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Abstract 
 
   Current trends suggest future software systems will rely 
on service-discovery protocols to combine and recombine 
distributed services dynamically in reaction to changing 
conditions. We investigate the ability of selected designs 
for service-discovery protocols to support real-time 
distributed control applications by detecting and 
recovering from failure of remote services. We model two 
architectures (two-party and three-party) underlying most 
commercial service-discovery systems. We use simulation 
to quantify functional effectiveness achieved by the two 
architectures as the rate of failure increases for remote 
services. We further decompose non-functional periods 
into failure-detection delay and recovery delay. Our 
quantitative measurements suggest that a two-party 
architecture yields better robustness than a three-party 
architecture. We discuss the underlying causes for this 
outcome. 
 
1. Introduction 
 
Designs for distributed systems must consider the 
possibility that failures will arise, and must adopt specific 
failure detection and recovery strategies [1]. Much 
existing research surrounding failures in distributed 
systems focuses on providing fault-tolerant invocation of 
remote methods, either through parallel execution of 
replicated components or through automated checkpoint 
and restart procedures [2-4]. Fault-tolerant remote-
method invocation typically relies upon a layer of 
mechanisms to detect and recover from failures without 
requiring application-specific awareness or action. While 
such application-transparent fault-tolerance appears 
appealing, many current distributed object systems, even 
large systems, employ simpler techniques that detect and 
report failures, requiring applications to decide upon 
appropriate recovery strategies [5-7]. In this paper, we 
investigate one such set of simpler techniques requiring 
application awareness and cooperation. These techniques 
encompass the fundamental failure detection and recovery 
strategies available in service-discovery systems [8-13]. 

In previous work, we investigated the ability of 
various service-discovery systems to propagate updates 
under communication failure [14] and message loss [15]. 
Our investigations yielded quantitative measures for the 
effectiveness, responsiveness, and efficiency of alternate 
system designs. In this paper, we investigate the 
effectiveness, efficiency and latency of service-discovery 
systems in detecting component failure and locating 
replacements. We model specific discovery strategies and 
failure-recovery techniques in combination with two 
major architectural variants found in service-discovery 
systems: two-party, where clients and services 
rendezvous directly, and three-party, where clients and 
services rendezvous through a directory. For the three-
party architecture, we consider topologies that include 
directory replicas. Our models, which adapt discovery 
and recovery strategies from the Jini™1 Networking 
Technology [10] and Universal Plug-and-Play [9] 
specifications, layer a real-time distributed control 
application above each of the discovery systems. We 
model application-level strategies that focus our 
experiments on the fundamental properties of service-
discovery protocols; thus, we exclude a number of 
possible application choices, such as service caching. We 
measure functional effectiveness, defined as the 
proportion of time that a distributed application meets its 
requirements, or more precisely, as the proportion of time 
that a client component possesses an operational set of 
remote services needed to accomplish its task. To provide 
a clear picture of failure response, we also measure both 
failure-detection latency (time required to recognize that a 
remote service used by the client has failed) and failure-
recovery latency (time required for the client to replace a 
failed service). We also measure overhead as the number 
of messages sent. Our models are written using Rapide 
[16], which records complete event traces that permit 

                                                 
1 Certain commercial products or company names are identified in this 
report to describe our study adequately.  Such identification is not 
intended to imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor is it intended to imply that 
the products or names identified are necessarily the best available for the 
purpose. 
 



detailed analysis of system behavior, helping us to 
determine causes underlying quantitative performance. 
 
2. Discovery and recovery 
 

Service-discovery protocols enable networked 
components to rendezvous and to combine with 
discovered components into distributed applications 
meeting specific requirements. Discovery protocols 
include failure-detection and recovery techniques that 
enable components within distributed applications to 
detect and react to failures by restoring communications 
with remote components or by locating alternate 
components. A number of different designs have been 
proposed for service-discovery systems. For example, a 
team at Sun Microsystems designed Jini Networking 
Technology, a general service-discovery system atop 
JavaTM. As another example, a group from Microsoft and 
Intel conceived Universal Plug-and-Play (UPnP) to 
provide plug-and-play components for distributed 
systems. 

