006	Prize of Hungarian Academy of Sciences
Faulkner	Mariette	2006	BNL staff Spotlight Award
Isenhower	Donald	2006	Career Achievement Award from Abilene Chritian University
Kurita	Kazu	2006	Faraday Cup Award for RHIC polarimetry
Vertesi	Robert	2006	Fulbright Student Award
Labounty	Jimmy	2006	BNL staff Spotlight Award
PH* ENIX			15

Some Management Changes

Collaboration strength

some people leaving & others joining PHENIX must work to maintain student/postdoc strength

PHENIX IN 2007

PHENIX (successful) philosophy: Detector Redundancy, Fine Granularity, Good Mass Resolution, Superb Particle ID, High Data Rate Limited Acceptance

Charged Particle Tracking:

Drift Chamber Pad Chamber Time Expansion Chamber/TRD Cathode Strip Chambers(Mu Tracking)

Particle ID:

Time of Flight (East and **West**) Ring Imaging Cerenkov Counter TEC/TRD Muon ID (PDT's) Aerogel Cerenkov Counter **Hadron Blind Detector**

Calorimetry:

Pb Scintillator Pb Glass **Muon Piston Calorimeter**

Event Characterization:

Reaction Plane Detector Beam-Beam Counter Zero Degree Calorimeter/Shower Max Detector Forward Calorimeter

Upgrades in Run 6 & 7

Run-7 a major success!

400

200

Experiment

initial analysis: data quality very high

from initial analysis at CC-F (IN2P3 Computing Center) ~8% of the data, implies ~16,000 J/ $\psi \rightarrow \mu\mu$

PHENIX mid-term plan:

- Run-8: d+Au and 200 GeV p+p cold nuclear matter comparison for J/ψ, jets, e+ecomplete A_{LL} and A_N at 200 GeV
- Run-9: 200 GeV Au+Au & p+p at 200 and/or 500 GeV complete high statistics Au+Au begin 500 GeV spin runs
- Run-10: Au+Au energy scan & 500 GeV p+p search for QCD critical point
- Run-11+ with new upgrades
 VTX fully installed c,b separation in Au+Au
 Muon Trigger W in 500 GeV p+p

 FVTX and NCC

collect integrated luminosity p+p for low x π^{0} , γ , W c/b, jet, γ -jet, χ_{c} in heavy ion collisions

Spin structure, external medium probes & radiation

Enhance Physics Capabilities

upgrades at a glance

Enhanced Acceptance for Hard Probes

a) Heavy flavor with precision vertex tracking with silicon detectors
 b) Direct γ and π⁰ with combination of all electromagnetic calorimeters

c) Combine a) & b) for jet tomography with γ -jet

Muon Trigger

Installation in 2009 +

- TBD detector maintenance and repair
- Install new beampipe
- Install VTX
- Install RPC 3 North
- Install RPC 2 South and North
- Install FEE Upgrade MuTR 1, 2 North (all octants)
- Install LL1 North
- Install Full Cu absorber + NCC tungsten
- Install FVTX
- Install NCC N & S
- Remove Cu Shielding
- Install RPC 1AB North and South
- Install FEE Upgrade MuTR 3, South and North

TBD months, each year

1 month 4 months 3 months

- 6 months
- 6 months
- 3 months
- 2 months
- 2 months
- 2 months
- 1 month
- 3 months 6 months

installation planning is underway

- some longer shutdowns will be desirable/necessary
- logical timescale is around 2010-2012
- LRP calls for RHIC II luminosity upgrade some trade-off between construction & running timescale may, in fact, match reasonably well with PHENIX upgrades installation needs details still to be worked out discussions with C-A D initiated

Tracking & Calorimetry Upgrades

please see backup slides for details

heavy quark measurements

First run with novel Hadron Blind Detector

- Windowless CF₄ Cherenkov detector
- 50 cm radiator length CsI reflective photocathode Triple GEM with pad readout
- LeCroy HV supply trip action under fault condition damaged GEM surfaces. Remove mesh bypass cap & replace damaged GEMs.

- Enhanced photoelectron production at CsI coating of GEM surface increased gain. Operate at lower voltage.
- Significant scintillation light from charged particles in CF4. Considering blinders between GEMs.

