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ABSTRACT

A scheme for validating quantitative precipitation forecasts (QPFs) for landfalling tropical cyclones is
developed and presented here. This scheme takes advantage of the unique characteristics of tropical cyclone
rainfall by evaluating the skill of rainfall forecasts in three attributes: the ability to match observed rainfall
patterns, the ability to match the mean value and volume of observed rainfall, and the ability to produce the
extreme amounts often observed in tropical cyclones. For some of these characteristics, track-relative
analyses are employed that help to reduce the impact of model track forecast error on QPF skill. These
characteristics are evaluated for storm-total rainfall forecasts of all U.S. landfalling tropical cyclones from
1998 to 2004 by the NCEP operational models, that is, the Global Forecast System (GFS), the Geophysical
Fluid Dynamics Laboratory (GFDL) hurricane model, and the North American Mesoscale (NAM) model,
as well as the benchmark Rainfall Climatology and Persistence (R-CLIPER) model. Compared to R-
CLIPER, all of the numerical models showed comparable or greater skill for all of the attributes. The GFS
performed the best of all of the models for each of the categories. The GFDL had a bias of predicting too
much heavy rain, especially in the core of the tropical cyclones, while the NAM predicted too little of the
heavy rain. The R-CLIPER performed well near the track of the core, but it predicted much too little rain
at large distances from the track. Whereas a primary determinant of tropical cyclone QPF errors is track
forecast error, possible physical causes of track-relative differences lie with the physical parameterizations
and initialization schemes for each of the models. This validation scheme can be used to identify model
limitations and biases and guide future efforts toward model development and improvement.

1. Introduction

One of the most significant impacts of landfalling
tropical cyclones (TCs) is the copious rainfall they often
produce. Drowning from inland flooding in landfalling
TCs was the leading cause of death from storms affect-
ing the United States between 1970 and 2000 (Rappa-
port 2000). Such a significant impact highlights the im-
portance of obtaining accurate rainfall forecasts for

landfalling TCs. While significant improvements have
been made in forecasts of TC track (Franklin et al.
2003; Aberson 2001) and, to a lesser extent, intensity
(DeMaria and Gross 2003; DeMaria et al. 2005), much
less attention has been focused on improving forecasts
of rainfall (quantitative precipitation forecasting, or
QPF) from TCs. Before TC rainfall forecasts can be
improved, however, they must first be validated against
observations to identify model limitations and biases
and possible areas for improvement in the forecasts.
Standard QPF validation techniques, such as bias and
equitable threat scores, can assess some aspects of TC
QPFs. However, an additional set of QPF validation
techniques specific to TCs is needed in order to evalu-
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ate the ability of the models to predict rainfall at-
tributes unique to TCs, such as the extreme rain
amounts so often responsible for the death and damage
accompanying landfall.

Rainfall from a landfalling tropical cyclone is depen-
dent on numerous storm-related and environmental
factors. Tropical cyclone track is a significant determi-
nant of the distribution of rainfall from the storm, with
the heaviest rainfall occurring in a narrow swath close
to the track of the storm (Lonfat et al. 2004). The trans-
lational speed of the storm plays an important role,
both in creating azimuthal asymmetries in the rainfall
field (Shapiro 1983) and in determining the duration of
the rainfall. Another important determinant of TC
rainfall is the presence of topography. The combination
of strong winds, high moisture content, and sharp ter-
rain gradients can create pronounced differences in
rainfall on the windward and leeward sides of mountain
slopes (e.g., Lin et al. 2001; Wu et al. 2002). The prox-
imity of synoptic features, such as frontal boundaries
and upper-level troughs (Bosart and Lackmann 1995;
Atallah and Bosart 2003) can create significant bands of
heavy rainfall at distances well removed from the TC.
Vertical shear of the environmental wind can create
asymmetries in the inner-core rainfall field that are re-
lated to the magnitude and direction of the shear vector
(Bender 1997; Jones 2000; Frank and Ritchie 2001;
Black et al. 2002; Corbosiero and Molinari 2002; Rog-
ers et al. 2003; Lonfat et al. 2004). Finally, the intensity
of the storm, the environmental humidity, and the
properties of the underlying surface can impact the
amount and distribution of rainfall received from a
landfalling TC.