 
2.1. Service discovery 
 
Our analysis of six discovery systems [8-13] revealed that 
most designs use one of two underlying architectures: 
two-party or three-party. A two-party architecture 
consists of two component types: service manager (SM) 
and service user (SU). The three-party architecture adds a 
third component type, service cache manager (SCM). 
Multiple SCMs can be used to mitigate the effect of SCM 
failure. In both architectures, service discovery occurs 
passively, via multicast announcements, and actively, via 
multicast queries. Each SM maintains a database of 
service descriptions (SDs), where each SD encodes the 
essential characteristics of a particular service provider 
(SP) managed by the SM. Each SU seeks SDs satisfying 
specific requirements.  Where employed, the SCM 
operates as an intermediary, matching advertised SDs of 
SMs to SD requirements provided by SUs.  

In this study, each SM manages one SP from among 
three service types: fast sensor, slow sensor, and actuator. 
Our experiment consists of four instances of each service 
type, whose roles are explained below. Figure 1 shows a 
two-party architecture deployed in our experiment 
topology with 12 SMs and one SU. To animate our two-
party model, we incorporated discovery behaviors from 
the UPnP specification, as described elsewhere  [14, 15]. 
Figure 2 shows the three-party architecture in our 
experimental topology: with 12 SMs, one SU, and up to 
three SCMs. To animate our three-party model, we chose 
discovery behaviors from the Jini specification, as 
described elsewhere [14, 15]. 

 
2.2. Failure-Detection Techniques 
 

To detect failures, applications using discovery 
systems rely on a combination of two techniques: 
monitoring periodic transmissions and retrying ad hoc 
transmissions  (where exceeding a retry bound causes an 
exception). Discovery protocols specify periodic 
transmission of key messages. In addition, components 
employing remote services may maintain regular contact 
to accomplish application-specific tasks. Components can 
listen for these recurring messages, much as a heartbeat 
can be monitored to assess patient health. For example, 
both Jini and UPnP periodically announce resource 
availability. Similarly, a sensor service may periodically 
issue readings to its clients. Failure to receive scheduled 
communications might indicate that the remote service 
has failed, or that the channel between client and service 
is blocked. In other situations, software components send 
messages using reliable communication protocols, which 
persistently resend unacknowledged messages up to some 
bound, issuing a remote exception (REX) if the bound is 
exceeded. For example, a client may attempt to invoke a 
method offered by a remote service that has failed. In the 
three-party architecture, a SU might attempt to query for a 
SD from a failed SCM, only to receive a REX. Failure 

Figure 1. Two-party service-discovery 
architecture with one service user and 12 
service managers 
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detection enables components to employ recovery 
techniques. 
 
2.3. Failure-recovery techniques 
 

Discovery systems generally support two recovery 
techniques: soft-state and application-level persistence. 
Periodic announcements issued by a component convey 
soft information about component state, which a receiver 
can cache for a period of time, consistent with the 
expected announcement rate. Each new announcement 
may convey updated state information; thus, a receiver 
overwrites previously cached state with state from newly 
arriving announcements. When an announcement fails to 
arrive, a receiver discards previously cached state, 
effectively eliminating knowledge about existence of the 
announcing component. When announcements resume, a 
receiver rediscovers the remote component and recovers 
the latest component state. Our application uses a 
modified form of soft state, which allows discarded 
components to be either rediscovered or replaced. For 
example, upon failure of heartbeat messages sent by 
UPnP SMs to refresh cached SDs, a SU discards 
knowledge of the SM and any associated SDs. Similarly, 
a SU may discard knowledge of a SM and SD for a 
remote sensor upon failure to receive sensor updates. To 
effect recovery, UPnP SUs may commence periodic 
multicast (Msearch) queries to search for a new instance 
of a required service. Once the SU regains a SD meeting 
requirements, the related queries cease. In Jini, loss of 
contact with a service may cause the SU to query a SCM 
for a replacement. In addition, service unavailability may 
be indicated by failure of heartbeat messages sent by Jini 
SMs to refresh SDs cached on SCMs, causing the SCM to 
discard the SD and to notify SUs that indicated interest in 
learning about service failures. Periodic announcements 
ensure rediscovery of the SCM by SMs within 120s after 
the SM recovers. The Jini SU can then receive the 
corresponding SD through notification or query. Of 
course, in Jini, SCMs could also fail. SCM startup 
announcements ensure discovery of a new or restarted 
SCM within about 30s. 