<u>concerns</u>

- Run-6 and Run-7 preceded by terrible uncertainty due to Congressional (non)action devastating for morale difficult for planning
- Detector operations & RCF capital needed to operate & maintain detectors entering their 8th year
 annual replacement of PHENIX RCF resources a must: Moore's law → keep up with datasets
 squeezed in recent years, cannot continue
- Manpower levels within collaboration squeezed by flat-flat budgets (& '06 cuts to universities)

Increased ops tasks to BNL PHENIX group

- Natural burden to integrate new subsystems, BUT:
- Increasing work loads:
 Software & calibrations infrastructure
 Maintenance of legacy code
 Increasing complexity of data production
 Subsystem "small" ops tasks, DAQ interfaces
- Collaboration steps (to partially ameliorate): negotiations with (also pinched) collaborators new contributions/new PHENIX institutions data management, simulations data access an effective inducement planned software reconfiguration – by subsystem weigh service in speaker selections – increase size of PSB to aid in this

Need sufficient support to collaborating institutions

Summary

- PHENIX is extraordinarily successful and productive unprecedented physics reach & flexibility discoveries & excitement continue
- Simultaneously run/analyze our physics program & implement upgrades in detector & DAQ unique photon, lepton, high pT capabilities
 + crucial overlap with other detectors
- Operations shared by BNL & collaborating groups but increasing burden on local group a concern
- Robust plan for next phase of RHIC Physics discovery → characterization of QGP upgrade program: new observables & reach, overlap maintain collaboration strength, *funding needed*

PHENIX Collaboration

Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil Institute of Physics, Academia Sinica, Taipei 11529, Taiwan **PH**^{*}ENIX China Institute of Atomic Energy (CIAE), Beijing, People's Republic of China Peking University, Beijing, People's Republic of China Charles University, Ovocnyth 5, Praha 1, 116 36, Prague, Czech Republic Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic Institute of Physics. Academy of Sciences of the Czech Republic. Na Slovance 2. 182 21 Prague 8, Czech Republic Helsinki Institute of Physics and University of Jyväskylä, P.O.Box 35, FI-40014 Jyväskylä, Finland Dapnia, CEA Saday, F-91191, Gif-sur-Yvette, France Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France Laboratoire de Physique Corpusculaire (LPC), Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubiere Cedex, France IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406, Orsay, France SUBATECH (Ecole des Mines de Nantes, CNRS-IN2P3, Université de Nantes) BP 20722 - 44307, Nantes, France Institut für Kemphysik, University of Münster, D-48149 Münster, Germany Debrecen University, H-4010 Debrecen, Equetern tér 1, Hungary ELTE, Eötvös Loránd University, H - 1117 Budapest Pázmány P. s. 1/A Hungary KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences (MTA KFKI RMKI), H-1525 Budapest 114, POBox 49, Budapest, Hungary Department of Physics, Banaras Hindu University, Varanasi 221005, India Bhabha Atomic Research Centre, Bombay 400 085, India Weizmann Institute, Rehov of 76100, Israel Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Burkyo, Toky o 113-0033, Japan Hroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan Marries (\$500 feet 2 | stretting restricted KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan Ky oto University, Ky oto 606-8502, Japan Abilene Christian University, Abilene, TX 79699, U.S. Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan RIKEN. The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan Physics Department, Rikkyo University, 3-34-1 Nishi-kebukuro, Toshima, Tokyo 171-8501, Japan Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan University of Colorado, Boulder, CO 80309, U.S. Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan Waseda University, Advanced Research Institute for Science and Engineering, 17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan Chonbook National University, Jeonju, Korea Georgia State University, Atlanta, GA 30303, U.S. Ewha Womans University, Seoul 120-750, Korea KAERI, Cyclotron Application Laboratory, Seoul, South Korea Kangnung National University, Kangnung 210-702, South Korea bw a State University, Ames, IA 50011, U.S. Korea University, Seoul, 136-701, Korea Myongji University, Yongin, Kyonggido 449-728, Korea System Electronics Laboratory, Seoul National University, Seoul, South Korea Yonsei University, IPAP, Seoul 120-749, Korea IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia Russian Research Center "Kurchatov Institute", Moscow, Russia PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia Saint Petersburg State Polytechnic University, St. Petersburg, Russia Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Vorob'evy Gory, University of Tennessee, Knoxville, TN 37996, U.S. Moscow 119992 Russia Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden

14 Countries: 69 Institutions

July 2007

~ 550 Collaborators

Collider-Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973-5000, U.S. Physics Department, Brookhay en National Laboratory, Upton, NY 11973-5000, U.S. University of California - Riverside, Riverside, CA 92521, U.S. Columbia University, New York, NY 10027 and Nevis Laboratories, Irvington, NY 10533, U.S. Florida Institute of Technology, Melbourne, FL 32901, U.S. Florida State University, Tallahassee, FL 32306, U.S. University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S. Law rence Livermore National Laboratory, Livermore, CA 94550, U.S. Los Alamos National Laboratory, Los Alamos, NM 87545, U.S. University of Maryland, College Park, MD 20742, U.S. Department of Physics, University of Massachusetts, Amherst, MA 01003-9337, U.S. Muhlenberg College, Allentown, PA 18104-5586, U.S. University of New Mexico, Albuquerque, NM 87131, U.S. New Mexico State University, Las Cruces, NM 88003, U.S. Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S. RIKEN BNL Research Center, Brookhav en National Laboratory, Upton, NY 11973-5000, U.S. Chemistry Department, Stony Brook University, Stony Brook, SUNY, NY 11794-3400, U.S. Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, NY 11794, U.S. Vanderbilt University, Nashville, TN 37235, U.S.

backup slides

p+p – Au+Au comparison A. Toia, S. Bathe

p+p normalized to m_{ee} <100 MeV/c²

- p+p and Au+Au normalized to π^0 region
- Agreement at resonances
 (ω, φ)
- Au+Au enhancement for 0.2 < m_{ee} < 0.8 GeV

• Agreement in intermediate mass and J/ Ψ just for 'coincidence' (J/ Ψ happens to scale as π^0 due to scaling with N_{coll} + suppression)

Low-mass: Comparison with theory

A. Toia, S. Bathe

minimum bias Au+Au @ \s = 200 GeV

New subsystem performance

Reaction Plane with the MPC/BBC/RXNP

Triggering with the RXNP

manpower at U.S. institutions on FVTX, NCC

~ same number of non-US collaborators

we can build while taking & analyzing PHENIX data

characterizing medium by rare probes

- High p_T direct γ , π^0 , electrons : medium opacity
- $J/\psi \rightarrow \mu\mu$, $\chi_c \rightarrow J/\psi \gamma$, $Y \rightarrow \mu\mu$: color screening
- Flavor tagged heavy quark medium interaction (single leptons w/ displaced vertex, D meson reconstruction) : drag forces on c, b quarks
- jet-jet (via h-h) and γ-jet coincidences: calibrated probes of medium opacity and response, tomographic studies

- 7 months 2 weeks
- 0-3 months
- 1 week
- 6 months

3 months

1 month

- Install FEE Repairs & Upgrade MuTR 1, 2 South all octs 4 months
- Install LL1 South

Shutdown Prep

٠

•

•

•

•

٠

PH米END

- Commissioning and run prep
- Shutdown length (End of run 8 to run 9 cooldown start) 6 months

Run 8 Length (start of physics to run end)

TBD detector maintenance and repair

PHENIX Upgrades

The VTX, FVTX and NCC enhance AA, p(d)-A and p-p:

- c, b quark interaction in dense medium
- Charmonium spectroscopy (J/ $\psi,\,\psi'$, χ_c and $\Upsilon)$
- Gluon spin structure (Δ G/G) through γ -jet correlations
- Transversity

A-, p_T-, x-dependence of the parton structure of nuclei

49

PH*ENIX – Gluon saturation and the color glass condensate at low x

Barrel VTX Detector

• Specifications:

Large acceptance ($\Delta \phi \sim 2 \pi$ and $|\eta| < 1.2$) Displaced vertex measurement $\sigma < 40 \ \mu m$ Charged particle tracking $\sigma_p/p \sim 5\%$ p at high pT Detector must work for both HI and pp collisions.

• Technology Choice

Hybrid pixel detectors developed at CERN for ALICE

Strip detectors, sensors developed at BNL with FNAL's SVX4 readout chip

Hybrid Pixel Detectors (50 µm x 425 µm) at R ~ 2.5 & 5 cm Strip Detectors (80 µm x 3 cm) at R ~ 10 & 14 cm $finite{1.2}$ $\phi \sim 2\pi$ $z \sim \pm 10$ cm

Nose Cone Calorimeter

Nose Cone Calorimeter

Physics Program of NCC includes:

- Factor of 5 increase in coverage for γ-jet measurements
- Energy loss at forward rapidiites
- Charm through electron channel at forward rapidities
- Suppression effects of χ_{c} in HI collisions
- Nuclear modification factor (CGC effects) in dAu using π⁰, η, direct γ
- Measure ∆G at low x

 ΔG at low x

PHENIX Nose Cone Calorimeter

- The NCC extends our very successful program of using calorimetry to measure photons, jets and electrons into an important pseudo-rapidity region $1.0 < \eta < 3.0$ where we cover 2π in azimuth
- The DOE funded project costs \$4.3M (\$FY07) and involves physicists and engineers from 23 collaborating institutions in 6 countries.
- The DOE project covers the construction of one NCC. Non-US funds are actively being sought to fund the second NCC.