Tropical cyclone QPF techniques have been devel-
oped that account for various combinations of these
factors. The simplest technique, which is known as
Kraft’s rule of thumb [attributed to R. H. Kraft by Pfost
(2000)], consists of dividing a constant value by the
translational speed of the storm to estimate the maxi-
mum rainfall that will be produced over a given loca-
tion and time period traversed by the storm. While this
technique accounts for the translational speed of the
storm, it includes no information on the structure of the
rainfall field. The Tropical Rainfall Potential (TRaP)
method (Kidder et al. 2005) that was developed by the
National Oceanic and Atmospheric Administration’s
(NOAA) Satellite Services Division (SSD) translates a
satellite-estimated precipitation field to generate a 24-h
rainfall accumulation. The Rainfall Climatology and
Persistence (R-CLIPER) model is a climatology-based
parametric model that has recently been developed
(Marks et al. 2002; DeMaria and Tuleya 2001; Tuleya et
al. 2007) to provide a benchmark against which fore-

casts of TC rainfall can be compared, similar to the way
in which climatology and persistence-based CLIPER
(Neumann 1972; Aberson 1998) and Statistical Hurri-
cane Intensity Forecast (SHIFOR; Jarvinen and Neu-
mann 1979; Knaff et al. 2003) predictions provide the
benchmarks for track and intensity forecasts, respec-
tively. The current operational version of the R-
CLIPER, which is based on satellite-derived tropical
cyclone rainfall observations (Marks et al. 2002), as-
sumes a circularly symmetric distribution of rainfall and
translates this distribution in time. It captures the domi-
nant signals of translational speed and storm intensity,
but it does not incorporate other processes that create
asymmetries in the rain field. The most complex fore-
casting systems for producing TC QPFs are three-
dimensional numerical models that produce spatially
and temporally varying rainfall fields. The benefit of
using numerical models is their ability to depict changes
in the structure of tropical cyclones over time and how
these changes are reflected in the rain field, both in a
storm-relative sense and with accumulated rainfall
swaths over a geographical area. Such models do suffer
from deficiencies, related to resolution limitations and
deficiencies in the representation of the initial state of
the atmosphere and physical processes in the model. It
is these deficiencies that can be identified by applying
validation schemes specific for TC rainfall.

As an example of the varying abilities of numerical
models to reproduce rainfall fields, storm-total rainfall
fields for Hurricane Isabel (2003) produced by four
models [i.e., Geophysical Fluid Dynamics Laboratory
(GFDL), Global Forecast System (GFS), North Ameri-
can Mesoscale (NAM), and R-CLIPER] that have
varying resolutions and complexities, are compared
with observations in Fig. 1. All forecast and observed
rainfall data in this figure have been interpolated onto
a common 0.1° latitude–longitude grid. This case is
highlighted here because the forecast track errors from
the different model forecasts were relatively small.
Therefore, it is likely that the differences in the distri-
bution of rainfall are attributable to a variety of factors
related to the handling of various physical processes by
the models, and not just simply to differences in track
forecasts. The observed rain maximum stretches along
and just to the right of the storm track, and there is
significant structure in the rain field, corresponding to
rainbands and topographic effects. Although the R-
CLIPER model reproduces the general pattern of the
rainfall, the amounts are smaller than observed and
little of the structure in the rain field is predicted. The
GFDL model predicts rain amounts and structures
comparable to the observations, and the NAM and
GFS models predict some structure to the rain field.
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Whereas the GFS predicts a larger area of maximum
rain than was observed, the NAM predicts a smaller
area of heavy rain. Farther inland, over Ohio and West
Virginia, the GFDL and NAM models, and to a lesser
extent the GFS model, predict a secondary axis of

heavier rainfall to the left of the observed storm track
that is consistent with the observations. However, the
R-CLIPER produces only the main axis of heaviest
rainfall that is aligned with the storm track.