When failures lead to a REX, discovery systems 
generally expect application software to initiate recovery, 
guided by an application-level persistence policy. The 
policy may require ignoring the REX, retrying the 
operation for some period, or discarding knowledge of 
the remote component. Since our experiment simulates a 
real-time control application, we chose not to persist after 
a REX, but instead to discard knowledge of the associated 
remote component, relying on periodic announcements 
and soft state to recover. This policy is also used in the 
three-party model when SCM failure is detected through a 
REX in response to a query (SU) or registration refresh 
(SU or SM). After discarding knowledge of a SM (UPnP) 

or SCM (Jini), all operations involving the remote 
component cease. 

 
3. Experiment description 
 

We investigate how effectively the two alternate 
service-discovery architectures, and associated failure 
detection and recovery mechanisms, provide clients with 
required services as nodes hosting the services fail and 
recover.  We model the two- and three-party architectures 
using the four topologies shown in Figures 1 and 2. In all 
topologies, we deploy a single SU and twelve SMs, where 
each SM manages a specific type of SP: “fast” sensor, 
“slow” sensor, or actuator. The twelve SMs include four 
of each SP type. After discovery and activation by the 
SU, a “fast” sensor transmits a reading every two seconds 
and a “slow” sensor transmits a reading every 30 seconds. 
Once discovered and activated by the SU, an actuator can 
be invoked after the SU receives an appropriate 
combination of readings from a “fast” and “slow” sensor. 
In our experiment, we simulate actuation attempts using a 
uniform distribution with a mean of 60s.  When the SU 
holds one SD for a SP of each type (“fast” sensor, “slow” 
sensor, and actuator) and each of the SPs is operational, 
then the application is considered functional.  If the SU 
lacks SDs for one or more SP type or if one or more of 
the SDs held by the SU describes a SP that is not 
operational, then the application is considered non-
functional. The experiment measures accumulated 
functional time in proportion to a duration D during 
which SMs and SCMs periodically fail and recover. To 
establish initial conditions, each topology is exercised 
until discovery completes, and the application becomes 
functional. To focus exclusively on failure detection and 
recovery processes, we do not cache services; the SU 
holds at most one SD for each SP type at any time. In the 
three-party architecture, some additional decisions are 
necessary. For each SD discovered and retained, the SU 
registers with the SCM for notification about failures. The 
SU refreshes notification registrations every 300s. Each 
SM registers with each discovered SCM, and refreshes 
every 60s (slow sensors/actuators) or 300s (fast sensors). 
 
3.1. Failure model 
 

During D, each SM (and SCM in the three-party case) 
fails randomly and independently, although at least one 
service of each type always remains active so that the 
application could become functional. We calculate a 
mean time to failure, MTF, from a failure rate R, varied 
from 0.1 to 0.9 of D in 0.1 increments, where MTF = (1 – 
R) * D. Node failure times are randomly chosen from a 
“stepped” normal distribution with three steps: a 0.15 
probability that failure occurs before (MTF - 0.2 * MTF), 



a 0.7 probability that failure occurs between (MTF - 0.2 * 
MTF) and (MTF + 0.2 * MTF), and a 0.15 probability that 
failure occurs between (MTF + 0.2 * MTF) and (2 * 
MTF). Failure time is distributed uniformly within each 
step. 

When a SM or SCM fails, affected services become 
unavailable for a time. There are three failure classes, 
each with a different probability, P, and duration.  Short 
failures occur with P = 0.1 for a fixed duration (135s); 
intermediate failures occur with P = 0.7 for a duration 
selected uniformly on the interval 180-300s, long failures 
occur with P = 0.2 selected uniformly on the interval 480-
600s. 
 
3.2. Metrics 
 

We define non-functional time, NF, as accumulated 
time during which an application is in a non-functional 
state. Assuming we can measure NF, over a given 
duration D, then functional effectiveness, F, can be 
quantified as a ratio: F = (D – NF)/D. We define 
consistency conditions to measure NF, as explained 
below 

A client in a distributed application may become non-
functional due to failure of remote components but incur 
a delay before detecting the failure. We call this delay 
failure-detection latency. After detecting a non-functional 
state, the application may incur some delay while 
restoring required services. We call this delay failure-
recovery latency. During periods when a client incurs 
either failure-detection or failure-recovery latency or both 
(the states can overlap when a client requires more than 
one remote service), the distributed application is non-
functional. We accumulate such non-functional periods to 
NF.  

