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Abstract

Spectroscopic studies involving dielectric, submillimeter, infrared and Raman measurements were

performed on a CaTiO3 single crystal, covering a broad spectral range (static to 10 THz) at

temperatures from 6 K to 300 K. The results show mode softening characteristic of an incipient

ferroelectric with Tc ≈ −105 K. A signature of the soft mode is seen in the Raman spectra, even

though the soft modes are not Raman-active to first order. First-principles calculations were used

to identify the phonons responsible for the spectral features. Many of the major features are due

to phonons in orthorhombic CaTiO3 that are associated with zone-boundary phonons of the cubic

perovskite phase.

PACS numbers: 77.84 Dy, 77.22 Ch, 78.30 Hv, 63.20 Dj
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I. INTRODUCTION

Calcium titanate CaTiO3 (CTO) is well known as mineral perovskite who gave its name

to the large and very important family of ABO3 compounds. These materials are important

not only for their technical applications but also for fundamental research. Their simple

crystal structure, and the variety of structural phase transitions which they display, make

them suitable for experimental study and for testing theoretical models.

Great progress has been achieved during recent years in understanding lattice dynamics,

dielectric properties and phase transition phenomena in the oxide perovskites using first-

principles calculations[1–7]. The relatively simple sequences of phase transitions in PbTiO3,

BaTiO3, KNbO3, and SrTiO3 have been already reproduced using Monte-Carlo simula-

tions, whereas the complex sequences in CTO or NaNbO3 have not yet been successfully

reproduced[8].

The prototype perovskite structure is cubic (space group Pm3m, O1
h, Z = 1), but

the room temperature structure of CTO is orthorhombic with a quadrupled unit cell

(Pbmn, D16
2h, Z = 4) [9–13]. The deviations from the cubic structure are small, how-

ever, and the crystal keeps its pseudocubic character with cell parameters (a/
√

2, b/2, c/
√

2)

≈ 3.822 Å down to low temperatures. The first evidence for a high-temperature phase

transition was found in the 1940s[14], but the problem of the high-temperature structures

has recently been the subject of intense study[15–18]. It is now clear that CTO undergoes

at least two, but probably three, phase transitions at high temperatures. Increasing the

temperature, the first transition appears near 1385 K, into another orthorhombic structure

(Cmcm, D17
2h, Zprim = 4, or Pmmn, D13

2h, Z = 8), the second one near 1500 K into a tetrag-

onal structure (I4/mcm, D18
4h, Zprim = 2) and the last one near 1580 K into the prototype

cubic structure of the Pm3m, Z = 1 symmetry. All the high-temperature phases can be

realized from the cubic phase by appropriate TiO6 octahedra tilting: the tetragonal phase

by an anti-phase tilt along one axis (a0a0c− in Glazer’s notation [19, 20]), the intermediate

orthorhombic phase by an additional, in-phase, tilt along the second axis (a0b+c−) and the

room temperature phase by an additional anti-phase tilt, of equal magnitude, along the
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third axis (a−b+a− or a−a−c+, which corresponds to the space-group symbol Pbmn used

throughout this paper). Because the last tilting angle jumps from zero to a finite value, the

transition at 1385 K is first-order[15]. From a lattice-dynamical and group-theoretical point

of view, the room-temperature phase can be obtained by combining instabilities at the R

and M points of the cubic Brillouin zone (corresponding to the anti-phase (–) and in-phase

(+) tilts, respectively) [21, 22], but no experimental data on these instabilities are available.

In technical application, CTO is an important constituent of different ceramic solid solu-

tions, which serve as high-quality microwave material for dielectric resonators [23–25]. High

permittivity, low dielectric loss, and temperature stability are required for this application.

CTO must be mixed with other materials to compensate for the strong temperature de-

pendence of the permittivity of pure CTO. Its permittivity increases upon cooling from 170

at 300 K to approximately 330 near 25 K, where it saturates obeying the Barrett formula

[26, 27]. Such behavior is typical of incipient ferroelectrics like SrTiO3 and KTaO3, as

pointed out recently by Lemanov et al.[26]. As in these materials, no appreciable dielectric

dispersion was observed in CTO up to the microwave range. The microwave permittivity

above 80 K obeys the Curie-Weiss law with a negative Curie temperature –84 K [28]. Almost

all the data were obtained on ceramic polycrystalline samples. Dielectric measurements on

a polydomain single crystal were carried out by Linz [27], but the results do not differ

appreciably from those for ceramics.

It is natural to expect that a polar soft mode should be responsible for the permittivity

behavior in CTO. Using density functional theory, Cockayne and Burton[2] calculated the

phonon frequencies for orthorhombic CTO and found a pseudotriplet of polar modes with

ν ≈ 90 cm−1. Cockayne[3] showed that these modes were strongly anharmonic and concluded

that their frequencies decreased with decreasing temperature. The most suitable technique

for investigating polar modes experimentally is IR reflectivity spectroscopy, because the ac

electric field directly couples to the polarization. Room-temperature reflectance data on

ceramic samples [29, 30] revealed a low-frequency polar mode near 100 cm−1. Knyazyev

et al.[31] measured the reflectance at 470 K, 300 K and 110 K and found that the lowest-

frequency phonon softened with decreasing temperature. As the CTO structure is cen-
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trosymmetric, the polar modes are not Raman active and indeed micro-Raman studies on

small single crystals [32–34] detected no modes below 100 cm−1. On the other hand, a Ra-

man soft mode should be associated with the high-temperature phase transitions. A partial

softening of an Ag mode from 150 cm−1 down to the value at which it dives into the central

(Rayleigh) line has been observed[34] close to the phase transition temperature Tc=1385 K.

The Raman data on polycrystals were limited to the frequency range above 100 cm−1 [35].