This example illustrates many aspects of TC-

FIG. 1. Plot of 72-h accumulated rain (shaded, in.) from 1200 UTC 17 Sep to 1200 UTC 20
Sep 2003 for (a) stage-IV observations, (b) GFS, (c) GFDL, (d) NAM, and (e) R-CLIPER.
The observed track is shown in black; each model’s forecast track is shown in red.
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produced rainfall that are desirable to incorporate into
a validation scheme. The TC circulation dynamically
constrains convective development to storm-relative lo-
cations that may persist for time periods from hours to
days. The ability of a model to reproduce observed
rainfall fields is dependent on its ability to capture these
dynamical features (e.g., eyewall, rainband, and strati-
form rain) and to accurately predict the track and in-
tensity of the storm as well as interactions with topog-
raphy and other environmental features. A validation
scheme that can target these regions of a storm and
account for the different abilities of the models to pre-
dict track and intensity is required to identify model
limitations and biases in the forecasts. Furthermore,
much useful information can be obtained by consider-
ing the performance of the model forecasts for the en-
tire distribution of rainfall in a statistical manner, not
just peak rainfall amounts or point comparisons with
specific rain gauges. Focusing on the statistical proper-
ties of rainfall distributions is particularly important
when comparing models of varying resolution to obser-
vations based on comparatively small sampling areas
such as from radar data or rain gauges, since a spatially
averaged field always has lower variability than point
values (Tustison et al. 2001) and cannot reproduce the
extreme amounts and high-frequency signal from the
point values. Until recently, many QPF validation
schemes for tropical cyclones have been run on fixed
geographical domains. Notable exceptions include
Ebert et al. (2005) and Ferraro et al. (2005), who uti-
lized the technique of Ebert and McBride (2000) to
evaluate TRaP forecasts for landfalling TCs. With this
technique, validations were performed on bounded re-
gions of significant rainfall that were identified and
matched in both the forecast and observed fields. An-

other example is in the study of Tuleya et al. (2007),
who targeted the validation domains to areas close to
the storm track. Such schemes narrow the focus of the
validation to rainfall that is more directly linked with
the storm and, thus, make the validation storm specific.

In this paper, our primary goal is to develop and test
a QPF validation scheme specifically designed to objec-
tively evaluate model rainfall forecasts for landfalling
tropical cyclones. We test this scheme by performing
validations of all U.S. landfalling TCs from 1998 to 2004
using the operational GFS, NAM, and GFDL hurricane
models. The skill of these models is measured relative
to the benchmark R-CLIPER forecasting scheme and
validated against multisensor gridded rainfall observa-
tions available online. The validation scheme accounts
for the varying abilities of the models to reproduce el-
ements of the storm (e.g., structure, track, and inten-
sity), compares the entire rainfall distribution rather
than just the peak rainfall, considers the total volume of
rainfall for some of its metrics, and focuses on storm-
related rainfall.

2. Data and methodology

A total of 35 U.S. landfalling storms between 1998
and 2004 (Table 1) are studied, with a range in inten-
sities from a tropical depression (Henri of 2003) to a
category 4 strength hurricane (Charley of 2004) at land-
fall. One forecast from each storm is included in the
database. To coincide with the storm database used by
Tuleya et al. (2007), the initial times were always from
the last 1200 UTC time within 24 h of landfall. Forecast
and observed data for each storm were included in the
database until advisories from the National Hurricane
Center (NHC) were no longer issued for the storm. The

TABLE 1. Storms included in this study by year. Boldface indicates the storm was of hurricane intensity at landfall, while lightface
indicates tropical depressions and tropical storms. All cases used begin at 1200 UTC on the date indicated. Numbers in parentheses
indicate the observed maximum wind speed (kt) at landfall.

1998 1999 2000 2001 2002 2003 2004

Bonnie, 26 Aug
(95)

Bret, 22 Aug
(100)

Gordon, 17 Sep
(55)

Allison, 5 Jun
(45)

Bertha, 4 Aug
(35)

Bill, 30 Jun (50) Bonnie, 12 Aug
(45)

Charley, 21 Aug
(40)

Dennis, 4 Sep
(60)

Helene, 21 Sep
(65)

Barry, 5 Aug
(60)

Edouard, 4 Sep
(35)

Claudette, 15
Jul (75)

Charley, 13 Aug
(125)

Earl, 2 Sep (70) Floyd, 15 Sep
(90)

Gabrielle, 13
Sep (60)

Fay, 6 Sep (50) Grace, 31 Aug
(35)

Frances, 4 Sep
(95)

Frances, 10 Sep
(45)

Harvey, 21 Sep
(50)

Hanna, 14 Sep
(45)

Henri, 5 Sep
(30)

Gaston, 29 Aug
(65)

