
Performance of Service-Discovery
Architectures in Response to Node Failures

C. Dabrowski, K. Mills, A. Rukhin

U.S. National Institute of Standards and Technology,
Gaithersburg, MD 20899

{cdabrowski|kmills|arukhin}@nist.gov

Abstract

 Current trends suggest future software systems will rely
on service-discovery protocols to combine and recombine
distributed services dynamically in reaction to changing
conditions. We investigate the ability of selected designs
for service-discovery protocols to support real-time
distributed control applications by detecting and
recovering from failure of remote services. We model two
architectures (two-party and three-party) underlying most
commercial service-discovery systems. We use simulation
to quantify functional effectiveness achieved by the two
architectures as the rate of failure increases for remote
services. We further decompose non-functional periods
into failure-detection delay and recovery delay. Our
quantitative measurements suggest that a two-party
architecture yields better robustness than a three-party
architecture. We discuss the underlying causes for this
outcome.

1. Introduction

Designs for distributed systems must consider the
possibility that failures will arise, and must adopt specific
failure detection and recovery strategies [1]. Much
existing research surrounding failures in distributed
systems focuses on providing fault-tolerant invocation of
remote methods, either through parallel execution of
replicated components or through automated checkpoint
and restart procedures [2-4]. Fault-tolerant remote-
method invocation typically relies upon a layer of
mechanisms to detect and recover from failures without
requiring application-specific awareness or action. While
such application-transparent fault-tolerance appears
appealing, many current distributed object systems, even
large systems, employ simpler techniques that detect and
report failures, requiring applications to decide upon
appropriate recovery strategies [5-7]. In this paper, we
investigate one such set of simpler techniques requiring
application awareness and cooperation. These techniques
encompass the fundamental failure detection and recovery
strategies available in service-discovery systems [8-13].

In previous work, we investigated the ability of
various service-discovery systems to propagate updates
under communication failure [14] and message loss [15].
Our investigations yielded quantitative measures for the
effectiveness, responsiveness, and efficiency of alternate
system designs. In this paper, we investigate the
effectiveness, efficiency and latency of service-discovery
systems in detecting component failure and locating
replacements. We model specific discovery strategies and
failure-recovery techniques in combination with two
major architectural variants found in service-discovery
systems: two-party, where clients and services
rendezvous directly, and three-party, where clients and
services rendezvous through a directory. For the three-
party architecture, we consider topologies that include
directory replicas. Our models, which adapt discovery
and recovery strategies from the Jini™1 Networking
Technology [10] and Universal Plug-and-Play [9]
specifications, layer a real-time distributed control
application above each of the discovery systems. We
model application-level strategies that focus our
experiments on the fundamental properties of service-
discovery protocols; thus, we exclude a number of
possible application choices, such as service caching. We
measure functional effectiveness, defined as the
proportion of time that a distributed application meets its
requirements, or more precisely, as the proportion of time
that a client component possesses an operational set of
remote services needed to accomplish its task. To provide
a clear picture of failure response, we also measure both
failure-detection latency (time required to recognize that a
remote service used by the client has failed) and failure-
recovery latency (time required for the client to replace a
failed service). We also measure overhead as the number
of messages sent. Our models are written using Rapide
[16], which records complete event traces that permit

1 Certain commercial products or company names are identified in this
report to describe our study adequately. Such identification is not
intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that
the products or names identified are necessarily the best available for the
purpose.

detailed analysis of system behavior, helping us to
determine causes underlying quantitative performance.

2. Discovery and recovery

Service-discovery protocols enable networked
components to rendezvous and to combine with
discovered components into distributed applications
meeting specific requirements. Discovery protocols
include failure-detection and recovery techniques that
enable components within distributed applications to
detect and react to failures by restoring communications
with remote components or by locating alternate
components. A number of different designs have been
proposed for service-discovery systems. For example, a
team at Sun Microsystems designed Jini Networking
Technology, a general service-discovery system atop
JavaTM. As another example, a group from Microsoft and
Intel conceived Universal Plug-and-Play (UPnP) to
provide plug-and-play components for distributed
systems.