In this work we want to remedy the gaps in the spectroscopic data on CaTiO3. We

present results of comprehensive spectroscopic study on polydomain single crystals. We

report detailed IR data based on reflectivity measurements in the temperature range from

300 K down to 6 K. They were complemented by submillimeter (7-13 cm−1) transmission

measurements and Raman measurements performed on both single crystals and ceramics in

the same temperature range. Particular attention was paid to the low-frequency behavior.

We have quantitatively established the picture of polar soft phonon mode, but important

softening was observed also for a weaker higher-frequency mode folded from the cubic Bril-

louin zone boundary. Surprisingly, the soft mode behavior was also observable in the Raman

spectra of ceramics. By using first-principles calculations, we can identify the symmetries

and eigenvalues of the phonons responsible for the observed IR spectra.

II. EXPERIMENTAL[36]

In the past, most measurements on CaTiO3 were done on ceramic samples. In this work,

we concentrate on CaTiO3 single crystals and compare them with ceramics. Single crys-

tals of CaTiO3 were grown by the cold crucible method (or so-called skull method) using

CaCO3 and TiO2 of high purity (i.e. 99.99%) as starting materials. Ceramics samples were

prepared with a conventional ceramic technology using the same starting materials. The

ceramics were sintered at 1465 oC and had a relative density of 0.92 of the theoretical value.

The samples were cut into rectangular blocks of size 6×4.5×3 mm3 and their surface was

polished to optical quality. A routine examination of the crystal under a polarizing micro-

scope with crossed polarizers revealed a rich domain structure. The domains occur in the
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crystal as a consequence of the ferroelastic phase transitions at high temperatures. They can

in principle be removed by applying a mechanical stress, but this is practically impossible

in this case of large bulk samples as in our case. Near normal reflectance measurements

between 30 cm−1 and 4000 cm−1 were carried out using a Bruker IFS 113v Fourier trans-

form spectrometer. The dielectric function in the frequency range 7 cm−1 to 15 cm−1 was

measured by a backward wave oscillator (BWO) spectrometer. This quasioptical technique

measures not only the magnitude of the signal but also its phase and enables one to de-

termine the complex response functions directly without using Kramer-Kronig analysis or

model fitting. The Raman experiments were performed using a triple Z-24 Dilor spectrome-

ter and the 514.5 nm line of an Ar laser as an excitation source. The samples were mounted

in a continuous helium cryostat in which the temperature could be varied between 6 K and

300 K for infrared and BWO measurements, and in a closed-cycle helium cryostat for Raman

scattering.

III. RESULTS

The temperature dependence of the infrared reflectance spectra is shown in Fig 1. The

spectra were measured using unpolarized radiation (without polarizers) because the rich

domain structure observed in the sample is randomly oriented. In this case we can measure

only an average value of reflectance over all domains. The randomness of the domain orien-

tation was also checked by rotating the crystal in polarized radiation beam and no changes

in the spectra were found. We discuss the consequences of reflectance averaging in greater

detail in the Appendix.

The spectra in Fig. 1 display the characteristic patterns for perovskites and are in rea-

sonable agreement with the early data at room temperature[29, 31]. They consist of three

broad “reststrahlen” bands between the strongest transverse optic (TO) and longitudinal

optic (LO) modes which presumably correspond to the infrared-active vibrational modes of

F1u symmetry in the cubic phase. The first of these bands (TO1 - LO1) is located below

160 cm−1, the second one (TO2 - LO2) at 170 cm−1 to 500 cm−1 and the third one (TO3 -
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LO3) at 550 cm−1 to 800 cm−1. Other features, abundantly observed in the spectra, must

be due to the additional polar modes activated in the orthorhombic crystal. The most sig-

nificant feature is the band between 430 cm−1 and 500 cm−1. It is quite pronounced and

isolated from the other bands, but subsequent analysis of the data shows that it is not as-

sociated with a cubic perovskite F1u mode. As the temperature is reduced, sharpening of

the spectral features and shifts in frequency (mostly to higher frequency) are observed. The

first, low-frequency band, however, shows an opposite shift, which is typical for soft modes

above a phase transition or incipient phase transition.

IV. DISCUSSION

We used three different ways to analyze our experimental data and evaluate important

spectral parameters for understanding the temperature-dependent behavior of CaTiO3. In

the first approach we describe the spectra by three infrared active modes. Secondly, we tried

to find a optimum number of modes for fitting the spectra. Finally we used the Kramers-

Kronig analysis to calculate and fit ε1 and ε2 simultaneously.

The most commonly-used fit to dielectric dispersion in ordinary crystals is the “three-

parameter model”, where the dielectric function is modeled by the sum for independent

damped harmonic oscillators:

ε(ν) = ε1(ν) + iε2(ν) = ε∞ +
∑
i

∆εiν
2
iTO

ν2
iTO − ν2 + iγiTOν

, (IV.1)

where ε∞ is the high-frequency (electronic) dielectric constant, ∆εi the oscillator strength of

the i-th transverse vibrational mode, νiTO its frequency, and γiTO its damping coefficient. It

has been shown [37, 38], however, that in the case of broad reflection bands (large LO-TO

splitting), it is more accurate to use a “four-parameter fit”:

ε(ν) = ε1(ν) + iε2(ν) = ε∞
∏
i

ν2
iLO − ν2 + iγiLOν

ν2
iTO − ν2 + iγiTOν

, (IV.2)

which explicitly includes the longitudinal (LO) vibrational frequencies and introduces lon-

gitudinal damping parameters. The four-parameter model implicitly contains a frequency-

dependent damping coefficient γi(ν) for each mode, as reflected by the values γiTO and γiLO
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for ν = νiTO and νiLO, respectively. This generalization substantially improves the fit of

the broad reflectivity bands. Neglecting damping, the TO oscillator strength ∆εi is given in

terms of TO-LO splitting via

∆εi =
ε∞
ν2
iTO

∏
j(ν

2
jLO − ν2

iTO)∏
j 6=i(ν

2
jTO − ν2

iTO)
, (IV.3)

The four-parameter model, however, may give an unphysical negative ε2(ν) for certain fre-

quencies ν > 0. To avoid this situation, one must either enforce special relationships between

the model parameters or else verify directly that ε2(ν) is positive for all ν > 0. The infrared

reflectivity can be obtained from complex dielectric response ε(ν) = ε1(ν) + iε2(ν) via

R(ν) =
∣∣∣√ε(ν)− 1√

ε(ν) + 1

∣∣∣2 . (IV.4)

A Pseudocubic crystal

We restrict ourselves in this subsection to a pseudocubic model, where only three infrared

active F1u phonons are assumed, as in the phonon spectrum of the cubic perovskite structure.

