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Abstract 
 
Current trends suggest that future software systems may 
appear as collections of distributed components that 
combine and recombine dynamically in response to 
changing conditions. Such dynamic environments will 
require new analysis approaches and tools for software 
design. In this paper, we investigate an architecture-
based approach to evaluate and compare designs for 
service discovery protocols operating under network and 
node failures. We elaborate our approach, using Jini as a 
specific example, and show how Jini can be analyzed 
using Rapide, an Architecture Description Language 
(ADL). Our analyses take two forms: property analysis 
and event analysis. We use property analysis to 
investigate robustness to dynamic change, while we use 
event analysis to discern underlying causes of observed 
behavior and performance. We evaluate how well Rapide 
supported our modeling and analyses. We also 
recommend improvements in ADLs to help test and 
analyze designs for distributed systems. 
 
1. Introduction 
 

Numerous trends suggest that future software will 
operate in an environment much more uncertain than 
today’s typical client-server paradigm. Increased 
deployment of wireless communications, implying greater 
user mobility, coupled with proliferation of personal 
digital assistants and other information appliances, 
foretell a future where software components can never be 
quite sure about the network connectivity available, about 
the other software services and components nearby, or 
about the state of the network neighborhood a few 
minutes in the future. In the most extreme situations, as 
found for example in military applications [1], software 
components composing a distributed system may find that 
cooperating components disappear due to physical or 
cyber attacks or due to jamming of communication 
channels or movement of computing platforms beyond 
communications range. Even in less demanding 
circumstances, increased use of computer chips, network 
communications, and software to implement a growing 
range of consumer appliances portends the need for 
simple, self-contained units that, when powered on, can 

discover their technical surroundings and then 
automatically configure themselves into a larger system 
that might already be deployed. Further, as the consumer 
rearranges components in such a system, then the system 
must automatically adapt its configuration as necessary. 
Such environments demand new analysis approaches and 
tools for software design, implementation, and testing.  

Our work considers how one might rigorously assess 
the robustness of distributed software systems in response 
to dynamic change, such as process, node, and link 
failures of both a temporary and permanent nature. More 
particularly we seek techniques to test the behavior and 
resilience of dynamic distributed systems, and to compare 
and contrast various approaches to design such systems. 
As a challenging application we investigate service 
discovery protocols, which provide mechanisms for 
rendezvous and robustness in the face of uncertainty. 
Such mechanisms enable dynamic elements in a network: 
1) to discover each other, 2) to express opportunities for 
collaboration, and 3) to compose themselves into larger 
collections that cooperate to meet an application need. In 
this paper, we limit our analysis to Jini(tm)1 Networking 
Technology, one of at least six service discovery 
protocols [2]-[7] designed to date. Future papers will 
consider additional discovery protocols. 

We wish to address software robustness as early as 
possible in the engineering lifecycle because the earlier a 
design error can be uncovered, the lower the cost to 
repair. For this reason, we use an Architectural 
Description Language (ADL) [12]-[19] to transform 
natural-language specifications into architectural models 
that provide rigorous representation of system structure 
and behavior. Such architectural models, coupled with 
appropriate automated analysis tools, permit designers to 
uncover and correct errors and omissions, and to clarify 
ambiguities that would otherwise lead to incorrect 
behavior, or to performance problems, after a 
specification has been implemented and the resulting 

                                                           
1 Certain commercial products or company names are identified in 

this report to describe our study adequately.  Such identification is not 
intended to imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor is it intended to imply that 
the products or names identified are necessarily the best available for the 
purpose. 
 



software deployed. Architectural models also provide 
significant advantages over less formal approaches when 
comparing and contrasting alternate designs for dynamic 
distributed systems, such as service discovery protocols. 

Other authors compare various service discovery 
protocols [8]-[11], [22], [24]. While instructive, these 
comparisons exhibit significant limitations. For example, 
existing comparisons are largely functional in nature and 
informal in presentation. Such comparisons cannot 
capture nor express a deep understanding of the 
behavioral properties of the protocols, nor can these 
comparisons uncover areas of ambiguity, inconsistency, 
and incompleteness within the specifications. Further, 
existing comparisons use concepts and terminology taken 
from individual specifications. Since each specification 
adopts a unique language for describing its design, it 
becomes difficult to compare the designs directly. In 
future work, we aim to contribute a more rigorous 
comparison of three discovery protocols: Jini [4], UPnP 
[3], and SLP [6]. 

The current study serves two purposes: 1) validate our 
approach against the specification for Jini and 2) evaluate 
the suitability of ADLs to model and analyze dynamic 
distributed systems. To perform this study, we examined 
several ADLs [12]-[19], selecting Rapide [12], an ADL 
developed at Stanford University. Rapide specializes in 
modeling architectures for real-time, distributed systems 
and therefore represents behavior in a form suitable to 
investigate discovery protocols. Rapide also comes with 
an accompanying suite of analysis tools that can execute a 
specification and can record and visualize system 
behavior. 

This paper reports our initial results with respect to 
modeling and analyzing the Jini specification. The paper 
is organized as five sections. First, we describe our 
approach to model and analyze discovery protocols. We 
provide a general architecture intended to encompass all 
the protocols we studied. Using Jini as an example, we 
illustrate how this architecture can be used to model a 
specific protocol, and then how the model can be 
converted to an executable specification, described using 
Rapide. In the second section, Analysis Approaches, we 
discuss the application of ADL tools to analyze logical 
properties of our models, and in the process to uncover 
specification deficiencies, and to assess the degree to 
which the model satisfies selected consistency conditions. 
Further, we show how behavior traces from our model 
can be analyzed to produce quantitative metrics. In the 
third section, we report and discuss the results obtained 
from our initial analysis of Jini. We examine how well 
our Jini model satisfies selected consistency conditions, 
and we characterize the behavior and performance of Jini 
with respect to particular scenarios. In the fourth section, 
we assess our experiences using an ADL and related tools 
to model and analyze Jini. We report our positive 

findings, along with recommendations for improvements. 
In the fifth section, we provide our conclusions and 
outline future work. 
 