2.1. Service discovery

Our analysis of six discovery systems [8-13] revealed that
most designs use one of two underlying architectures:
two-party or three-party. A two-party architecture
consists of two component types: service manager (SM)
and service user (SU). The three-party architecture adds a
third component type, service cache manager (SCM).
Multiple SCMs can be used to mitigate the effect of SCM
failure. In both architectures, service discovery occurs
passively, via multicast announcements, and actively, via
multicast queries. Each SM maintains a database of
service descriptions (SDs), where each SD encodes the
essential characteristics of a particular service provider
(SP) managed by the SM. Each SU seeks SDs satisfying
specific requirements. Where employed, the SCM
operates as an intermediary, matching advertised SDs of
SMs to SD requirements provided by SUs.

In this study, each SM manages one SP from among
three service types: fast sensor, slow sensor, and actuator.
Our experiment consists of four instances of each service
type, whose roles are explained below. Figure 1 shows a
two-party architecture deployed in our experiment
topology with 12 SMs and one SU. To animate our two-
party model, we incorporated discovery behaviors from
the UPnP specification, as described elsewhere [14, 15].
Figure 2 shows the three-party architecture in our
experimental topology: with 12 SMs, one SU, and up to
three SCMs. To animate our three-party model, we chose
discovery behaviors from the Jini specification, as
described elsewhere [14, 15].

2.2. Failure-Detection Techniques

To detect failures, applications using discovery
systems rely on a combination of two techniques:
monitoring periodic transmissions and retrying ad hoc
transmissions (where exceeding a retry bound causes an
exception). Discovery protocols specify periodic
transmission of key messages. In addition, components
employing remote services may maintain regular contact
to accomplish application-specific tasks. Components can
listen for these recurring messages, much as a heartbeat
can be monitored to assess patient health. For example,
both Jini and UPnP periodically announce resource
availability. Similarly, a sensor service may periodically
issue readings to its clients. Failure to receive scheduled
communications might indicate that the remote service
has failed, or that the channel between client and service
is blocked. In other situations, software components send
messages using reliable communication protocols, which
persistently resend unacknowledged messages up to some
bound, issuing a remote exception (REX) if the bound is
exceeded. For example, a client may attempt to invoke a
method offered by a remote service that has failed. In the
three-party architecture, a SU might attempt to query for a
SD from a failed SCM, only to receive a REX. Failure

Figure 1. Two-party service-discovery
architecture with one service user and 12
service managers

HTTP/TCP and HTTP/UDP

UPnP Multicast Group

Unicast Links

Fast
Sensor

SM

Fast
Sensor

SM

Slow
Sensor

SM

Slow
Sensor

SM

Actuator
SM

Actuator
SM

Service
User

Slow
Sensor

SM

Slow
Sensor

SM

Service
User

Service Cache
Manager

(SCM)

Aggressive Discovery Multicast Group

Lazy Discovery Multicast Group

Actuator
SM

Actuator
SM

Fast
Sensor

SM

Fast
Sensor

SM

Unicast Links

Remote Method
Invocation

Optional SCMs

Figure 2. Three-party service-discovery
architecture with one service user, 12 service
managers, and up to 3 service cache managers

detection enables components to employ recovery
techniques.

2.3. Failure-recovery techniques

Discovery systems generally support two recovery
techniques: soft-state and application-level persistence.
Periodic announcements issued by a component convey
soft information about component state, which a receiver
can cache for a period of time, consistent with the
expected announcement rate. Each new announcement
may convey updated state information; thus, a receiver
overwrites previously cached state with state from newly
arriving announcements. When an announcement fails to
arrive, a receiver discards previously cached state,
effectively eliminating knowledge about existence of the
announcing component. When announcements resume, a
receiver rediscovers the remote component and recovers
the latest component state. Our application uses a
modified form of soft state, which allows discarded
components to be either rediscovered or replaced. For
example, upon failure of heartbeat messages sent by
UPnP SMs to refresh cached SDs, a SU discards
knowledge of the SM and any associated SDs. Similarly,
a SU may discard knowledge of a SM and SD for a
remote sensor upon failure to receive sensor updates. To
effect recovery, UPnP SUs may commence periodic
multicast (Msearch) queries to search for a new instance
of a required service. Once the SU regains a SD meeting
requirements, the related queries cease. In Jini, loss of
contact with a service may cause the SU to query a SCM
for a replacement. In addition, service unavailability may
be indicated by failure of heartbeat messages sent by Jini
SMs to refresh SDs cached on SCMs, causing the SCM to
discard the SD and to notify SUs that indicated interest in
learning about service failures. Periodic announcements
ensure rediscovery of the SCM by SMs within 120s after
the SM recovers. The Jini SU can then receive the
corresponding SD through notification or query. Of
course, in Jini, SCMs could also fail. SCM startup
announcements ensure discovery of a new or restarted
SCM within about 30s.