This approach is a priori justified by the small deviations of the orthorhombic CaTiO3

structure from the ideal perovskite. In this case, very reasonable fits to the reflectivity

spectra can be obtained using Eqs. IV.2 and IV.4. The model parameters are obtained by

minimizing the root mean square deviation of the reflectivity over the range from 30 cm−1 to

1200 cm−1 The fitted spectra are shown and compared with the experimental data in Fig. 1.

The lowest frequency mode behaves as a soft mode. Its frequency is 110 cm−1 at room

temperature and decreases to 77 cm−1 at 6 K. The fitted model parameters are presented in

Table I. This very rough approximation gives a good description of the frequency dependence

of reflectivity and its temperature dependence. It overestimates the static permittivity

calculated from the model parameters (ε(0) =
∑

i ∆εi + ε∞), however, giving a value that

increases from 217 at room temperature to 512 at 6 K, compared with the measured low-

frequency permittivity values of 170 and 330, respectively. To address this shortcoming a

more complex approach is used in the following subsections B and C.
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B Optimum fit with 4-parameter model

The fit of the CTO reflectance can be improved, when the orthorhombic symmetry of

the material is taken into account and the number of the terms in the factorized dielec-

tric function is increased. The number and the symmetries of the IR-active phonons in

orthorhombic CTO can be easily obtained from factor group analysis. Following the site

symmetry of atoms in the room-temperature unit cell (4 Ti atoms at 4b, 4 Ca at 4c, 4 O1

at 4c and 8 O2 at 8d sites)[10], the vibrational representation in the Γ-point yields Γvibr =

7 Ag + 8 Au +7 B1g + 8 B1u + 5 B2g + 10 B2u + 5 B3g + 10 B3u. B1u, B2u, and B3u

representations are IR active which gives 25 IR-active optic modes (plus 3 acoustic modes).

Ag, B1g, B2g, and B3g representations are Raman active, giving 24 Raman modes.

A similar factor group analysis of the zone-center phonons of the high-temperature pro-

totype cubic perovskite phase of CTO yields one F1u acoustic triplet, three F1u IR-active

triplets, and one F2u silent triplet. Figure 2 and Table II show the relationship between

the symmetries of the cubic and the orthorhombic IR-active modes. Figure 2 interpolates

between first-principles phonon frequency results[7] for cubic CTO and orthorhombic CTO.

Nine IR-active modes of orthorhombic CTO are grouped into (B1u + B2u + B3u) pseu-

dotriplets emanating from IR-active F1u cubic triplets. A pseudodoublet of orthorhombic

IR-active modes arise from the cubic F2u triplet: F2u → (silent Au + B2u + B3u). The final

fourteen orthorhombic IR modes have their progenitors in the X, M, and R-points of the

cubic Brillouin zone and become active due to Brillouin zone folding in the orthorhombic

phase. To the extent that the orthorhombic structure is a small perturbation of the cubic

one, one expects the nine modes arising from the F1u cubic triplets to be strong and the

other sixteen to be weak. All twenty-four orthorhombic Raman modes stem from the X, M

and R-points of the cubic Brillouin zone (Table II).

We have found that the minimum number of oscillators required to get a good fit of

our spectra is 14. Adding further modes does not improve the quality of the fit. The

experimental CTO reflectance and the associated fits at room temperature and at 6 K are

shown in Fig 3. The corresponding parameters used in the fit for both temperatures are
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given in Table III. Note that the number of oscillators used in the fit is less than the

number of IR-active modes determined from group theory. There are several reasons why

it is difficult to observe the full spectrum. Some phonons, especially those emanating from

Brillouin zone boundary, have such low oscillator strengths that they cannot be detected

in the spectra. Overlap of phonons which are close in frequency and which have significant

damping also reduces the number of modes which can be resolved. The effective averaging

of the reflectance over different domain orientations compounds the above effects (see the

Appendix). Finally, the reflectance of CTO is very high (close to 1) for ν < 400 cm−1 and

the strongly non-linear relation (IV.4) between the reflectivity and the dielectric functions

ε1(ν) and ε2(ν) reduces the accuracy of the fit. These are the most relevant reasons why

only 14 phonons can be distinguished in the spectra.

Using 14 oscillators, we obtain ε(0) = 195 at T = 300 K and ε(0) = 361 at room

temperature. These values are in very good agreement with experiment.

C Kramer-Kronig analysis

We can calculate the complex dielectric function from the reflectivity using Kramers-

Kronig analysis. For this purpose, we need to extend the spectral range of our infrared data

by including the complex dielectric function measured by other techniques at submillimeter

frequencies, as well as the static permittivity. Very good overlap of the infrared data and

those obtained by the BWO spectroscopy (discussed in Section II) and low-frequency dielec-

tric measurements (100 Hz - 1 MHz) enables us to merge all these spectra. We obtain in

this way the reflectivity spectrum over a very broad frequency range from 0 to 4000 cm−1.

The usual low- and high-frequency extrapolations for dielectrics can be now applied, be-

cause the reflectivity on both sides of the spectra is practically constant with no dispersion.

In this case Kramers-Kronig analysis gives very reliable results, which confirm the rough

estimate made from the reflectance spectra. The real and imaginary parts of the dielectric

function (ε1(ν) and ε2(ν)) are given in Fig 4. The pseudocubic character of the sample is

apparently demonstrated by three main absorption bands in ε2(ν) and the corresponding
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dispersion in ε1(ν). ε2(ν) shows three distinct maxima at 111 cm−1, 157 cm−1, and 549 cm−1.