We define two consistency conditions such that 
violation of one corresponds to failure-detection latency 
and violation of the other corresponds to failure-recovery 
latency. The following consistency condition requires 
each SD held by a SU to match a SD managed by a SM.  
More formally, 
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In this condition (CC-1), managedServicesSM denotes the 
database of SD(s) for services managed by a SM and 
discoveredServicesSU denotes the (SM, SD) pairs a SU 
has discovered. CC-1 is violated (and failure-detection 
latency commences) when a SM fails but the SU holds a 
SD provided by the SM. Once the SU discards the SD, or 
the SM recovers, consistency is restored (and failure-

detection latency ends). A second consistency condition 
requires that available SDs matching SU requirements 
should be known to the SU. More formally, 
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This condition (CC-2) is violated (and failure-recovery 
latency begins) after the SU purges a SD for a failed 
service and commences search. Consistency returns (and 
failure-recovery latency ends) when the SU finds a SD 
matching its needs. 
 
4. Results and discussion 
 

For each of four topologies (two-party and three-party 
with one, two, and three SCMs), we set D = 1800s and 
executed multiple repetitions for each value of R using 
the failure model described in 3.1. We conducted separate 
experiment runs for cases where failed nodes (including 
SMs and SCMs) are discarded and replaced by new 
nodes, and for cases where failed nodes restart, 
maintaining persistent information in the manner 
specified by the protocols. For the replacement case, we 
ran a second variant of the experiment where all SMs for 
a resource type may fail. We recorded functional 
effectiveness, detection latency, recovery latency, and the 
total number of protocol messages exchanged in each run. 
 
4.1. Effectiveness and efficiency 
 

Figure 3 shows average functional effectiveness of the 
two-party and three-party architectures for the 
replacement case as R increases, and where one SM for 
each service type is always available (implying that the 
system could be functional for all of D). In examining 
Fig. 3, recall how failure detection occurs. In the two-
party model, the SU may detect service unavailability by 
monitoring cyclical sensor readings or by monitoring 
notification registration refreshes. In the three-party 
model, the SCM notifies the SU if the SM fails to refresh 
service registrations. In both models, the SU may also 
detect unavailability when a REX occurs in response to 
attempted actuations. To become functional again, the SU 
must invoke appropriate recovery mechanisms to regain 
SDs to replace unavailable services.  In the three-party 
architecture, at least one SCM must be operational for 
recovery to succeed. During periods when all SCMs fail, 
the SU is unable to recover needed services, increasing 
non-functional time. 



 
Overall, the two-party architecture proves more 

effective above 60% failure rate, allowing the SU to 
remain functional for as much as 80% of D even when the 
failure rate reaches 80% (MTF = 360s). At rates below 
60% the effectiveness of two-party is comparable to 
three-party with two and three SCMs. Fig. 3 also shows 
that effectiveness improves for the three-party 
architecture as the number of SCMs increase, though 
even with 3 SCMs, performance does not equal that of the 
two-party architecture. Adding SCMs improves 
effectiveness by lowering the incidence of concurrent 
failure of all SCMs. 

 
Message counts (Fig. 4) reveal the two-party 

architecture to be significantly more efficient than the 
three-party architecture. Note also that for the three-party 
architecture, total message counts decrease as failure rate 

increases, because SCMs remain down for longer periods; 
thus, requiring fewer registration refresh and SCM 
heartbeat messages. For the two-party model, message 
counts increase slightly at high failure rates because the 
SU invokes active recovery procedures after detecting 
failures. Fundamentally, the three-party architecture relies 
on redundancy of SCMs to improve functional 
effectiveness; thus, exacting a high overhead at low 
failure rates, but permitting overhead to diminish as 
failure rate increases. The two-party architecture relies on 
active recovery invoked by a SU; thus, at low failure rates 
overhead is lower because recovery procedures are not 
invoked often, but overhead increases with failure rate as 
recovery procedures are invoked more often. 
 