When failures lead to a REX, discovery systems
generally expect application software to initiate recovery,
guided by an application-level persistence policy. The
policy may require ignoring the REX, retrying the
operation for some period, or discarding knowledge of
the remote component. Since our experiment simulates a
real-time control application, we chose not to persist after
a REX, but instead to discard knowledge of the associated
remote component, relying on periodic announcements
and soft state to recover. This policy is also used in the
three-party model when SCM failure is detected through a
REX in response to a query (SU) or registration refresh
(SU or SM). After discarding knowledge of a SM (UPnP)

or SCM (Jini), all operations involving the remote
component cease.

3. Experiment description

We investigate how effectively the two alternate
service-discovery architectures, and associated failure
detection and recovery mechanisms, provide clients with
required services as nodes hosting the services fail and
recover. We model the two- and three-party architectures
using the four topologies shown in Figures 1 and 2. In all
topologies, we deploy a single SU and twelve SMs, where
each SM manages a specific type of SP: “fast” sensor,
“slow” sensor, or actuator. The twelve SMs include four
of each SP type. After discovery and activation by the
SU, a “fast” sensor transmits a reading every two seconds
and a “slow” sensor transmits a reading every 30 seconds.
Once discovered and activated by the SU, an actuator can
be invoked after the SU receives an appropriate
combination of readings from a “fast” and “slow” sensor.
In our experiment, we simulate actuation attempts using a
uniform distribution with a mean of 60s. When the SU
holds one SD for a SP of each type (“fast” sensor, “slow”
sensor, and actuator) and each of the SPs is operational,
then the application is considered functional. If the SU
lacks SDs for one or more SP type or if one or more of
the SDs held by the SU describes a SP that is not
operational, then the application is considered non-
functional. The experiment measures accumulated
functional time in proportion to a duration D during
which SMs and SCMs periodically fail and recover. To
establish initial conditions, each topology is exercised
until discovery completes, and the application becomes
functional. To focus exclusively on failure detection and
recovery processes, we do not cache services; the SU
holds at most one SD for each SP type at any time. In the
three-party architecture, some additional decisions are
necessary. For each SD discovered and retained, the SU
registers with the SCM for notification about failures. The
SU refreshes notification registrations every 300s. Each
SM registers with each discovered SCM, and refreshes
every 60s (slow sensors/actuators) or 300s (fast sensors).

3.1. Failure model

During D, each SM (and SCM in the three-party case)
fails randomly and independently, although at least one
service of each type always remains active so that the
application could become functional. We calculate a
mean time to failure, MTF, from a failure rate R, varied
from 0.1 to 0.9 of D in 0.1 increments, where MTF = (1 –
R) * D. Node failure times are randomly chosen from a
“stepped” normal distribution with three steps: a 0.15
probability that failure occurs before (MTF - 0.2 * MTF),

a 0.7 probability that failure occurs between (MTF - 0.2 *
MTF) and (MTF + 0.2 * MTF), and a 0.15 probability that
failure occurs between (MTF + 0.2 * MTF) and (2 *
MTF). Failure time is distributed uniformly within each
step.

When a SM or SCM fails, affected services become
unavailable for a time. There are three failure classes,
each with a different probability, P, and duration. Short
failures occur with P = 0.1 for a fixed duration (135s);
intermediate failures occur with P = 0.7 for a duration
selected uniformly on the interval 180-300s, long failures
occur with P = 0.2 selected uniformly on the interval 480-
600s.

3.2. Metrics

We define non-functional time, NF, as accumulated
time during which an application is in a non-functional
state. Assuming we can measure NF, over a given
duration D, then functional effectiveness, F, can be
quantified as a ratio: F = (D – NF)/D. We define
consistency conditions to measure NF, as explained
below

A client in a distributed application may become non-
functional due to failure of remote components but incur
a delay before detecting the failure. We call this delay
failure-detection latency. After detecting a non-functional
state, the application may incur some delay while
restoring required services. We call this delay failure-
recovery latency. During periods when a client incurs
either failure-detection or failure-recovery latency or both
(the states can overlap when a client requires more than
one remote service), the distributed application is non-
functional. We accumulate such non-functional periods to
NF.