These are close to the values given by Perry et al.[29, 30]. They interpreted their spectra

in terms of two overlapped phonon triplets at 148 cm−1 and 178 cm−1 and another split

triplet at 549 cm−1. As will be discussed in more detail in section IV E, however, the modes

near 157 cm−1 actually arise from cubic zone-boundary modes; the true second pseudocubic

band is near 220 cm−1, but has accidentally low oscillator strength.

Above 224 cm−1 the spectra show only very weak temperature dependence. Below

224 cm−1, however, significant changes appear as temperature changes. The behavior of

ε1(ν) and ε2(ν) in the low-frequency region is shown in detail in Fig 5, where seven modes can

be identified. An easy correctness check for the extrapolated optical functions (ε1(ν), ε2(ν))

is to compare them with values measured directly using BWO. Fig 5 shows very good agree-

ment between the calculated curves and the experimental BWO measurements.

A more detailed look at the spectrum shows that the softening process is started by

a weak mode at 130 cm−1 whose softening has already begun at room temperature. The

softening of this mode stops at about 150 K, but triggers a similar process in the lower-

frequency modes. This behavior can be understood based on coupling between modes with

the same symmetry. Crossing of modes with the same symmetry is forbidden, so if a higher-

frequency mode softens more rapidly than a lower-frequency one, the higher mode must

eventually repel the lower one and transfer the softening to it. A slight softening of a mode

at 180 cm−1 can also be observed.

To get more quantitative information about what happens with particular modes, we

fitted simultaneously the real and imaginary part of the dielectric function by the sum

of damped harmonic oscillators using the three-parameter model (Eq. IV.1). We use the

three parameter model rather than the four parameter one because interpretation of the

results in terms of oscillator parameters is simpler; furthermore, frequency dependence of

damping is less significant when one considers only a small range of frequencies. We easily

obtain the temperature dependence of the oscillator parameters in the soft mode spectral

range. The results are given in Fig 6 and Table IV. Remarkably, fitting to the K-K analysis

reveals an additional low-frequency mode compared with the reflectivity fit by resolving two
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components of the split soft triplet emanating from a cubic F1u mode. Another remarkable

fact is that also phonon frequencies determined by the 4-parameter fit and K-K analysis are

somewhat different as can be seen from Fig 6. This is probably due to nonlinear relation

between ε and R, and high sensitivity of the parameters to R, when R approaches 1. When

we conversely calculate reflectivity from the parameters obtained by fitting the K-K results,

the calculated and experimental reflectivity do not match perfectly, although all significant

features in the spectrum are observed. The deviations are especially noticeable in the vicinity

of the LO frequencies, and occur because the 3-parameter model does not take into account

the frequency dependence of the damping as per the discussion following Eq. IV.2.

The static dielectric constant calculated from Kramers-Kronig analysis is in good agree-

ment with the one experimentally measured. This is not a trivial result because it shows

that there is no other dispersion between the infrared region and zero frequency. This also

means that no central peak excitations exist in CaTiO3 and that the behavior of the static

permittivity is fully determined by the soft mode.

Time-dependent Landau theory predicts that the soft mode frequency should vary with

temperature as ν2
s = A(T − T0) (Cochran law), where A is a constant and T0 the transi-

tion temperature. This behavior is equivalent to the Curie-Weiss law (ε(0) = C/(T − T0)),

which describes the anomaly in the temperature dependence of the static dielectric constant.

The situation in CaTiO3 is more complicated because several modes takes part in softening

process. The softening of the lowest-frequency mode stops at 66 cm−1. In Fig 6, we show

the plot of ν2
T vs. T for several phonons. The soft mode frequency in this plot can be fit

approximately by a straight line given by the formula ν2
T = 27 × (T + 105) cm−2, which

intersects the T -axis at a negative value T0 ≈ −105 K. The negative Curie temperature

confirms that CaTiO3 behaves as an incipient ferroelectric, as was previously deduced from

dielectric data[26]. The behavior of CTO, however, contrasts with that of the well-known in-

cipient ferroelectric SrTiO3, where the extrapolated Tc is positive[40]. In the case of SrTiO3,

quantum zero-point motion prevents a phase transition; SrTiO3 is thus a quantum para-

electric. Temperature-dependence of the soft mode frequency characteristic of a quantum

paraelectric phase has been observed in the infrared[41] and hyper-Raman[42] spectra of
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SrTiO3.

D Raman spectroscopy

We also measured the unpolarized Raman scattering in back-scattering geometry of both

CaTiO3 ceramics and single crystal samples. Fig 7(a) shows the temperature dependence of

Raman spectra for ceramic samples in the broad spectral range between 0 and 1000 cm−1.

The room-temperature spectra are in good agreement with the data given in literature[32–

34]. They are dominated by two broad bands (150-600 cm−1 and 650-850 cm−1). In addition,

sharp features are superimposed on the lower-frequency band. The sharp peaks have been

assigned[33] to first order-Raman bands and the broad ones to second-order scattering. This

distinction is based on similarity of the spectra CTO and SrTiO3. In this comparison, the

broad bands of CTO correspond to the second-order bands of the cubic phase of SrTiO3. The

sharp first-order Raman peaks of orthorhombic CTO are similar to the first-order Raman

peaks of tetragonal SrTiO3, which appear below 110 K. On cooling the relative intensity

of the broad bands decreases and some additional sharp peaks appear. The anomalous

temperature softening of several overtones probably arises from the T -dependence of the soft

mode. Among various phonon lines, we focus here on the low-frequency one at 112 cm−1,

which is observed in the Raman spectra of ceramics at T=290 K [Fig 7(b)]. The frequency

of this line softens to 80 cm−1 at T=10 K, in reasonable agreement with the temperature-

dependent frequency of the IR-active soft mode. In contrast to the Raman spectra of

ceramics, this additional line can barely be seen in the Raman spectrum of the high quality

crystal, as demonstrated in Fig 7(b).