2. Modeling with an Architecture-based 
Approach 
 

Most extant discovery protocols are specified 
statically, using natural language, and supplemented with 
reference software that provides one presumably 
legitimate implementation of the specification. The static 
specification expresses the appropriate behavior of system 
components in reaction to particular events and 
conditions. The reference implementation contains 
incidental complexity needed to fit the protocol into a 
software framework that includes various supporting 
components. Typically, static specifications cannot be 
used effectively to understand the dynamic behavior of 
distributed systems. Such specifications do not express 
collective behavior very well and often do not define 
consistency conditions against which dynamic behavior 
can be evaluated. Further, natural-language specifications 
usually lack completeness, and suffer from ambiguities 
and inconsistencies. On the other hand, reference 
software includes complexity irrelevant to the 
fundamental requirements of the specification. Further, 
reference software typically will implement one particular 
design choice in cases where a specification may allow 
various alternatives. 

To overcome these shortcomings, we adopted an 
approach that entails the following general steps: 1) 
construct an architectural model of each discovery 
protocol, 2) identify and specify relevant consistency 
conditions that each model should satisfy, 3) define 
appropriate metrics for comparing the behavior of each 
model, 4) construct interesting scenarios to exercise the 
models and to probe for violations of consistency 
conditions, and 5) compare the results from executing 
similar scenarios against each model. Below, we elaborate 
our approach, using Jini as a specific example, and show 
how Jini can be modeled using Rapide, an Architecture 
Description Language (ADL). We also discuss the Rapide 
run-time, which converts our Jini model to an executable 
specification. First, we introduce discovery protocols, and 
define some consistent terminology that we can use to 
build comparable architectural models. 
 
2.1. Discovery Protocols in Essence 
 

Discovery protocols enable software components to 
find each other on a network, and to determine if 
discovered components match their requirements. 
Further, discovery protocols include techniques to detect 
changes in component availability, and to maintain, 



within some time bounds, a consistent view of 
components in a network. Many diverse industry 
activities explore different approaches to meet such 
requirements; leading to a variety of proposed designs for 
service discovery protocols [2]-[7]. Some industry groups 
approach the problem from a vertically integrated 
perspective, coupled with a narrow application focus. 
Other industry groups propose more widely applicable 
solutions. For example, a team of researchers and 
engineers at Sun designed a general service discovery 
mechanism atop Java(tm), which provides a base of 
portable software technology. The proliferation of service 
discovery protocols motivates deeper analyses of their 
designs. Beyond this, given the level of debate within the 
industry, a comparative analysis can help to assess the 
relative merits of particular protocols. 

To help us compare protocols, we developed a general 
UML (Unified Modeling Language) model, expressed 
with a consistent terminology (see Table 1) that provided 
a basis for the Rapide architectural model. The main 
components in our general model include: 1) service 
manager (SM), 2) service user (SU), and 3) service cache 
manager (SCM), where the service cache manager is an 
optional element not supported by all discovery protocols. 

  
Table 1. Mapping Concepts Among Various Discovery Protocols. 
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These components participate in the discovery, 
registration, and consistency maintenance processes that 
comprise dynamic discovery protocols. A service 
manager maintains a database (Service Repository) of 
records (Service Descriptions, or SDs), where each record 
describes the essential characteristics of a particular 
service or device (Service Provider, or SP). Each SD 
contains the identity, type, and attributes that characterize 
a SP. Each SD also provides up to two interfaces (an 
application-programming interface and a graphic-user 
interface) to access a service. Table 1 shows how these 
general concepts map to specific concepts for Jini, UPnP, 
and SLP. Since the paper uses Jini as an example, we 
provide a brief synopsis. 
 
 

2.2. Jini in Brief  
 

Upon startup, a Jini component (SU, SM, or SCM) 
engages in a discovery process to locate other, relevant 
Jini components within the network neighborhood. To 
oversimplify things: 1) SMs attempt to discover relevant 
SCMs with which to register a SD for each SP managed 
and 2) SUs attempt to discover relevant SCMs to query 
for SDs that lead to desired SPs. In other words, SUs and 
SPs rendezvous through SDs registered by SMs with 
particular SCMs, where the SCMs are found through a 
discovery process. 
 2.2.1. Jini Discovery. Jini encompasses two discovery 
modes, multicast and directed, supported by three 
discovery processes, which we call aggressive, lazy, and 
directed. Both aggressive and lazy discovery involve 
multicast communication among Jini components 
participating in two multicast groups. Upon initiation, a 
Jini component enters aggressive discovery, where it 
transmits probes at a fixed interval for a specified period, 
or until it has discovered a sufficient number of SCMs. 
Upon cessation of aggressive discovery, a component 
enters lazy discovery, where it listens for announcements 
sent at intervals by SCMs. This implies that during lazy 
discovery a SCM both listens for announcements by other 
SCMs and sends its own announcements at the required 
intervals. Figure 1 gives a simplified illustration of the 
two Jini discovery modes, and the three supporting 
processes. 

During aggressive discovery, probes sent by Jini 
components identify interest in one or more 
administrative scopes, which Jini calls groups; probes 
also contain a list of SCMs already discovered by the Jini 
component. Each SCM must reply to a probe only when 
the list of groups contained within the probe intersects 
with the SCM’s own list of groups in which it is a 
member, and also provided that the probe does not 
indicate that the SCM has already been discovered. Once 
a relevant SCM is discovered, the discovering component 
requests an application-programming interface (API) that 
enables the component to interact with the SCM. 

Lazy discovery operates similarly. Announcements 
sent by SCMs identity group membership. A Jini 
component requests an API from an announcing SCM 
when the following conditions hold: 1) the group 
membership of the SCM intersects with the groups of 
interest to the component, 2) the component has not 
already discovered the SCM, and 3) the component has 
not already discovered enough SCMs. Receipt of an API 
from the SCM ends the discovery process between the 
component and the SCM. 
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Fig. 1.  Jini has two discovery modes (multicast and directed) that 
encompass three discovery processes. In multicast mode, aggressive 
discovery is initiated on node startup, and then lazy discovery begins 
after aggressive discovery completes. In directed mode, directed 
discovery is used to look for specified SCMs. 
 