We define two consistency conditions such that
violation of one corresponds to failure-detection latency
and violation of the other corresponds to failure-recovery
latency. The following consistency condition requires
each SD held by a SU to match a SD managed by a SM.
More formally,

SM

SU

vicesmanagedSerSDSM
eseredServicdisSDSM

SDSUSM

∈∃→
∈

∀

|
cov),(

],,[

In this condition (CC-1), managedServicesSM denotes the
database of SD(s) for services managed by a SM and
discoveredServicesSU denotes the (SM, SD) pairs a SU
has discovered. CC-1 is violated (and failure-detection
latency commences) when a SM fails but the SU holds a
SD provided by the SM. Once the SU discards the SD, or
the SM recovers, consistency is restored (and failure-

detection latency ends). A second consistency condition
requires that available SDs matching SU requirements
should be known to the SU. More formally,

SU

SUSM

eseredServicdisSDSM
eededresourcesNSDvicesmanagedSerSD

SDSUSM

cov),(

],,[

∈→
∈∧∈

∀

This condition (CC-2) is violated (and failure-recovery
latency begins) after the SU purges a SD for a failed
service and commences search. Consistency returns (and
failure-recovery latency ends) when the SU finds a SD
matching its needs.

4. Results and discussion

For each of four topologies (two-party and three-party
with one, two, and three SCMs), we set D = 1800s and
executed multiple repetitions for each value of R using
the failure model described in 3.1. We conducted separate
experiment runs for cases where failed nodes (including
SMs and SCMs) are discarded and replaced by new
nodes, and for cases where failed nodes restart,
maintaining persistent information in the manner
specified by the protocols. For the replacement case, we
ran a second variant of the experiment where all SMs for
a resource type may fail. We recorded functional
effectiveness, detection latency, recovery latency, and the
total number of protocol messages exchanged in each run.

4.1. Effectiveness and efficiency

Figure 3 shows average functional effectiveness of the
two-party and three-party architectures for the
replacement case as R increases, and where one SM for
each service type is always available (implying that the
system could be functional for all of D). In examining
Fig. 3, recall how failure detection occurs. In the two-
party model, the SU may detect service unavailability by
monitoring cyclical sensor readings or by monitoring
notification registration refreshes. In the three-party
model, the SCM notifies the SU if the SM fails to refresh
service registrations. In both models, the SU may also
detect unavailability when a REX occurs in response to
attempted actuations. To become functional again, the SU
must invoke appropriate recovery mechanisms to regain
SDs to replace unavailable services. In the three-party
architecture, at least one SCM must be operational for
recovery to succeed. During periods when all SCMs fail,
the SU is unable to recover needed services, increasing
non-functional time.

Overall, the two-party architecture proves more

effective above 60% failure rate, allowing the SU to
remain functional for as much as 80% of D even when the
failure rate reaches 80% (MTF = 360s). At rates below
60% the effectiveness of two-party is comparable to
three-party with two and three SCMs. Fig. 3 also shows
that effectiveness improves for the three-party
architecture as the number of SCMs increase, though
even with 3 SCMs, performance does not equal that of the
two-party architecture. Adding SCMs improves
effectiveness by lowering the incidence of concurrent
failure of all SCMs.

Message counts (Fig. 4) reveal the two-party

architecture to be significantly more efficient than the
three-party architecture. Note also that for the three-party
architecture, total message counts decrease as failure rate

increases, because SCMs remain down for longer periods;
thus, requiring fewer registration refresh and SCM
heartbeat messages. For the two-party model, message
counts increase slightly at high failure rates because the
SU invokes active recovery procedures after detecting
failures. Fundamentally, the three-party architecture relies
on redundancy of SCMs to improve functional
effectiveness; thus, exacting a high overhead at low
failure rates, but permitting overhead to diminish as
failure rate increases. The two-party architecture relies on
active recovery invoked by a SU; thus, at low failure rates
overhead is lower because recovery procedures are not
invoked often, but overhead increases with failure rate as
recovery procedures are invoked more often.