Symmetry analysis shows that the soft mode in orthorhombic CTO is not Raman active

to first order. This mode is nonetheless observable in the Raman spectra, probably due

to perturbation of the perfect crystal symmetry by grain boundaries in ceramics[43] or to

second order processes both in ceramics and single crystals. This work reports a Raman

signature for the soft mode in CTO for the first time.
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E Comparison with first principles results

First-principles results provide a basis for more detailed interpretation of the observed

phonon spectra than has previously been possible. Cockayne and Burton[2] calculated the

phonon spectra for the Γ, X, M, and R points of cubic CaTiO3 and for the zone center of

orthorhombic CaTiO3. They used density functional theory and Vanderbilt-type ultrasoft

pseudopotentials[44], as coded in the package VASP[45–48].

The phonon calculations for cubic CTO were done via the frozen phonon method on a

20-atom supercell equivalent to the primitive cell of the orthorhombic structure. This allows

one to estimate the phonon frequencies of intermediate orthorhombic structures via inter-

polation. Given the 60×60 dynamical matrices for the cubic and orthorhombic calculations

Dcubic and Dortho, one obtains interpolated phonon frequencies by finding the eigenvalues of

D(λ) ≡ (1− λ)Dcubic + λDortho. The infrared-active normal mode frequencies as a function

of λ are shown in Figure 2.

Figure 2 is useful for several reasons. It provides a clear graphical representation of the

symmetry relationship between orthorhombic modes and corresponding cubic ones. It allows

convenient description of orthorhombic phonon eigenvectors in terms of the corresponding

cubic ones. The relatively large shifts of phonon frequencies between λ = 0 and λ = 1

(and the significant mixing of eigenvector that we find in some cases) calls into question

the assumption that the orthorhombic phase is a small perturbation of the cubic one. Fi-

nally, the graph allows estimates of the temperature dependence of phonon frequencies of

orthorhombic CTO. As λ increases, octahedral tilting and orthorhombic distortion of the cell

increases, mimicking the effect of decreasing temperature. In particular, the λ-dependence

of frequencies in Figure 2 can be used to identify the soft modes.

Table V compares the low-temperature experimental and first-principles (FP) results.

The phonon frequencies agree well, except that the FP frequencies are generally 10 to

20 cm−1 lower than the experimental ones, a discrepancy which increases with increas-

ing frequency. These differences are most likely a result of errors in the density functional

theory calculations arising from the local density approximation (LDA). (The LDA is well
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known to underestimate lattice parameters. We used the experimental lattice parameters

for CTO here, based on previous calculations showing much better results for the static

dielectric constant of CTO if one uses the experimental lattice parameters rather than the

LDA ones[2].) experimental lattice parameters were used in the calculations.) There is

also good agreement between the relative oscillator strengths predicted from FP and those

observed. Quantitative agreement of oscillator strengths is very good for ν > 400 cm−1 but

only fair for lower frequencies. The calculated mean of the electronic dielectric tensor ε∞, is

6.08. The fits to our experimental data give the practically temperature-independent value

ε∞ = 5.7. Our results are consistent with the well-known tendency of density functional

calculations within the local density approximation to slightly overestimate ε∞[49].

In the following, we interpret the observed phonon spectra of CTO. First, we identify the

bands most closely associated with cubic F1u modes, then we identify the interband features.

We give the experimental frequencies at 6 K, and label modes according to the FP results

(Table V and Figure 2).

68 cm−1 to 124 cm−1: In this frequency range, there is a 1 B1u + 1 B2u + 1 B3u pseu-

dotriplet of modes with very high oscillator strengths. The eigenvectors are cubic 1 Γ F1u-like

and are a superposition of a Ca-TiO3 lattice mode and O-Ti-O bending, with Ca and Ti

moving in the same direction. These modes are difficult to individually resolve by reflectivity

data because R ≈ 1, and because of the directional averaging of reflectance. The strong

softening as temperature decreases is consistent with the decreases in ν with increasing λ in

Figure 2. Is is possible that the 1 B2u mode contributes to the high oscillator strength of the

124 cm−1 feature at 6 K, although Figure 6 shows that this mode hardens to ν = 140 cm−1

at at T=300 K, where its oscillator strength is much too small for it to be the 1 B2u mode.

224 cm−1 to 260 cm−1: As seen in Figure 2, the cubic 2 Γ F1u triplet splits to an

orthorhombic 4 B1u + 3 B2u + 3 B3u pseudotriplet in the 200 cm−1 to 260 cm−1 range in

the orthorhombic phase. Calculations show significant mixing with other modes. As with

the first pseudotriplet, the eigenvectors are a mix of the Ca-TiO3 lattice mode and O-Ti-

O bending, but now Ca and Ti move out-of-phase. The effective charges of the cations

moving in opposite directions largely cancel, leading to phonons whose oscillator strengths
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are relatively small. The 3 B2u and 4 B1u components are resolved experimentally at 224 cm−1

and 260 cm−1, respectively. It is puzzling that no mode can be so clearly identified as the

3 B3u component of this pseudotriplet (predicted ν ≈ 199 cm−1).

495 cm−1 to 549 cm−1: The mode observed at 549 cm−1 is clearly identified as a 7 B1u +

8 B2u + 9 B3u pseudotriplet related to the 3 ΓF1u cubic perovskite B-O-B stretching mode.

The 8 B2u component is close enough in frequency to the 7 B2u component of the 495 cm−1

pseudodoublet to transfer some oscillator strength to it.