Georges, 27 Sep
(90)

Irene, 15 Oct
(70)

Isidore, 25 Sep
(55)

Isabel, 17 Sep
(90)

Ivan, 15 Sep (110)

Hermine, 19 Sep
(35)

Kyle, 11 Oct
(35)

Jeanne, 25 Sep
(105)

Lili, 2 Oct (85) Matthew, 9 Oct
(40)
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tracks of the storms used in the study are shown in Fig.
2. While the storms took a variety of tracks over the
Gulf and Atlantic coast states, the majority made land-
fall along the Gulf coast. Nevertheless, the storm tracks
passed over a variety of topographies with different
translational speeds and, thus, include a wide spectrum
of conditions that produced many different rainfall dis-
tributions.

Rainfall observations were from the stage-IV hourly
4-km gridded rainfall data (stage II prior to 2002) pro-
vided by the Environmental Modeling Center (EMC)
at the National Centers for Environmental Prediction
(NCEP; Baldwin and Mitchell 1997). The 13 regional
River Forecast Centers (RFCs) perform quality control
on these data and then send them to EMC where they
are combined into a unified analysis. These data consist
of multisensor (i.e., rain gauges, radar) rainfall maps
that cover the entire contiguous United States and are
available on an hourly basis for all times back to 1998.
In Tuleya et al. (2007), only rain gauges were used and
hurricane-specific verifications were calculated at the
gauge sites. In this paper, the more complete stage-IV
multisensor rain observations were used and hurricane-
specific verifications were calculated after interpolating
the analyzed values to a 0.l° latitude–longitude grid. It
should be noted that for proper radar estimation of
rainfall from tropical systems, an adjustment to the re-
flectivity–rainfall rate (Z–R) factor is recommended

(Fulton et al. 1998), and it is unclear how fully reliable
the application of that adjustment is in practice.

The predictions used are from the real-time opera-
tional NCEP models used in forecasting hurricanes: the
2003 version of the GFDL hurricane model, the GFS,
and the NAM model. The study was limited to these
dynamical models due to the availability of archived
synoptic forecast data from these models back to 1998.
The GFDL model is a nested, hydrostatic regional
model run with a minimum horizontal grid length of
1/6° (approximately 18 km), the GFS (previously
known as the Aviation, or AVN, Model) is a global
spectral model run at approximately 1/2° resolution
(approximately 55 km), and the NAM (previously
known as the Eta Model) is a limited-area model with
a minimum grid length of 12 km. The climatology-
based R-CLIPER model provides a benchmark to
evaluate the skill of the dynamical models. The R-
CLIPER is run at 4-km grid length and uses the NHC
official forecast positions as a guide. For all of the
analyses performed in this study, forecast data from the
models were interpolated to the same 0.l° latitude–
longitude grid as used for the observed stage-IV data. A
common grid of such fine resolution was chosen in or-
der to retain as much of the magnitude as possible of
the extreme rainfall values frequently observed in TC
rainfall data. The choice of resolution for the data and
the verification grid box will have some impact on the

FIG. 2. Observed tracks for all tropical cyclones used in study. Dots indicate the starting
positions for each forecast included in this study. Line thickness indicates storm intensity
classification along the tracks.
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validation statistics (Tustison et al. 2001; Gallus 2002).
Tests were performed to determine the sensitivity of
TC QPF validation techniques developed in this study
to varying grid resolution, and results from these tests
will be discussed below in section 3. It should be noted
that the QPF validation techniques developed as part of
this study are not restricted to use with only fine-
resolution grids, and in fact they may be used with
coarser-resolution data as well.

When calculating the rainfall forecast statistics, the
areal domains of the forecasts and observations are re-
stricted with a land–sea mask, and Canada and Mexico
are excluded from the analyses. For most of the evalu-
ations, only those areas within 600 km of the observed
storm track are included. Some validations will be done
in a track-relative manner (described below), and for
these procedures, only data within 400 km of the fore-
cast or observed track are included in the analyses. The
purpose of these track-based domain restrictions is to
limit the inclusion of rainfall that is not directly related
to the tropical cyclone, such as rainfall from a frontal
boundary or midlatitude cyclone that falls at radii well
removed from the track of the TC.