Directed discovery operates differently from multicast 
discovery. Each Jini component may be given a specific 
list of SCMs to discover. For each SCM on the list, a Jini 
component establishes a connection and requests an API. 
Should the SCM prove unavailable, the component can 
continue to retry connecting. As explained later, 
ambiguities regarding interaction between directed and 
multicast discovery lead to several problems for the Jini 
specification. 

 Once a Jini component obtains an API from a SCM, the 
component can use the API to access services provided 
by the SCM. To allow the component and the SCM to 
reside on different network nodes, the API must use a 
communication protocol, such as Java Remote Method 
Invocation (RMI)2, which enables the component to 
access SCM services as if they resided within the same 
Java Virtual Machine (JVM). In general, SCM services 
can be classified as registration and consistency 
maintenance, which Jini refers to as leasing. 

2.2.2. Jini Registration. A SM holds a SD for one or 
more SPs. The SM must register each of these SDs with 
each SCM discovered. As part of the registration request, 
the SM asks that the registration remain valid for some 
duration. If the SCM agrees to add the SD to its set of 
registered services, then the SCM grants a lease time (not 
                                                           

2 Jini does not require the use of any particular technique for remote 
procedure calls. In this paper, we use RMI for illustrative purposes.  

more than requested) and returns a service item and lease 
to the SM. Once a SD is registered with a SCM, SUs can 
discover the existence of the related SP by querying the 
SCM, or by receiving notifications from the SCM. Before 
receiving notifications, a SU must register notification 
requests with a SCM. A SU can register a request that a 
SCM notify the SU whenever the SCM adds, deletes, or 
changes a SD of interest. As with service registrations, 
notification requests will be maintained by a SCM only 
for an agreed time (the lease period). 

2.2.3. Jini Consistency Maintenance. In a distributed 
system, new services and devices can be deployed, 
obsolete services and devices can be removed, and nodes, 
processes, and links can fail. These facts imply that 
replicated state, distributed throughout a system, can 
become inconsistent. To time bound such inconsistencies, 
Jini requires each SCM to periodically purge SD 
registrations and notification requests. For this reason, a 
SCM assigns a lease to each registration and notification 
request. The lease indicates when the SCM plans to purge 
the item. To prevent its removal by the SCM, the 
registering component must renew the lease prior to the 
purge time. In this way, if the registering component fails 
(or the network path fails), then the SCM can, within a 
bounded delay, remove reference to the item, and, when 
appropriate, can notify other interested components. Once 
the failure is resolved, the discovery and registration 
processes can be restarted for the failed component, and 
the previous state might be recovered eventually. 

Interactions with SCMs provide another means for Jini 
to maintain consistent state. Each component may register 
some items with a SCM. In addition, leases for these 
registered items must be renewed periodically. Whenever 
a component attempts to invoke a SCM method across a 
network the possibility exists for a remote exception. 
Remote exceptions indicate that the corresponding SCM 
(process or node) might have failed, or that the network 
link between the component and the SCM might have 
failed. A component is free to retry a method invocation, 
and to give up after some period of time. 
 
2.3. Complexity and Uncertainty 
 

The foregoing discussion of Jini, while oversimplified, 
highlights the inherent complexity and uncertainty 
associated with discovery protocols. Complexity arises 
from several sources. The protocol involves multiple 
parties communicating across a network, which 
introduces asynchrony, and which can also introduce 
variable delays. Multiparty interactions can be quite 
difficult to specify and understand. Further, the protocol 
defines various operating modes that could potentially 
interfere with one another, and each protocol entity 
maintains independently operating behavioral threads, 



which implement features that can interact in 
unanticipated ways. 

Uncertainty also arises because nodes, processes, and 
links can appear and disappear without warning. 
Discovery protocols must include behavior to cope with 
such changes. The coping behavior itself can exhibit 
unexpected interactions with the already complex 
behavior defined to implement multiparty 
communication. Together, this complexity and 
uncertainty discourage protocol designers from 
attempting to specify the properties of a particular 
discovery protocol. Yet, we desire to compare and 
contrast the protocols based on such properties. This 
conundrum led us to the idea of constructing an 
architectural model for each discovery protocol, and 
using the models to investigate various properties. 
 
2.4. An Architectural Model for Jini 
 

Broadly speaking, an architectural model comprises a 
set of components, and the connections among them, 
along with the relationships and interactions among the 
components. In our application, an architectural model 
expresses structure (as components, connections, and 
relations), interfaces (as messages received by 
components), behavior (as actions taken in response to 
messages received, including generation of new 
messages), and consistency conditions (as Boolean 
relations among state variables maintained across 
different components). 

Figure 2 depicts the top level of our Jini architecture 
that was realized in Rapide.  This architecture consists of 
three component types (SU, SM, and SCM) together with 
three connection types: Aggressive Discovery Multicast 
Group (ADMG), Lazy Discovery Multicast Group 
(LDMG), and Remote Method Invocation Unicast Link 
(RMIUL). Only one instance each can exist for the 
LDMG and ADMG but the SU, SM, SCM, and RMIUL 
can be instantiated as multiple instances. Each SU, SM, 
and SCM resides on a network node and participates in 
service discovery, registration, and consistency 
maintenance. To perform these functions, each type of 
Jini component is decomposed into subcomponents (not 
described in this paper due to lack of space). Jini 
components use the ADMG to distribute probes to any 
SCMs listening. SCMs use the LDMG to distribute 
announcements to any Jini component listening. When 
asked to engage in directed discovery, a Jini component 
uses one RMIUL to contact each SCM on its directed-
discovery list. To invoke methods on a specific SCM, a 
Jini component must use an appropriate RMIUL. 