124 cm−1 to 181 cm−1: This is the most interesting region. Despite the relatively high

oscillator strengths of the modes in this region, they arise not from cubic F1u modes, but

from cubic zone-boundary features. Two distinct B1u modes which are cubic X Eg-like

appear in this region and are predicted to show significant softening (Figure 2). For this

reason, we identify the mode that softens from 140 cm−1 to 110 cm−1 as the 2 B1u mode

and the mode that softens from 180 cm−1 to 170 cm−1 as the 3 B1u mode. These modes are

primarily O-Ti-O bending modes, except that the Ti in alternating planes move largely out of

phase. Octahedral tilting makes these modes polar in the orthorhombic phase. Note that all

modes that show significant softening involve O-Ti-O bending; thus the soft mode behavior

in CaTiO3 is mainly due to changes in Ti-O bonding as octahedra tilting angles and Ti-O

distances change with temperature. In addition to the X Eg-like modes, computations show

a 2 B2u + 2 B3u pseudodoublet at around 160 cm−1 to 170 cm−1 which arises the cubic 1 M

Eu doublet. This pseudodoublet is primarily a Ca mode, in which different Ca move largely

out of phase. The assignment in Table V of this doublet to two distinguishable modes

is uncertain. Remarkably, since the modes in this region have higher oscillator strengths

than those in the second F1u band, one obtains their frequencies (≈ 160 cm−1) in fitting

to a pseudocubic model, rather than the the average frequency of the real 2 ΓF1u band

(≈ 220 cm−1 [3]).

261-495 cm−1: The phonons in this region are easily and clearly identified in the first

principles calculations. Most significant is a 5 B1u + 7 B3u pseudodoublet at 435.5 cm−1

which arises from a R F2g phonon that becomes polar under octahedral tilting as shown

in Figure 8. Note that this feature was misidentified as a component of the 3 ΓF1u-like
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pseudotriplet in an early study on CTO[29]. The next strongest modes, at 305 cm−1 and

322 cm−1, have eigenvectors similar to cubic X modes with most ionic motion in the z

direction and with opposite motion of atoms in successive layers in the z direction. The

5 B2u mode at 305 cm−1 is dominated by oxygen and Ti moving in the same direction within

a layer. The 5 B3u mode at 322 cm−1 has a torsional oxygen vibration pattern within a layer.

Both these modes become polar due to octahedral tilting.

Above 549 cm−1: The 645 cm−1 feature seen clearly in the reflectivity data is a puzzle

since no TO phonons are calculated to have such high frequencies. It is possible that this

feature corresponds to a localized mode arising from tilting domain boundaries.

V. CONCLUSION

We have used spectroscopic techniques to study temperature dependence of infrared and

Raman spectra of CaTiO3. We have analyzed the infrared spectra by different fitting pro-

cedures, thereby determining phonon frequencies and dielectric dispersion. Three modes

soften significantly (shift to lower frequency) with decreasing temperature. Their temper-

ature behavior accounts for characteristics of an incipient ferroelectric, in agreement with

earlier dielectric studies. Using first-principles calculations, we identified the symmetries

and phonon eigenvectors of nearly all of the observed modes, including those associated

with zone-boundary phonons of the cubic perovskite phase. We have observed for the first

time the soft mode in the Raman spectra of ceramic samples.
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VII. APPENDIX

In this Appendix, we give expressions for the directional dependence of the dielectric

function in an anisotropic crystal and discuss the implications of directional averaging on

model fitting.

The dielectric function for an anisotropic crystal is actually a second rank tensor ε↔(ν).

In principle, one can determine the complete tensor by a set of reflectivity measurements

on a single crystal, using polarized light whose electric field has different orientations n̂

relative to the crystal axes. For each polarization direction, one measures the dielectric

function for that direction: ε(ν, n̂) ≡ n̂ · ε↔(ν) · n̂. Then, εαα(ν) = ε(ν, α̂) and εαβ(ν) =

ε(ν, (α̂ + β̂)/
√

2))− εαα(ν)/2− εββ(ν)/2.

The above expressions are exact. In the remainder of this Appendix, we assume that the

dielectric function can be physically described by a damped oscillator model, and generalize

Eqs. IV.1 and IV.2 to properly include direction dependence. In the three-parameter model,

ε(ν, n̂) = n̂ · ↔ε∞ · n̂+
∑
i

3∆εi(n̂ · p̂)2ν2
iLO

ν2
iTO − ν2 + iγiTOν

, (VII.1)

where p̂ is the electric polarization direction of the i-th phonon. Likewise, in the four-

parameter model:

ε(ν, n̂) = (n̂ · ↔ε∞ · n̂)
∏
i

ν2
iLO(n̂)− ν2 + iγiLO(n̂)ν

ν2
iTO − ν2 + iγiTOν

(VII.2)

where the LO frequencies and damping terms are now direction-dependent.

The above expressions allow one to fit the dielectric function of a single crystal as a

function of ν and n̂ and thus derive the full dielectric tensor, as was done for trigonal rare-

earth chlorides by Berreman and Unterwald[37]. Unfortunately, we are unable to do this

for the CTO samples in the present work. For the ceramic samples, different grains have

different orientations n̂ with respect to the electric field polarization of the incident light,

even if polarized light is used. In our single crystal samples, there are tilting domains,

therefore n̂ is different for different domains. Given that directional information of the

dielectric function is already lost, unpolarized light was used in this work. To properly

analyze the reflectivity results, one must derive the proper reflectivity expressions for a
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multigrain and/or multidomain anisotropic crystal. This result will depend on the details

of the microstructure. In the case of CTO, we assume that inhomogeneities due to domain

boundaries are small and that we can neglect depolarizing fields. This is justified when one

has a single phase sample with small anisotropy of the dielectric function. In the following,

we analyze in terms of two simplified models: first an effective permittivity model and

secondly an average reflectivity model.

In the effective permittivity model, the inhomogeneities are averaged out such that the

incident light sees a homogeneous medium whose dielectric function is the the direction-

averaged dielectric function of the underlying crystal. Thus εeff (ν) = (1/(4π))
∫
dn̂ ε(ν, n̂).