All of the statistics in this study are for storm-total
rainfall and include data up to a maximum lead time of
72 h, although the verification period for an individual
case will be shorter if the storm dissipates or becomes
extratropical prior to 72-h lead time. This use of storm-
total rainfall, combined with the 600-km-track radius
limit described above, means that all rainfall is included
that falls anywhere within 600 km of the track, exclud-
ing the previously mentioned sea- and land-masked re-
gions, from the beginning of the forecast through 72 h
or the lead time at which the storm becomes nontropi-
cal.

Numerous observational and modeling studies have
highlighted the importance of the extratropical transi-
tion (ET) process in modifying the structure of a tropi-
cal cyclone and its rainfall distribution (e.g., DiMego
and Bosart 1982; Klein et al. 2000; Ritchie and Elsberry
2001; Atallah and Bosart 2003; Colle 2003). However,
the databases used to develop the R-CLIPER model
did not explicitly contain cases from nontropical sys-
tems (Tuleya et al. 2007), and since we are using R-
CLIPER as our climatology benchmark model in this
study for assessing the skill of the operational models
for TC QPF, we will only perform validations up to the
time at which the NHC discontinues its tracking of a
storm as a tropical system. An interesting follow-up to
the current study would be to extend the analysis to
include storms that are undergoing extratropical tran-
sition.

3. Development of TC QPF metrics

In this section, we present a new set of techniques for
validating TC rainfall forecasts as well as a set of met-
rics for objectively comparing operational numerical
TC rainfall forecasts against one another and against
the benchmark R-CLIPER forecasts. As discussed in
the introduction, many aspects of TC rainfall forecasts
should be compared to assess the skill of a particular
forecast and identify possible model limitations and bi-
ases in the forecasts. For the Isabel forecasts in Fig. 1,
some models showed a better ability to predict the
overall pattern of rainfall, that is, the maximum along
and to the right of the track and local maxima associ-
ated with the rainbands and topography, respectively,
and local minima associated with topography (GFDL,
NAM). Other models (e.g., R-CLIPER) were inca-
pable of producing any such structures in the rainfall
field. Some of the models also showed a better ability to
produce the lighter rainfall amounts (GFS, GFDL, R-
CLIPER), while others better produced the heavier
rainfall amounts (GFS, GFDL). Rainfall amounts at
the extreme end of the distribution [6–8 in. (152–203
mm) in this case] were better produced by some models
(GFS and GFDL) and were not at all produced in oth-
ers (NAM and R-CLIPER). Finally, the rainfall fore-
casts depend on the track of the storm predicted by the
model (i.e., GFDL, GFS, and NAM) or provided by an
external source (R-CLIPER). The GFDL and NAM
predictions in Fig. 1 are well correlated with the ob-
served fields despite track errors by both of those mod-
els after landfall. The GFS forecast track was very close
to the observed track in the 12 h after landfall, and the
forecasted rain field was well correlated with the ob-
served rainfall.

The predictions in Fig. 1 illustrate three elements of
TC rainfall forecasts that will be used as a basis for
comparing the various models:

1) model ability to match the large-scale rainfall pat-
tern,

2) model ability to match the mean rainfall and the
distribution of rain volume, and

3) model ability to produce the extreme amounts often
observed in TCs.

Methods for validating the forecasts that address
each of these elements are described and presented in
this section. In addition, since our goal is to use these
new techniques to evaluate and compare the skill of
operational TC rainfall forecasts, it is necessary to ana-
lyze results from the techniques using metrics that are
as objective as possible. Since several of the techniques
that will be described below are represented through
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profiles and plots that can allow for some degree of
subjective interpretation, comparisons of each new
metric will be synthesized into a skill index to facilitate
objective comparisons among the various models and
against the benchmark R-CLIPER. The skill indices
will rely upon algorithms that assign a value ranging
from 0 for no skill to 1 for the most skill. Table 2 shows
a list of the skill indices, which of the three elements
they most directly address, and whether their values are
predominantly track dependent or track independent.
The formulation for each skill index algorithm is de-
scribed in the appendix.