We implement SMs, SCMs, and SUs, as Rapide 
interfaces. We define connections, also implemented as 
Rapide interfaces, to link Jini components that exchange 
events. We use Rapide services to constrain the event 

types allowed on each connection. We model two classes 
of connection: 1) fan-out multicast links (ADMG and 
LDMG) for discovery and 2) unicast links (RMIUL) for 
directed discovery and for remote-method invocation. 
 Modeling connections as Rapide interfaces allows the 
links to encapsulate logic: 1) to control link state (up or 
down) and 2) to send appropriate remote exceptions in 
response to events sent over a failed link. The remote 
exception logic proves significant because some events 
require remote exceptions to be sent in one direction, 
while other events require bi-directional remote 
exceptions. Since nodes may come up or go down at any 
time, our model also includes specific events to start and 
stop nodes. As we discuss later in Section 5, these 
requirements have implications for how ADLs should 
model connections.  
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Fig. 2.  Our top-level architecture models a distributed Jini by using two 
multicast groups and a set of unicast links to connect Jini components 
into a topology. 
 
3. Analysis Approach 
 
 Our specification analyses take two forms: property 
analysis and event analysis. Both depend upon Rapide’s 
ability to execute a specification and to generate events. 
We use property analysis to investigate robustness to 
dynamic change, including network failure. Property 
analysis also provides insight into processes defined in a 
protocol specification, and helps to identify ambiguity, 
inconsistency, incompleteness, and other flaws. Event 
analysis examines Rapide POSETs (partially ordered sets 
of events exchanged among components) to discern 
underlying causes of observed behavior and performance, 
and especially to assess the protocol’s capacity to recover 
from network disruption. We also use event analysis to 
understand circumstances surrounding specific protocol 
design issues, such as race conditions. Property and event 
analysis can be used together to evaluate a protocol’s 
resilience in the face of network failure. We also suspect 
that POSETs can provide a basis for complexity metrics, 



another dimension along which we expect to compare 
discovery protocols.  Our current work has not developed 
such complexity metrics. Below, we describe our use of 
Rapide to analyze properties and behavior of Jini. 
 
3.1.  Property Analysis 
 
 To implement property analysis we define consistency 
conditions and then use the Rapide constraint language to 
express the negation of each consistency condition. If a 
negation is satisfied, then Rapide has detected an 
inconsistency. We stimulate periodic events, called 
consistency probes, which retrieve values from the 
internal state variables of appropriate components. At 
each probe interval Rapide checks for the presence of an 
inconsistency. In general, discovery protocols attempt to 
guarantee time-bounded inconsistency. Our analysis 
strives to verify such guarantees. We also seek to identify 
unbounded inconsistencies, which persist indefinitely. 
Unbounded inconsistencies suggest areas of a 
specification, or protocol design, which merit further 
attention. Below we give some examples of consistency 
conditions. In Section 4, we discuss circumstances in our 
Jini model where these consistency conditions do not 
hold. 
 We posited the quality of service that users might 
expect from discovery protocols. Then we defined these 
ideas as consistency conditions that specify relationships 
a protocol should strive to maintain among state variables 
across interacting components. In this paper, we define 
selected consistency conditions3 that should hold in the 
absence of failures or other dynamic changes that could 
permit the conditions to be violated for a transient period. 
Several consistency conditions concern the SCM and the 
SM. Analogous conditions could also be defined for the 
SCM and the SU.  For example, a SM can only register a 
service description with a SCM it has discovered. This 
can be expressed as the following consistency condition: 
 
For All (SM, SD, SCM):                                                   (CC1) 
              (SM, SD) IsElementOf SCM registered-services 
               implies SCM IsElementOf SM discovered-SCMs 
 
In our model, we express the negation of this consistency 
condition as a Rapide constraint. Consistency probes 
return the contents of each SM’s list of discovered SCMs 
and of each SCM’s list of registered services. Rapide 
checks various combinations of values for specific pairs 
of SMs and SCMs at each probe time. When the negation 
is true, an inconsistency exists. 
 A second example consistency condition states that if a 
SM has discovered a SCM and the SM has a SD for a 

                                                           
3 Consistency conditions we define here do not necessarily reflect the 

intent of Jini’s designers. 

service that it is managing, then the SM should have 
registered the SD with the SCM. Here, a service is 
managed if the SM is required to advertise its availability. 
This may be expressed as: 
 
For All (SM, SD, SCM):                                                (CC2) 
             SCM IsElementOf SM discovered-SCMs & 
            (SD) IsElementOf SM managed-services 
             implies (SM, SD) IsElementOf SCM registered-services 
 
This consistency condition amounts to an inverse view of 
CC1. This inverse view can catch specification issues that 
CC1 would miss. 
 A third example consistency condition states that if a 
SM has discovered a SCM through multicast discovery 
and has registered its services on that SCM, then there 
should be an intersection between the list of groups the 
SM is to join and at least one group in which the SCM 
holds membership. This can be expressed as: 
 
For All (SM, SD, SCM):                                            (CC3) 
            SCM IsElementOf SM discovered-SCMs & 
           (SM, SD) IsElementOf SCM registered-services &  
            NOT (SCM IsElementOf SM persistent-list)  
            implies Intersection 
                      (SM GroupsToJoin, SCM GroupsMemberOf) 
 
Reference to the absence of membership of the SCM in 
the SM persistent list eliminates SCMs that the SM found 
through directed discovery. 
 
3.2.  Event Analysis 
 
 We use event analysis to understand underlying causes 
for the observed behavior and performance of discovery 
protocols. The general idea is to define a set of usage 
scenarios that can be executed against the models of 
several discovery protocols. Table 2 provides an excerpt 
from a scenario we defined, and provides a sense of the 
stimuli that can be simulated. While executing scenarios, 
the Rapide run-time produces POSETs that provide a 
basis for analyses. POSETs help us to understand 
relationships among events, which trace back to specific 
behavior in components, and to possible issues within a 
specification. The POSETs may also be used to compute 
simple metrics, such as number of events generated or 
time taken by the model to transition between two 
configurations of interest. To support such computation, 
we insert performance probes at key points in the Rapide 
model. Such probes can compute the desired 
measurements, or can place markers in the POSET for 
off-line computation. While event analyses can be applied 
individually to specific protocols, greater value may 
accrue in comparative analysis. Following we give 
examples of some event analyses of interest. 