4.2. Underlying causes

To better understand differences in effectiveness
among the alternate architectures, we decomposed non-
functional time to show the estimated proportion
attributable to failure-detection latency and to failure-
recovery latency. Figure 5 shows that detection latency is
the dominant (~80%) component of non-functional time
for the two-party model. Analysis of execution traces
using the Rapide toolset showed most failures were
detected through missed sensor readings (2s for fast
sensors and 30s for slow sensors) or REXs received in
response to failed actuations. We suspected that in the
two-party architecture detection latency, and therefore
non-functional time, could be reduced by increasing
registration-refresh frequency; thus, decreasing the
interval between heartbeats. Failed notification refresh
attempts by the SU would permit detection of SM
unavailability (and violation of CC-1) before non-receipt
of slow sensor readings or failed actuation attempts. To
test this theory, we lowered the registration refresh
frequency from 300s to 30s in the two-party model, and
reran the experiment The result was a 49% drop in
detection latency leading to a 2.6% overall improvement
in functional effectiveness (an increase in the mean
effectiveness across all failure rates from 0.908 to 0.932).
However, efficiency decreased 69%, with a rise in
message count from an average of 662 to 1116. Similarly
in the three-party architecture, we suspect increasing
refresh frequency for service registrations would lead to
earlier detection by the SCM of SM failure [see 17], and
to earlier notification for the SU. Of course, increasing
the heartbeat rate also would decrease efficiency.

Our data for the three-party architecture show that
above 60% failure rate the incidence of concurrent failure
of all SCMs increases steadily. This precludes finding
available services meeting SU requirements; thus, leaving
the system in violation of CC-2. To restore consistency
and achieve operational functionality, a SCM must first
recover, accept registrations for the SU and available

Figure 3. Functional effectiveness for four
topologies under increasing R for the
replacement case where at least one SM of
each type is operational (60 reps/point)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Two Party
Three Party (1 SCM)
Three Party (2 SCMs)
Three Party (3 SCMs)

Figure 4. Average message counts for four
topologies under increasing R for the
replacement case where at least one SM of
each type is operational (30 reps/point)

0

10
00

20
00

30
00

40
00

50
00

0 20 40 60 80

Failure Rate (%)

M
es

sa
ge

 C
ou

nt
s

Two Party
Three Party, 1 SCM
Three Party, 2 SCMs
Three Party, 3 SCMs

y = +2.16x

y = -1.70x

y = -6.97x

y = -10.55x

SMs, and then propagate matching SDs to the SU.
Lacking an ability to directly discover SMs, the SU
remains non-functional while awaiting recovery of at
least one SCM. These effects are evident in Fig. 6, which
shows the proportion of recovery latency increasing for
the three-party model (3 SCMs) as the failure rate rises.
This trend is more marked as the number of SCMs
decreases (not shown here). We speculate that functional
effectiveness might improve for the three-party model if
SUs were permitted to discover SMs directly when no
SCMs are available. We plan experiments along these
lines using the Service Location Protocol (SLP) [12],
which enables switching between the two- and three-party
architecture as the situation warrants.

4.3. Results for experiment variants

To confirm our findings, we varied the experiment in
two respects. First, we changed node behavior to allow
failed nodes to restart rather than be replaced by new

nodes. In this case, three-party SCMs that recovered
were allowed to retain previous, unexpired service
registrations and notification registrations in accordance
with the Jini protocol, while two-party SMs were
permitted to retain notification registrations. The results
showed no significant differences in performance
between the restart and replacement cases, the graphs (not
shown) were almost identical. This occurs in the three-
party case because most of the persistent registrations
expire by the time a failed SCM restarts. In the two-party
case, where only notification registrations persist, the SU
that registered the notification is likely to have discarded
knowledge of the SM by the time it restarts. Since, in our
experiment, restarting nodes derive little value from
persistent information, functional effectiveness is mainly
influenced by soft-state mechanisms, as in the
replacement case.

Second, we varied the experiment to permit all SMs to
fail, rather than to have at least one SM always available
for each service type. The results, shown in Fig. 7.,
illustrate functional effectiveness for both the two- and
three-party models decreases substantially above R =
60%, as the incidence of concurrent SM failures
increases, resulting in extended periods when no SMs
were available for a service type needed by the SU.
Though the absolute functional effectiveness declined, the
ranking of the curves remained the same as in the
previous experiments, with the two-party model proving
most effective followed by the three-party model with
three-, two-, and one-SCM topologies, respectively. Thus,
in all of our experiment variants, the two-party model
achieved better functional effectiveness than the three-
party model.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Failure Rate (%)

Two Party
Three Party (3 SCMs)
Three Party (2 SCMs)
Three Party (1 SCM)