a. Pattern matching

For the pattern-matching techniques, two metrics
that are commonly used in validations of QPFs are also
used here to evaluate the ability of models to reproduce
observed rainfall patterns produced by the landfalling
TCs: equitable threat score (ETS; Schaefer 1990) and
pattern correlation. The ETS is essentially the ratio of
the number of forecast “hits” to the total number of
forecast hits and misses, but it includes a “chance” fac-
tor to account for the number of hits that would be
expected to occur purely due to random chance. This
chance factor penalizes a model for erroneously over-
producing rainfall amounts above a given threshold.
Hits are defined as locations where the forecast rainfall
amount matches or exceeds the observed rainfall
amount for a given rainfall threshold. Pattern correla-
tion is simply the correlation coefficient of the forecast
rainfall and the observed rainfall at all grid points. Both
the ETS and pattern correlation are dependent on the
specific geographic location of the forecast and the ob-
served amounts of rainfall and are thus sensitive to
model track forecast errors.

The ETSs and the pattern correlations for the various
models for the U.S. landfalling storms are provided in
Fig. 3. For both analyses, all data points within 600 km
of the best track are included. While the GFS model
generally has the highest ETS across all rainfall thresh-

olds, including the highest threshold of 9 in. (229 mm),
the R-CLIPER model has the smallest ETS across all
rainfall thresholds. The most significant ETS differ-
ences between the GFS and the other models occur at
the low and high extremes of the rainfall distribution
[i.e., �0.25 in. (6.4 mm) and �2 in. (51 mm)]. The cor-

TABLE 2. Summary of individual TC QPF skill indices, whether they are dependent or independent of track error, and the primary
QPF attribute described.

Index

Dependency on track error QPF attribute described

Error dependent Error independent Pattern Mean/volume Max

Large-scale ETS � �

Pattern correlation � �

Mean rainfall error index � �

Large-scale CDF median value � �

Track-relative CDF median value � �

Large-scale CDF percentage at 95th percentile � �

Track-relative CDF percentage at 95th percentile � �

FIG. 3. (a) ETS and (b) QPF pattern correlations for storm-total
rainfall for all models and all U.S. landfalling storms from 1998 to
2004.
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relation statistics (Fig. 3b) show significant case-to-case
variability in the performance of the models. In general,
the GFS has the highest frequency of superior perfor-
mance (highest r for 38% of the cases) for pattern cor-
relations, while the GFDL and the R-CLIPER models
have the lowest frequency of superior performance
(highest r for 18% of the cases). Summed over all
storms in this study, the average correlation coefficients
(r) are as follows: GFS, 0.65; NAM, 0.56; GFDL, 0.50;
and R-CLIPER, 0.40.

The pattern-matching verifications in this and the fol-
lowing sections are performed using data that have
been interpolated to a grid with 0.1° latitude–longitude
resolution. As described by Gallus (2002), the resolu-
tion of the verification grid box will have an impact on
the equitable threat scores, with scores improving when
the verification is performed on a coarser grid. We in-
vestigate this effect in the present study by interpolat-
ing all of the original forecast and observed data to a
grid resolution of 0.5° latitude–longitude, or about the
resolution of the coarsest model in the study (GFS),
and then reevaluating the ETS and pattern correla-
tions. The interpolations are performed using a budget
interpolation, which is a nearest-neighbor averaging
method that Accadia et al. (2003) have shown con-
serves total precipitation with more accuracy than bi-
linear interpolation.

The comparisons in Fig. 4a indicate a very small, but
consistent, improvement in ETS for the GFDL, GFS,
and NAM models when validating using the coarser-
resolution data. For the heavy rain thresholds [5 in.
(127 mm) and greater], the results for each of these
models are nearly identical for the two different grid
resolutions. The comparison of pattern correlation co-
efficients in Fig. 4b indicates similar incremental im-
provements for the GFDL, GFS, and NAM models
when using the coarser-resolution data. The improve-
ments accomplished by validating the coarser data from
the GFDL, GFS, and NAM models are small and com-
parable in magnitude and direction among the three
models; therefore, the change in verification grid reso-
lution does not alter the conclusions derived from this
pattern-matching segment of the verification. Finally,
the improvements seen in ETS and pattern correlation
for the R-CLIPER are negligible, likely due to the fact
that the already very smooth fields of the R-CLIPER
forecasts do not gain much of an advantage in the veri-
fications by being interpolated to a coarser resolution.