 
Table 2.  Sample Scenario Commands with Parameters and Intended 
Execution Times. 
 

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

 
 

 3.2.1. Identifying and Understanding Race 
Conditions. Due to asynchronous processing and 
associated delays in communications among components, 
distributed systems often exhibit race conditions, where 
system behavior can vary depending upon the order in 
which events arrive at cooperating components. Though 
such problems cannot always be eliminated, it remains 
important to identify the existence of specific race 
conditions so that application programmers can adopt 
appropriate safeguards. We can use Rapide to find race 
conditions by asserting and testing consistency 
conditions. For example, consider the following: 
 
For All (SM, SD, SCM, SU, NR):                     (CC4) 
             (SU, NR) IsElementOf SCM requested-notifications &  
             (SM, SD) IsElementOf SCM registered-services & 
             Matches((SM, SD), (SU,NR)) 
             implies (SM, SD) IsElementOf SU matched-services 
 
This consistency condition indicates that if a SU has 
requested notification when a certain service (SM, SD) 
registered at a SCM matches specified criteria, then the 
SU should become aware of the matching service. While 
the Jini specification does not guarantee CC4, we would 
be interested to identify situations where the condition 
does not hold. In such cases, we can analyze the POSET 
to determine specific causes. In this way, we might 
uncover race conditions that require an application 
programmer to take particular care when using Jini’s 
matching mechanisms. 
 3.2.2. Measuring and Understanding Protocol 
Performance. When comparing various discovery 
protocols, we can use Rapide to define and compute 
performance metrics, and then use POSET analysis to 
investigate the underlying behaviors. Of course, 
comparative performance must be considered in light of 
selected scenarios of interest. For example, consider a 
scenario where a major power failure occurs after the 
discovery phase has completed, services and notification 
requests are registered, and SUs have received SDs for 
services that meet their requirements. During the failure, 
most Jini entities lose some internal state: all nodes lose 

discovered SCMs; SUs lose SDs for services previously 
discovered; but SCMs and SMs must retain specified 
persistent information. Upon power restoration, the Jini 
components restart and recover. To assess recovery 
performance we define two metrics, restoration latency 
and restoration overhead, which measure the efficiency of 
recovery in terms of total time and number of messages 
generated before all SUs rediscover their original set of 
SDs. Restoration latency covers node start-up delays, 
transmission times, processor background workload, and 
times for processing transaction data. Restoration 
overhead includes all events exchanged by Jini 
components from power up through complete restoration 
of the desired state. 
 
4. Selected Analysis of the Jini Service 
Discovery Protocol 
 
 In this section we discuss some results obtained 
running scenarios against our Jini architectural model. 
We were able to verify the robustness of Jini’s design in a 
range of failure scenarios that are not presented here due 
to lack of space. However, we found the Jini specification 
unclear regarding interactions between multicast and 
directed discovery. In particular, we could not discern 
whether discovered SCMs should be kept on a single list 
or whether SCMs found by directed discovery should be 
kept on a separate list from SCMs found by multicast 
discovery. We included both interpretations in our Jini 
model, and we ran related scenarios to evaluate CC1 and 
CC2. We also noticed that the Jini reference 
implementation permits administrators to alter the 
operation of a running SCM. We were interested to 
consider if such changes could adversely affect a Jini 
network, so we ran related scenarios to evaluate CC3. 
Further, we discovered an apparent race condition that is 
difficult to discern from reading the Jini specification, so 
we ran scenarios to evaluate CC4. We also executed 
selected scenarios to understand some performance 
characteristics of Jini systems. Here, we discuss restart 
from power failure. While the work described here 
suggests some incompleteness and ambiguity (already 
shared with Sun) in the Jini specification, our purpose is 
to illustrate an architecture-based approach to model, 
analyze, and compare service discovery protocols. 
Regardless of any ambiguity and incompleteness 
discussed here, overall we found Jini to operate as 
specified. 
 
4.1. Interfering Interactions between Directed 
and Multicast Discovery 
 
 The Jini specification permits a Jini component to 
engage simultaneously in two modes of discovery: 



directed and multicast. However, the specification is 
unclear with respect to issues that arise regarding 
interactions between these two modes. This means that an 
implementer must make some decisions, which can lead 
to various difficulties. We identified decisions that cause 
local interference between independent processes on the 
same Jini node. We also found decisions that cause 
independent processes on the same Jini node to interfere 
with the node’s remote state on discovered SCMs. We 
discuss these situations below. 
 4.1.1. Local Interference. For the following 
discussion, assume that the implementer decides to 
maintain a single list of SCMs discovered by a SM. 
Figure 3 illustrates (using a simplified description) what 
occurs during a scenario where SM4 uses multicast 
discovery to find SCMs in a Jini group (GROUP2).  
 

Scenario SM4 SCM3

GroupJoin GROUP2

Found SCM3 GROUP2Discovered SCMs
(SCM3) Register SM4 SD1 Registered Services

(SM4, SD1)

AddSCM SCM3

GroupLeave GROUP2 Discover SCM3

Cancel SM4 SD1

Registered Services
( )Found SCM3

Cancelled SM4 SD1

Discovered SCMs
(SCM3)

Discovered SCMs
( )

+

+

+

-

- Register SM4 SD1 Registered Services
(SM4, SD1)+

CC1 Violated

Registered Services
( )-

Lease Expired
SM4 SD1

Probe SM2 GROUP2

Consistency Restored

No Duplicates Allowed

 
 

Fig. 3. Example of local interference between directed and multicast 
discovery modes. 
 