In this model,

Reff (ν) =
∣∣∣√εeff (ν)− 1√

εeff (ν) + 1

∣∣∣2 . (VII.3)

Because ε↔ is a second rank tensor, εeff (ν) = Tr( ε↔(ν))/3. For the three-parameter oscillator

model VII.1, we reobtain Eq. IV.1, with ε∞ = Tr( ↔ε∞)/3. In other words, fitting εeff (ν)

via a three parameter model gives the correct physical values for ε∞, νTOi ∆εi, and γTOi,

even though the crystal is anisotropic. Only the phonon polarization directions p̂i are un-

determined. Similarly, neglecting damping, the directional averaging of the four-parameter

model VII.2 can be expressed in the form of Eq. IV.2, which yields the correct physical

values for ε∞, νTOi, and ∆εi, (the LO frequencies determined are the zeroes of εeff (ν) and

do not represent the set of LO frequencies for any particular direction n̂). Assuming that

the directional dependence of γiLO(n̂) is small, the 4-parameter model will yield physically

meaningful parameters even in the presence of damping.

Things are more complicated, however, if one averages reflectances rather than dielectric

functions. Suppose that different regions of the surface reflect incident radiation according

to the local n̂, without constructive or destructive interference. Then, the total reflectivity

is the average of reflectance over directions Rave(ν) = (1/(4π))
∫
dn̂R(ν, n̂). Given the

nonlinear relationship between R and ε(ν) ( IV.4), however, Rave(ν) is not equal to Reff (ν).

In this case, the physical validity of the parameters obtained by model fitting comes into

question.

It is difficult to derive analytical results for the relationship between the oscillator pa-
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rameters determined from fitting Rave(ν) to a particular model and those of the original

oscillator model. To gain insight into the issues involved, we selected a specific model for

CTO and compared the reflectivities derived under effective permittivity theory with the

average reflectivity. For simplicity, we used a three-parameter model, with ε∞, νTOi, and ∆εi

taken from Ref.[2], and with the same damping parameter 20 cm−1 for all modes. Results

are shown in Figure 9. Fortunately, the two results are very similar for most frequencies.

The largest differences are in the sharp minima of R, especially those near 410 cm−1 and

470 cm−1.

Least-squares fits to Rave using the original oscillator parameters as a starting point gives

ε∞ correct to within 0.1 % and TO and LO phonon frequencies that are correct to within

1 cm−1, except in the 410 cm−1 to 470 cm−1 region, where errors as large as 3 cm−1 occur.

On the other hand, some damping terms in the highly dispersive region have errors that

are greater than a factor of 2. The oscillator strengths for isolated modes with strength

greater than 0.1 are correct to within 30 %; the weakest modes and individual modes in

pseudomultiplets have larger relative errors, though the combined oscillator strength of each

pseudomultiplet is correct to within 30 %.

This Appendix shows the significance of directional averaging for a ceramic or multido-

main single crystal in interpreting the parameters obtained in a reflectivity fit. We suspect

that the observed reflectance in our experiments on single crystal CTO is between Reff

and Rave, but closer to Rave. We conclude that the frequencies determined in the fits are

highly reliable and that the oscillator strengths of isolated modes and the combined oscilla-

tor strengths of pseudomultiplets are reliable to within 30%. The damping terms, however,

are not reliable. Accurate partitioning of oscillator parameters between components of

multiplets, and accurate determination of damping parameters will require experiments on

single-domain single crystals.
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FIG. 1: Frequency dependence of the infrared reflectance for CaTiO3 at selected tempera-

tures. The experimental data are given by solid lines. The dashed lines represent fits by the

4-parameter model assuming three infrared active modes.
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FIG. 2: First-principles frequencies for infrared-active phonons in CaTiO3. The parameter

λ interpolates between results for cubic CaTiO3 (λ = 0) and orthorhombic CaTiO3 (λ = 1).

Although the frequencies are system-dependent, the symmetry relationships between the

cubic and orthorhombic modes are general for a Pm3m to Pbnm transition (see also Table II).
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FIG. 3: Infrared reflectance of CaTiO3 at 6 K and 300 K fitted by the 4-parameter model

assuming 14 infrared active modes (optimum fit).
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FIG. 4: ε1(ν) and ε2(ν) for CaTiO3 at 6 K and 300 K obtained from Kramers-Kronig

analysis in the spectral region containing all infrared-active phonons. Pseudocubic modes,

as determined from fit to pseudocubic oscillator model, are shown by dark arrows. As

discussed in section IV E, however, the modes near 157 cm−1 actually arise from cubic zone-

boundary modes; the 225 cm−1 and 260 cm−1 peaks show two components of the second

pseudocubic triplet as determined from first-principles calculations.
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FIG. 5: Temperature dependence of ε1(ν) and ε2(ν) for CaTiO3 in the spectral region of the

soft modes (below 250 cm−1). Lines are obtained from Kramers-Kronig analysis. Crosses

and squares (visible near ν = 10 cm−1) are experimental BWO measurements at 6 and 300

K for real and imaginary ε, respectively.
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FIG. 6: Temperature dependence of the low-frequency modes. The open symbols were

obtained fitting the reflectivity by 4-parameter model assuming 14 modes. The solid symbols

results from simultaneously fitting ε1(ν) and ε2(ν) obtained from K-K analysis. The solid

line shows the plot ν2
T = 27× (T + 105).
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FIG. 7: (a) Temperature-dependent Raman spectra of CaTiO3 ceramics sample. (b) Low

frequency Raman spectra of CaTiO3 ceramics sample at different temperatures as well as

Raman spectrum of CaTiO3 crystal at room temperature. For clarity, the spectrum marked

“290 K crystal” is shifted vertically by 10 units with respect to all the other spectra.

(b)(a)

Ti
O

FIG. 8: Schematic of how a zone-boundary phonon for cubic CaTiO3 (a) can become a polar

zone-center mode for orthorhombic CaTiO3 (b) due to octahedral tilting. The mode shown

corresponds to one component of the pseudodoublet observed at ν ≈ 436 cm−1
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FIG. 9: Comparison of simulated R(ν) for a CaTiO3 oscillator model under unpolarized

light, based on two different averaging schemes. Note the extreme closeness of the two

spectra except in the regions of the sharpest minima.