b. Mean rainfall and rain flux distributions

The mean rainfall and the rain volume distributions
provide useful indicators of the ability of the various
models to produce all aspects of the rainfall distribu-

tion, that is, light, moderate, and heavy rain, and may
better identify model limitations and biases in the fore-
casts than individual point comparisons with gauge
measurements. Mean rainfall forecast storm totals in
20-km swaths centered on each model’s forecasted
storm track are compared in Fig. 5 with the mean ob-
served rainfall centered on the best track. The observed
rainfall profile for this sample of storms is similar to the
radial distribution of mean tropical cyclone rain rates
calculated from Tropical Rainfall Measuring Mission
(TRMM) observations by Lonfat et al. (2004). Since
similar TRMM observations from a global sample of
TCs were the basis for the R-CLIPER technique, it is
not surprising that the mean profile from the R-
CLIPER forecasts is only slightly higher than observed
(by �10%) in the innermost 90 km and slightly lower
than observed (by �10%) outward from there. The

FIG. 4. (a) ETSs for storm-total rainfall for all storms in the
study, comparing results using data interpolated to 0.1° grid reso-
lution (solid line) with data interpolated to 0.5° grid resolution
(dashed line). (b) Comparison of mean QPF pattern correlation
coefficient for storm-total rainfall for all storms in the study, com-
paring results using data interpolated to 0.1° grid resolution (solid
bar) with data interpolated to 0.5° grid resolution (dotted bar).
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GFDL model has the largest bias in the radial distribu-
tion of rainfall, particularly in the regions closest to the
path of the storm where the mean rainfall totals are
about 40% higher than the observed mean. The GFDL
rainfall profile remains higher than the observations
out to 390 km. A similar comparison, although less pro-
nounced, is seen with the GFS model, with mean rain-
fall about 10%–20% higher than the observations
within 150 km of the center. Although the NAM model
produces mean rainfall totals that are slightly lower
than the observations within 50 km of the track, the
predicted amounts are higher than the observations
from 50 km outward.

Because of the threat of inland flooding from tropical
cyclone rainfall, it is important to evaluate how well the
models can forecast the volume of water that will fall
over a given region. Rainfall volume statistics com-
puted over a domain restricted to all points within 600
km of the best track are compared in Table 3. All three
dynamical models (GFDL, GFS, NAM) have a positive
bias compared to the observed rainfall, while the R-
CLIPER model has a pronounced negative bias. The
GFDL has the largest positive bias, while the NAM has
a much smaller bias in that the mean volume per case is
quite close to the observed rainfall volume.

To facilitate comparisons between the observations
and the models of how the volume of water is distrib-
uted across the analysis grid, a variable called rain flux
is used. This flux is simply the product of the rainfall
value at a grid point and the representative areal cov-
erage of that point (units of in. km2). This calculation is
made for two primary reasons. First, it can account for
the dependency of rainfall volume on the resolution of

the model grid. For example, an inch (25.4 mm) of
rainfall produced at a grid point in the GFS model,
which represents a roughly 55 km � 55 km (1/2° � 1/2°)
area, is a much greater total water amount than an inch
of rainfall produced at a grid point in the GFDL model,
which represents a roughly 18 km � 18 km (1/6° � 1/6°)
area. To facilitate consistent comparisons between out-
put files, however, the rainfall values from all models
and observations in this study are interpolated to a lati-
tude–longitude grid with a fixed resolution of 0.1°.
While this masks some of the impacts of the varying
resolution described above, the impact of varying reso-
lution is still accounted for indirectly. The second rea-
son for using rain flux as a variable is that the rain flux
is plotted as a function of rainfall amount. This is in
contrast to many standard precipitation verification
techniques, which simply account for the number of
occurrences of exceeding various rainfall amount
thresholds, but do not factor in the volume of water
when evaluating QPFs (e.g., the bias score). The rain
flux values are kept in mixed units of in. km2 in order to
facilitate categorizing them based on the intensity of
rainfall within each grid box.

Probability distribution functions (PDFs) of rain flux
for each of the models are compared in Fig. 6a for all of
the storms, using all points within 600 km of the ob-
served storm track. This figure shows the comparison of
how rain flux is distributed by rain amount for each of
the models. Because rainfall intensity is nearly logarith-
mically distributed, the rain flux values are categorized
into 27 thresholds that are defined by using the follow-
ing relationship for the decibel rain rate (dBR):

dBR � 10 log�R�, �1�

where R is the value of the rain flux threshold and dBR
is in the range of {�30, �10, �9, �8, �7, . . . , 13, 14,
15}. These rain flux thresholds provide for a broader
range of rainfall intensities than in the equitable threat
score analysis in Fig. 3, especially for the heavy to ex-
treme amounts.