In this case SM4 discovers SCM3, also a member of 
GROUP2. Shortly after, SM4 is told to discover SCM3 
(AddSCM) through directed discovery, and at the same 
time SM4 is told to drop membership in GROUP2. The 
resulting behavior leads to a time-bounded violation of 
CC1, which states that a SD should not be registered on a 
SCM if the SCM is not on the discovered list of the SM 
managing the SD. The specific behavior follows. 
 Through multicast discovery SM4 finds SCM3 and 
adds it to the list of discovered SCMs. Subsequently, 
SM4 is asked simultaneously to leave GROUP2 and to 
discover SCM3. The group leave causes SM4 to first 
cancel leases for SDs held on SCM3 and then to remove 
SCM3 from its list of discovered SCMs. Between these 
two events, SM4 uses directed discovery to find SCM3 
and then attempts to add SCM3 to its list of discovered 
SCMs. Since our model assumes that probes will be built 

from the list of discovered SCMs, we decided not to 
insert duplicate SCMs in that list.4 This rule is enforced 
by the list maintenance function. Therefore, in Figure 3, 
the second discovery of SCM3 is not added to the list of 
discovered SCMs because it’s already there. Soon 
thereafter, SM4 completes lease cancellation for SDs on 
SCM3 and then removes SCM3 from its list of discovered 
SCMs. In the meantime, the directed discovery process in 
SM4 registers SDs with SCM3. At that point, CC1 is 
violated, and remains so until the leases for the SM4 SDs 
expire on SCM3. 
 4.1.2. Remote Interference. Suppose that an 
implementer decides to maintain SCMs discovered by 
multicast and directed discovery on separate lists? In this 
case, local interference disappears, only to be replaced by 
a form of remote interference, where two discovery 
processes within the same node independently manipulate 
the state of SDs on SCMs. Figure 4 illustrates behavior 
from a scenario that uncovers this problem through 
violation of CC2, which states that services managed by a 
SM must be registered on all discovered SCMs. In the 
scenario, SM4 uses directed discovery to find SCM1. 
Later SM4 is instructed to join GROUP1, which includes 
SCM1. This causes a duplicate service registration, which 
leads SCM1 to abrogate the existing lease for (SM4, 
SD1). Subsequently, SM4 is told to leave GROUP1. In 
the end, this causes SM4 to cancel leases for its SDs held 
on SCM1, resulting in a situation where SCM1 is on the 
list of SCMs discovered directly by SM4 but where the 
SDs from SM4, which were originally registered through 
the directed discovery action, are not now registered on 
SCM1. Assuming that SM4 maintains a single 
registration process, this violation of CC2 is unbounded 
in time. 
 
4.2. Insensitivity to Changes in Group 
Membership by SCMs 
 
 The Jini reference implementation includes an 
interface that permits an administrator to alter parameters 
associated with a running SCM. We mirrored this 
behavior within our Jini model, and then exercised the 
option to change group membership of a running SCM. 
Figure 5 illustrates the relevant subset of a related 
scenario. First, SM4 is instructed to join GROUP1, which 
leads to the multicast discovery of SCM1 (a member of 
GROUP1). 
Subsequently, an administrator removes (AdminDelete 
Group) SCM1 from membership in GROUP1. Once this 
occurs, CC3 is violated because: (1) SM4 has found 
SCM1 with multicast discovery, (2) SDs managed by 
SM4 are registered with SCM1, and yet (3) SM4 and 

                                                           
4 Allowing duplicates on a single list leads to a number of other 

problems, which are beyond the scope of the discussion here. 



SCM1 have no common group membership. The 
violation of CC3 continues in a time-unbounded form so 
long as SM4 renews leases on SCM1. 
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Fig. 4. Example of remote interference between directed and multicast 
discovery modes 
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Fig. 5. Example of insensitivity to group membership changes by the 
SCM. 
 
 These results suggest that the Jini specification may be 
incomplete with regard to this issue. While an 
administrator can remove group membership from a 
running SCM, the Jini protocol specifies no behavior in 
reaction to this new information. As a SCM continues to 
issue announcements, which contain its current group 
membership, other Jini components are told to ignore 
announcements from SCMs that do not belong to groups 
of interest. As shown in the discussion above, this can 
lead to a situation where SMs (as well as SUs) may 
continue to maintain registration with SCMs no longer 
relevant. This might or might not be the intent of Jini’s 
designers; however, the issue should be addressed in the 
specification. 
 

4.3. Race Conditions 
 
 All distributed systems exhibit the possibility for race 
conditions. Our architectural model permits us to 
investigate how such conditions can arise. Figure 6 
presents a portion of a scenario illustrating a race between 
service registration by SMs and registration of 
notification requests by SUs.  
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Fig. 6. Example race condition between service registration by an SM 
and notification request registration by an SU. 
 
 In this case, SU7 discovers SCM1 and then queries it 
for a matching service. At the time of the query, SCM1 
does not contain a SD for a matching service and so 
replies without matches. In this particular scenario, SU7 
delays for 10s its request to be notified by SCM1 when a 
SD for a matching service is added to the SCM cache. In 
the interim, SM4 discovers SCM1 and registers a SD for 
a service matching the needs of SU7. Unfortunately, the 
only matching service was registered during the interval 
between the query and the request for notification by 
SU7. In Jini’s definition of matching semantics, SU7 can 
continue to renew leases for its request for notification 
and SM4 can continue to renew leases for its SD and the 
two will never learn of each other. This situation results 
in a time-unbounded violation of CC4, which states that if 
a SCM holds a notification request from a SU, which 
matches a SD also held by the SCM, then the SU should 
know about the matching SD. 
 While this violation of CC4 can be attributed to the 
10s delay before SU7 sends a notification request, a 
number of other situations can lead to similar results. For 
example, network congestion can delay the reply to the 
original query by SU7 or can delay the request by SU7 
for SCM1 to register its notification. Alternatively, 
competing processing within the node supporting SU7 
could delay the generation of its notification requests. To 
account for this, SUs might issue a second query for a 



matching service after the notification request is 
registered with a SCM. In this way, the SU can detect any 
matching SDs registered by the SCM after the first query 
but before the notification request. 
 