Figure 7. Functional effectiveness for four
topologies under increasing R for the
replacement case where all SMs of each
service type are allowed to fail (30 reps/point)

Figure 6. Detection and recovery latencies
in three-party service-discovery model with
3 SCMs as a proportion of non-functional
time (also shown) (60 reps/point)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Detection Latency
Recovery Latency
Non-Functional Time

Figure 5. Detection and recovery latencies in
two-party service-discovery model as a
proportion of non-functional time (also
shown) (60 reps/point)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Detection Latency
Recovery Latency
Non-Functional Time

5. Conclusion

This study provides an initial characterization of the
performance of service-discovery architectures in
response to node failures, which complements our
previous studies of response to communication failures
and message loss. The present study shows that in
response to node failure, two-party systems exhibit better
functional effectiveness and efficiency than three-party
systems, with three-party SCMs being a potential point of
vulnerability. Possible solutions to mitigate this
vulnerability require further study. Similarly, further
research is needed to verify that registration refresh rates
or service caching could improve functional
effectiveness. Finally, we need to verify that our
conclusions hold in networks with large numbers of
services.

6. Acknowledgements

The work discussed in this paper was funded in part by
DARPA, under the auspices of the FTN and DASADA
programs

7. References

[1] G. Bieber and J. Carpenter, “Openwings A Service-Oriented
Component Architecture for Self-Forming, Self-Healing,
Network-Centric Systems,” http://www.openwings.org web site.

[2] Fault Tolerant CORBA Specification, v1.0, ptc/00-04-04,
Object Management Group.

[3] C. Marchetti, A. Virgillito, and R. Baldoni, “Design of an
Interoperable FT-CORBA Compliant Infrastructure,”
Proceedings of the European Research Seminar on Advances in
Distributed Systems (ERSADS), 2001.

[4] D. Liang et al. “A Fault-Tolerant Object Service on
CORBA,” The Journal of Systems and Software, Vol. 48. 1996.

[5] Y.M. Wang, O.P. Damani, and W.J. Lee, “Reliability and
Availability Issues in Distributed Component Object Model
(DCOM),” Proceeding of the International Workshop on
Community Networking, 1997, pp. 59-63.

[6] Felber, P. et al. “Failure Detectors as First Class Objects,”
Proceedings of the International Symposium on Distributed
Objects and Applications (DOA’99), IEEE Computer Society
Press, September 5-7, 1999, p. 132.

[7] Carey, R.W. et al. “Large-Scale Corba-Distributed Software
Framework For Nif Controls,” Proceedings of the 8th
International Conference on Accelerator & Large Experimental
Physics Control Systems, Stanford Linear Accelerator Center,
November 27-30, 2001, p. 425.

[8] Salutation Architecture Specification, V. 2.0c, Salutation
Consortium, June 1, 1999.

[9] Universal Plug and Play Device Architecture, V. 1.0,
Microsoft, June 8, 2000.

[10] Ken Arnold et al, The Jini Specification, V1.0 Addison-
Wesley 1999. Latest version is 1.1 available from Sun.

[11] Specification of the Home Audio/Video Interoperability
(HAVi) Archiecture, V1.1, HAVi, Inc., May 15, 2001.

[12] Guttman, E., Perkins, C., Veizades, J., and Day, M. Service
Location Protocol, V.2, Internet Engineering Task Force (IETF),
RFC 2608, June 1999.

[13] Specification of the Bluetooth System, Core, Vol. 1, Version
1.1, the Bluetooth SIG, Inc., February 22, 2001., 1999.

[14] Dabrowski, C. Mills, K., and Elder, J. “Understanding
Consistency Maintenance in Service Discovery Architectures
During Communications Failure,” Proceedings of the 3rd
International Workshop on Software Performance, ACM, July
2002, pp. 168-178.

[15] Dabrowski, C., Mills, K., and Elder, J. “Understanding
Consistency Maintenance in Service Discovery Architectures In
Response to Message Loss,” Proceedings of the 4th
International Workshop on Active Middleware Services, IEEE
Computer Society, July 2002, pp. 51-60.

[16] Luckham, D. “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering of
Events,” http://anna.stanford.edu/rapide, August 1996.

[17] Bowers, K., Mills, K., and Rose, S. “Self-adaptive Leasing
for Jini,” IEEE International Conference on Pervasive
Computing and Communications 2003, Dallas-Fort Worth,
Texas, March 2003.