BNL, Charles Univ, Chonbuk Univ, Columbia Univ, Czech Tech Univ, Czech Inst of Phys, Ewha Womans Univ, Florida State, FNAL,Helsinki Inst of Physics, Iowa State Univ, JINR-Dubna, Jyvaskyla Univ, Korea Univ, Moscow State Univ, Myongji Univ, RIKEN, Stony Brook Univ, Tsukuba Univ, Univ Cal Riverside, Univ of Colorado, Univ of Illinois-UC, Yonsei Univ

Approx. 1/3 of PHENIX institutions are involved in this project.
Good balance between HI and Spin physicists
Balance between personnel with expertise

in hardware, software and physics analysis

Forward Silicon Vertex Detector - FVTX

FVTX Specifications:

- 2 endcaps
- 4 pixelpad layers/endcap
- ~550k channels/endcap
- Electronics a mod of BTeV readout chip
- Fully integrated mech design w/ VTX
- 2π coverage in azimuth and 1.2 < | η | < 2.4
- Better than 100 μm displaced vertex resolution

Forward Silicon Vertex Detector - FVTX

Enhanced x coverage

0.8

(x)0.6 0.4

GS95

- 4 -- B

-- 0

 $\cdots xG(x)$

bb -> euX

 $\Delta G(x, 4 \text{ GeV}^2)$, NLO

Baseline

Endcap

Physics Program of FVTX includes

- Resolving J/ψ and ψ ' in Muon arms
- **Resolving** Υ at y=0 using Muon arms
- Direct measure of B meson through displaced J/ψ
- Drell-Yan Measurements in dAu at both forward and
- c, b ID for both HI physics & ΔG spin measurements
- Nuclear modification factor (CGC effects) in dAu using hadrons, c, b, and J/ψ

PHENIX Forward Silicon Vertex

- The two silicon endcaps of the FVTX project extends our ability to do physics studies using heavy quark probes into forward rapidities. It will enable the separation of c and b components in HI, spin and p-A physics processes as well as expand of our ability to do quarkonium spectroscopy.
- The DOE funded project costs \$4.6M (\$FY07) and involves physicists and engineers from 14 institutions in 6 countries

BNL, CEA- Saclay, Charles Univ, Columbia Univ, Czech Tech Univ, Czech Inst of Phys, Iowa State, Jyvaskyla Univ, KEK, Kyoto Univ, LANL, New Mexico State Univ, Univ of New Mexico, Yonsei Univ

Approx. 20% of PHENIX institutions are involved in this project.
Good balance between HI and Spin physicists

•Balance between personnel with expertise in hardware, software and physics analysis

NSAC Performance Measures

Heavy Ion: e-pair mass spectrum "Hadron Blind" Dalitz pair rejection PM: 2010 HBD **Open charm measurements in AA** PM: 2010 **High Resolution vertex detection** OF-W + AGEL **Charmonium Spectroscopy** PM: 2010 High luminosity; precision vertex, particle ID **Jet Tomography** VTX High luminosity; increased acceptance; enhanced particle ID **FVTX** PM: 2012 Gluon shadowing; low-x in d-Au particle detection at forward rapidity NCC Spin: Complete initial ∆G/G measurement PM: 2008 **muTrig** No upgrades needed **Transverse spin measurements** MPC **Forward particle measurement** W measurements at 500 GeV PM: 2013 Forward tracking/triggering *DOE performance milestones set by NSAC

QPM picture, eg.

$$A_{L}^{W^{+}} = \frac{\Delta u(x_{1}, M_{W}^{2})}{u(x_{1}, M_{W}^{2})}, \ x_{1} > x$$

Ws in polarized p-p:

high Q² → theoretically clean, ab initio no FF-info needed

Background:

Absorber \rightarrow S/B ~ 3:1 Isolation using FVTX/NCC additional rejection ~ x 5 Energy deposit NCC: x 50

W physics S/B