4.4 Restart Performance 
 
 To demonstrate the ability of our architectural model 
to provide insight into performance-related behavior, we 
describe the results of an experiment to investigate the 
restart of a Jini network following recovery from a major 
power failure. The experiment topology consists of nine 
nodes (three of each type: SU, SM, and SCM). We 
partition the nodes into threes, where each partition 
consists of one SU attempting to rendezvous with one SM 
through a SCM. Once all SUs have found their assigned 
SMs, we simulate a major power failure, which causes all 
nodes to crash for 40s. We then restore the power and 
wait for all SUs to rendezvous with their assigned SMs. 
Table 3 gives the values for relevant experiment 
parameters. Upon restart, each Jini node chooses a 
random delay before beginning discovery; we used delays 
uniformly distributed between two and 15s. We also had 
each SU and SM request leases of 30s for notification 
requests and service registrations, and we had each node 
renew the leases for a period of 100s. For each link, we 
introduced variable transmission delays; for each node, 
we introduced variable processing-load delays. We also 
introduced processing delays for manipulating items in 
the discovery databases and the SCM registration 
databases. Since the Jini specification did not address the 
persistence of notification requests upon SCM failure, we 
assumed that this information was purged on failure. 
 
 
Table 3.  Parameter values used in the power-failure restart performance 
experiment. Some values reflect settings of Jini protocol parameters, 
while others reflect assumptions regarding transmission and processing 
delays. 
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 We ran the experiment 30 times, measuring the 
restoration latency and overhead. In this experiment, 
before the original state could be recovered, all nodes had 

to restart. For that reason, the maximum node restart 
delay dominates the restoration delay. For example, for 
our experiment runs, the average maximum node restart 
delay was 12.56s (2.09s variance), and the average 
restoration latency was 14.76s (3.31s variance). The 
restoration overhead in each run depends upon the 
restoration latency, because periodic message exchanges 
associated with Jini discovery and leasing continue 
through the restoration. In this experiment, the restoration 
latencies were relatively close, as were the number of 
messages exchanged, differing only in the number of 
probes sent during aggressive discovery and in the 
subsequent number of discoveries. In our runs, the 
number of messages exchanged to achieve restoration 
ranged approximately between 70 and 90. These results 
demonstrate that the same architectural model can be used 
to investigate both performance and logical properties of 
a distributed system. 
 
4.5 Summary of Findings 
 
 Using our architectural model and usage scenarios we 
were able to verify the robustness of Jini mechanisms in a 
range of failure scenarios. Further, as supported by the 
analyses above, we were able to uncover areas of 
incompleteness and ambiguity in the natural-language 
specification for Jini. While a static, natural-language 
specification, such as Jini’s, contains a reasonable 
description of the behavior of each component in 
response to specific events, such specifications largely 
miss collective behavior arising when various 
components interact together in a distributed system, and 
especially when pieces of the system change state during 
the interactions. In addition, our dynamic, executable 
model of the Jini specification permitted us to explore the 
behavior and performance of Jini systems in various 
realistic scenarios. A static specification cannot hope to 
provide similar insights. 
 
5. Assessment of the Architecture-based 
Approach 
 
 As part of our work, we assessed how well the Rapide 
ADL and analysis tools supported our modeling and 
analyses of Jini, with specific attention to analysis of 
dynamic behavior. We found that the Rapide ADL 
provided valid abstractions to represent and analyze the 
structure and behavior of Jini under conditions of 
dynamic change. Using Rapide interfaces we easily 
represented the major service discovery components, and 
subcomponents (not discussed in this paper). The 
components proved easy to connect into architectures that 
model a network of Jini entities. Our analyses relied upon 
Rapide’s ability to represent dynamic behavior through 



events, rules, and constraints, and then to analyze the 
resulting POSETs. The ability to represent the behavior of 
individual components and to analyze the collective 
behavior resulting from interactions was key, without 
which this analysis could not have been performed. We 
did identify some suggestions for improving specific 
capabilities that apply generally to all ADLs. Before 
discussing these suggestions, we describe general merits 
of using an architectural model. 
 
5.1. Merits of using an Architectural Model 
 
 Our Rapide model provided benefits for analysis. 
Some of these benefits apply to all ADLs. First, the 
architectural model proved more precise, concise, and 
informative than the natural-language specification. For 
example, the architectural model provided executable 
behavior so that we could discover interactions not 
apparent from the paper specification. As a consequence, 
we were able to identify and address areas of ambiguity, 
inconsistency, and incompleteness. While the Jini 
specification was supported by a reference 
implementation, the architectural model proved easier to 
understand and analyze, and permitted us to focus on the 
essential complexity inherent in the specification. The 
reference implementation entailed incidental complexity 
that interfered with our ability to gain a clear 
understanding of the behavior of the specification. 
Second, a single architectural model can be analyzed for 
behavioral, performance, and logical properties. Using a 
single model limits the errors and inconsistencies that can 
creep in when multiple models must be used to represent 
the same specification. Third, using an architectural 
model enabled us to readily consider alternative 
implementation options, where they were allowed by the 
specification, and to identify specification ambiguities. 
When addressing ambiguities, the architectural model 
enabled us to investigate the ramifications of various 
alternate resolutions. 
 
5.2 Areas for Improvement 
 
 Below, we identify and discuss some suggestions for 
improving ADLs in several areas: domain-specificity, 
simplification through views, representation of structure 
and behavior, and support for analysis. While we discuss 
these suggestions in the context of Rapide, we believe 
they apply more generally to use of ADLs for modeling 
architectures for dynamic systems. 
 5.2.1. Need for customizable domain-specific syntax 
and semantics. Constructing an architectural model 
typically entails a partnership between a domain expert 
and a system architect. The partnership proceeds more 
smoothly when the architecture reflects the terminology 
of the domain, allowing the domain expert to review the 

specification with less help from the architect. For this 
reason, ADLs should support renaming common ADL 
constructs such as interfaces, components, connectors or 
modules to use terms familiar in the domain. This would 
allow the expert to more easily read the specification 
without having to learn the ADL in detail.  The same 
benefit may accrue from allowing customization of 
language syntax to be more familiar to domain 
practitioners, especially with respect to system behavior. 