4.2. Underlying causes 
 

To better understand differences in effectiveness 
among the alternate architectures, we decomposed non-
functional time to show the estimated proportion 
attributable to failure-detection latency and to failure-
recovery latency. Figure 5 shows that detection latency is 
the dominant (~80%) component of non-functional time 
for the two-party model. Analysis of execution traces 
using the Rapide toolset showed most failures were 
detected through missed sensor readings (2s for fast 
sensors and 30s for slow sensors) or REXs received in 
response to failed actuations. We suspected that in the 
two-party architecture detection latency, and therefore 
non-functional time, could be reduced by increasing 
registration-refresh frequency; thus, decreasing the 
interval between heartbeats. Failed notification refresh 
attempts by the SU would permit detection of SM 
unavailability (and violation of CC-1) before non-receipt 
of slow sensor readings or failed actuation attempts. To 
test this theory, we lowered the registration refresh 
frequency from 300s to 30s in the two-party model, and 
reran the experiment The result was a 49% drop in 
detection latency leading to a 2.6% overall improvement 
in functional effectiveness (an increase in the mean 
effectiveness across all failure rates from 0.908 to 0.932). 
However, efficiency decreased 69%, with a rise in 
message count from an average of 662 to 1116. Similarly 
in the three-party architecture, we suspect increasing 
refresh frequency for service registrations would lead to 
earlier detection by the SCM of SM failure [see 17], and 
to earlier notification for the SU. Of course, increasing 
the heartbeat rate also would decrease efficiency. 

Our data for the three-party architecture show that 
above 60% failure rate the incidence of concurrent failure 
of all SCMs increases steadily. This precludes finding 
available services meeting SU requirements; thus, leaving 
the system in violation of CC-2. To restore consistency 
and achieve operational functionality, a SCM must first 
recover, accept registrations for the SU and available 

Figure 3. Functional effectiveness for four
topologies under increasing R for the
replacement case where at least one SM of
each type is operational (60 reps/point) 
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Figure 4. Average message counts for four
topologies under increasing R for the
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SMs, and then propagate matching SDs to the SU.  
Lacking an ability to directly discover SMs, the SU 
remains non-functional while awaiting recovery of at 
least one SCM. These effects are evident in Fig. 6, which 
shows the proportion of recovery latency increasing for 
the three-party model (3 SCMs) as the failure rate rises. 
This trend is more marked as the number of SCMs 
decreases (not shown here). We speculate that functional 
effectiveness might improve for the three-party model if 
SUs were permitted to discover SMs directly when no 
SCMs are available. We plan experiments along these 
lines using the Service Location Protocol (SLP) [12], 
which enables switching between the two- and three-party 
architecture as the situation warrants. 

 
4.3. Results for experiment variants 
 

To confirm our findings, we varied the experiment in 
two respects. First, we changed node behavior to allow 
failed nodes to restart rather than be replaced by new 

nodes.  In this case, three-party SCMs that recovered 
were allowed to retain previous, unexpired service 
registrations and notification registrations in accordance 
with the Jini protocol, while two-party SMs were 
permitted to retain notification registrations. The results 
showed no significant differences in performance 
between the restart and replacement cases, the graphs (not 
shown) were almost identical. This occurs in the three-
party case because most of the persistent registrations 
expire by the time a failed SCM restarts. In the two-party 
case, where only notification registrations persist, the SU 
that registered the notification is likely to have discarded 
knowledge of the SM by the time it restarts. Since, in our 
experiment, restarting nodes derive little value from 
persistent information, functional effectiveness is mainly 
influenced by soft-state mechanisms, as in the 
replacement case. 

Second, we varied the experiment to permit all SMs to 
fail, rather than to have at least one SM always available 
for each service type. The results, shown in Fig. 7., 
illustrate functional effectiveness for both the two- and 
three-party models decreases substantially above R = 
60%, as the incidence of concurrent SM failures 
increases, resulting in extended periods when no SMs 
were available for a service type needed by the SU. 
Though the absolute functional effectiveness declined, the 
ranking of the curves remained the same as in the 
previous experiments, with the two-party model proving 
most effective followed by the three-party model with 
three-, two-, and one-SCM topologies, respectively. Thus, 
in all of our experiment variants, the two-party model 
achieved better functional effectiveness than the three-
party model. 
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Figure 6. Detection and recovery latencies
in three-party service-discovery model with
3 SCMs as a proportion of non-functional
time (also shown) (60 reps/point) 
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two-party service-discovery model as a
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shown) (60 reps/point) 
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5. Conclusion 
 

This study provides an initial characterization of the 
performance of service-discovery architectures in 
response to node failures, which complements our 
previous studies of response to communication failures 
and message loss. The present study shows that in 
response to node failure, two-party systems exhibit better 
functional effectiveness and efficiency than three-party 
systems, with three-party SCMs being a potential point of 
vulnerability. Possible solutions to mitigate this 
vulnerability require further study. Similarly, further 
research is needed to verify that registration refresh rates 
or service caching could improve functional 
effectiveness.  Finally, we need to verify that our 
conclusions hold in networks with large numbers of 
services. 
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