30



TABLE I: CaTiO3 phonon parameters at various temperatures using pseudocubic approxi-

mation (3 modes) and fitting to 4-parameter model. ε∞ is 5.6, 5.6, 5.7 and 5.7 for 300, 200

100 and 6 K, respectively. All frequencies and dampings are in cm−1.

T [K] νT γT νL γL ∆ε

300 111.5 50.0 155.8 6.0 207.1

156.9 10.4 496.7 39.3 2.9

549.4 25.6 793.9 26.5 1.1

200 102.4 46.5 155.7 5.12 267.3

156.5 9.2 498.3 37.7 1.9

547.9 46.7 794.2 5.1 1.1

100 85.5 52.1 156.7 4.6 400.9

157.6 8.1 501.3 37.0 1.2

547.4 17.9 793.6 22.5 1.0

6 76.9 42.5 157.1 4.6 504.5

157.6 8.0 501.2 34.6 1.0

546.8 16.7 793.5 21.7 1.0
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TABLE II: Symmetry relationships between phonons for cubic perovskite structure and

for a−a−b+ tilted Pbmn orthorhombic perovskites. Symmetry labels in Bouckaert et al.

notation are given for comparison with recent first-principles literature. All orthorhombic

modes are zone-center.

Cubic mode Cubic mode Orthorhombic mode(s)

(point group notation) (Bouckaert et al. notation[50])

Γ F1u Γ15 B1u + B2u + B3u

Γ F2u Γ25 Au + B2u + B3u

X A1g X1 B2u

X A2u X2′ B2g

X B1g X3 B3u

X Eg X5 Au + B1u

X Eu X5′ Ag + B1g

M A1g M1 B1g

M A2g M2 Ag

M A2u M2′ Au

M B1g M3 Ag

M B1u M3′ Au

M B2g M4 B1g

M Eg M5 B2g + B3g

M Eu M5′ B2u + B3u

R A2u R2′ B3g

R Eu R12′ B2g + B3g

R F1u R15 Ag + B1g + B3g

R F2g R25′ Au + B1u + B3u

R F2u R25 Ag + B1g + B2g
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TABLE III: CaTiO3 phonon parameters at various temperatures, using 14 modes and fitting

to 4-parameter model. ε∞ is 5.6 and 5.7 for 300 and 6 K, respectively. All frequencies and

dampings are in cm−1.

T [K] νT γT νL γL ∆ε

300 105.8 32.3 139.2 36.7 167.14

140.8 19.1 156.5 8.0 3.78

159.0 8.2 165.6 10.7 2.87

169.4 9.7 183.4 17.7 5.45

189.0 16.7 223.8 11.6 6.04

225.4 10.5 261.5 15.1 0.95

263.1 14.0 300.9 8.2 0.47

302.0 8.5 315.9 13.7 0.16

318.5 12.4 368.4 10.9 0.39

368.8 11.0 426.8 32.2 0.03

439.7 25.0 483.6 21.2 0.36

495.3 23.0 503.7 17.0 0.08

548.6 25.9 644.4 54.6 1.38

644.9 56.3 795.1 27.1 0.01

6 67.7 13.6 107.1 79.9 295.05

124.3 39.2 159.1 3.6 42.20

159.8 3.6 164.4 18.9 0.40

172.9 12.0 178.7 7.9 7.83

180.8 18.5 220.7 7.7 4.55

224.3 9.1 256.9 10.1 1.86

259.9 11.8 303.1 6.7 0.94

304.9 6.8 318.1 8.5 0.25

321.7 9.1 374.8 12.3 0.55

376.1 11.7 422.1 11.4 0.09

435.5 12.5 485.2 14.7 0.48

494.9 18.7 506.8 15.2 0.11

545.6 16.7 642.2 54.3 1.24

642.1 55.2 794.5 24.2 0.01
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TABLE IV: CaTiO3 phonon parameters at room temperature and 6 K obtained by fit-

ting simultaneously the low-frequency part of ε1(ν) and ε2(ν) to a 3-parameter model. All

frequencies and dampings are in cm−1.

T [K] νT ∆ε γ

300 94.4 46.4 27.1

109.1 108.3 26.4

132.2 18.6 16.5

159.8 1.1 4.1

168.9 5.2 9.7

187.6 3.9 13.4

224.2 0.6 7.5

6 66.2 131.1 17.0

73.4 210.4 13.5

107.8 50.6 13.2

161.2 1.4 5.0

168.5 2.5 6.2

184.2 1.4 5.9

224.3 1.0 5.7
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TABLE V: Comparison of experimental results for CaTiO3 phonon parameters at 6 K with

first-principles (FP) results. Frequencies are in cm−1.

Expt. Expt. FP FP FP

ν ∆ε symmetry ν ∆ε

67.7 295.05 1B3u; 1B1u 85.3; 86.8 177.0

124.3 42.20 1B2u; 2B1u 103.6; 111.8 75.66

159.8 0.40 2B3u 159.8 2.52

172.9 7.83 2B2u 161.0 4.64

180.8 4.55 3B1u 171.0 3.48

3B3u 199.2 0.46

224.3 1.86 3B2u 216.9 0.23

259.9 0.94 4B2u; 4B1u 250.3; 250.7 0.53

4B3u 271.1 0.00003

304.9 0.25 5B2u 294.3 0.47

321.7 0.55 5B3u 310.8 0.31

6B2u 332.1 0.02

376.1 0.09 6B3u 361.6 0.05

435.5 0.48 5B1u; 7B3u 422.7;423.8 0.48

6B1u 468.1 0.0007

494.9 0.11 7B2u 479.6 0.07

8B3u 482.7 0.0005

548.6 1.24 8B2u; 7B1u; 9B3u 504.5;507.7;525.2 1.34

9B2u 546.0 0.004

642.1 0.01
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