5.2.2. Improvement to representation of structure. 
Rapide, and other ADLs, connect components to 
subcomponents and pass events in a strictly hierarchical 
manner. One purpose in doing this is to constrain 
communications among subcomponents of different 
hierarchies in order to limit the introduction of errors 
when replacing subcomponents. This requires inter-
component events to propagate through multiple levels in 
two hierarchies, leading to several inefficiencies. First, if 
the same events must be duplicated as a result, an 
unnecessarily large set of events will be created for 
analysis. Second, the architecture entails an increased 
number of connections, resulting in a larger specification, 
which is more difficult to maintain and modify. This 
inhibits revision and evolution of system designs, 
especially important when modeling dynamic systems, 
and also discourages investigation of alternative design 
approaches. Third, the strict hierarchy arrangement does 
not agree with real-world designs in which 
subcomponents of different systems often communicate 
directly. To address these problems, we recommend 
investigating alternative ways to specify connectivity 
between top-level components and subcomponents in an 
architectural model, while preserving correct 
communications. We plan to address this area further in 
future work. 
 Beyond the question of number, connections take on 
importance for modeling reasons. Specifically, we believe 
that connections should be represented as first-class 
entities [17], [20], [21], [23]. Many domains, including 
networking, have numerous, well-known connection 
classes. Such domain-specific knowledge can be encoded 
as taxonomies of connection types, provided that 
connections can be represented as first-class entities 
within the ADL. For example, we found the need to 
specify classes of multicast groups and RMI connections 
in order to represent systems that dynamically “plug-and-
play” with network components, and to simulate transient 
failures, transmission delays, and other network 
characteristics. Using connection types allowed us to 
more easily specify restrictions on events that pass among 
components, and to define constraints on inter-component 
behavior, while associating them directly with appropriate 
places in an architectural model.  Making connections 
first class permits still further semantic distinction 



between components and connections, thus facilitating 
clear and explicit description of architecture. First class 
connections also encourage designers to define 
constraints for specific connection types and type 
hierarchies, so that formal reasoning about connector 
behavior can be localized. We suspect this may be of 
particular importance for architectures of dynamic 
systems, where connections provide a focal point for 
analysis. 

5.2.3. Improvement to representation of behavior. 
As an adjunct to sending and receiving events, a Rapide 
component encapsulates a set of state variables. To test 
consistency conditions during execution, we needed to 
capture and analyze state variables maintained by 
multiple components. This required us to adopt several 
cumbersome solutions. We believe modeling of 
architectures for dynamic systems is greatly facilitated by 
permitting definition of component state from a subset of 
internal state variables. Component states should be 
selectively exported and recorded along with events. 
Linking events to changes in state [13] then allows 
recording of dependencies for analysis. 

Assuming appropriate state variables are exported, 
further investigation is needed to determine how best to 
define, implement, and evaluate consistency conditions 
that involve the state of two or more components and that 
account for time. ADL constraint representation should 
include rich semantics for this purpose. Further, analyses 
of architectures for dynamic systems benefit greatly when 
ADL run-time environments include support for 
automated evaluation of inter-component consistency 
conditions (as some already do), and especially constraint 
languages and related constraint-analysis engines that 
account for time. 
 
 
6. Conclusions and Future Work 
 
 Our current work illustrates the viability of an 
architecture-based approach to investigate and evaluate 
logical and behavioral properties of discovery protocols 
under conditions of dynamic change. Our results show 
that executable architecture models prove essential to 
understand the collective behavior of distributed systems. 
In this paper, we demonstrated how such models help to 
uncover ambiguity, incompleteness, and other issues in 
static, natural-language specifications. Our demonstration 
contributes to improving the specification for Jini. We 
also argue that a single executable architecture model can 
be used to investigate system performance as well as 
logical properties. Beyond this, we offered some 
recommendations, based on our experience, to improve 

the suitability of ADLs to model and analyze distributed 
systems. 
 In the next phase of our project, we intend to 
demonstrate that using architectural models provides a 
sound basis on which to compare and contrast the 
technical merits of various discovery protocols. The 
results from our analyses should provide industry with 
better understanding of the design and behavior of 
discovery protocols. We will define a generic set of usage 
scenarios to measure interesting events common among 
all protocols. These scenarios will exploit a common 
vocabulary and set of protocol features derived from our 
UML model.  Similarly, we will identify a set of 
consistency conditions, design issues, and performance 
metrics that provide a suitable basis for comparison 
among discovery protocols. We suspect relevant 
consistency conditions and metrics will involve only SMs 
and SUs, because not all protocols require SCMs. 
 The next phase of the project will also provide a 
vehicle for continued appraisal of our architecture-based 
approach to investigate distributed system designs under 
dynamic conditions. We intend to sharpen and refine our 
current assessment. We also hope to make more specific 
recommendations on ADL features to better support 
domain-specific models, to represent connections, and to 
analyze internal state of components. Modeling additional 
discovery protocols also provides an opportunity to 
examine reuse of architectural components as we attempt 
to adapt common functions in architectures for different 
protocols. This work should reveal insights regarding 
ADL features that facilitate reuse. 
 Finally, we suspect, but cannot yet conclude, that the 
nature of dynamism in the service-discovery domain 
differs from other real-time domains. The next phase of 
the project, together with the results of concurrent 
research in dynamic change within the defense software 
research community, should illuminate this issue as well. 
Since automatic component discovery and collaborative 
composition will be essential capabilities of future 
defense systems, early insights gained into this issue will 
likely prove important. 
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