Compared to the observations, a larger proportion of

FIG. 5. Radial distribution of mean storm-total rainfall (in.),
averaged over all storms in the study for all models and observa-
tions as a function of cross-track distance from the storm track.

TABLE 3. Rainfall volume statistics for all cases included in this
study, computed over a domain that includes all points within 600
km of the best track.

Stage
IV GFDL GFS NAM R-CLIPER

Rainfall volume
per case (km3)

25.2 34.6 30.4 26.1 19.8

Mean rainfall bias
(km3)

9.4 5.2 0.9 �5.4

Rainfall bias (%) 37.4 20.5 3.6 �21.3
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the total rain flux for the GFDL model in Fig. 6a is
accomplished at the high rain amounts [i.e., values
larger than 6 in. (152 mm)], while a smaller portion of
the rain flux occurs in the light-to-moderate rain
amounts [i.e., 1–3 in. (25–76 mm)]. The inverse is true
for the NAM and R-CLIPER models; that is, a larger
proportion of the rain flux is accomplished at the light-
to-moderate rain amounts and a smaller proportion of
the flux occurs for the heavy rain amounts. For the GFS
model there is a slight overrepresentation of rain flux
for the light-to-moderate rain amounts, and the rain
flux in the extreme rain amounts [�10 in. (254 mm)]
compares very well with the observations.

Cumulative distribution functions (CDFs) of rain
flux, derived directly from the PDFs shown in Fig. 6a,
are shown in Fig. 6b. The median value of the rain flux

represents the point on the CDF at which 50% of the
rain flux occurs in rain amounts greater than the indi-
cated threshold rain amount. For the observations, the
50th percentile occurs at 2.8 in. (71 mm). For the GFDL
model, the 50th percentile occurs at a slightly higher
value [i.e., 3 in. (76 mm)], which indicates that a slightly
smaller proportion of rain flux is occurring in the light-
to-moderate rain amounts than was observed. For the
NAM and GFS, the 50th percentile is at a smaller value
[2.2 in. (55.9 mm)] than the observations, indicating
that a larger proportion of rain flux is occurring in these
light-to-moderate values compared to the observations.
This bias toward lighter rain amounts is most evident in
the R-CLIPER, where the 50th percentile rain flux is at
1.9 in. (48.3 mm).

By comparing track-relative distributions of rain flux
in bands surrounding the forecast and observed tracks,
we can reduce the impact of track forecast errors on
QPF validation statistics. An example from Hurricane
Isidore (2002) illustrates the setup of these bands (Fig.
7a). Distributions of model forecast rain flux are calcu-
lated within 100-km-wide bands surrounding each mod-
el’s forecast track and are compared against distribu-
tions of observed rain flux calculated within bands
surrounding the best track (Fig. 7b). The innermost
100-km band focuses on rain within the core of the
storm, while the outer bands correspond to rain in the
outer rainbands and stratiform areas. The distributions
shown for each of the bands in Fig. 7b are approxi-
mately lognormal, with the modal values of the ob-
served rain flux (peak in the distribution) occurring at
5.5 in. (140 mm) for the inner-core band, 4 in. (102 mm)
for the 200–300-km band, and 1–2 in. (25.4–50.8 mm)
for the 400–500-km band.

The PDF of rain flux for the GFDL, NAM, and ob-
served rainfall fields are shown in Fig. 8a for the 0–100-
km band around the storm track, where rainfall from
the eyewall (or eyewall remnants) would tend to pre-
dominate. The GFDL has a clear tendency to produce
too much rain flux in the high-to-extreme rain amounts,
while the NAM produces too much rain flux in the
light-to-moderate rain amounts, which suggests that the
GFDL tends to overpredict eyewall rain while the
NAM tends to underpredict eyewall rain, which is con-
sistent with the results shown in Fig. 5. The GFS and
R-CLIPER comparisons in this swath (Fig. 8b) show
that the GFS slightly overproduces rain flux for the
moderate-to-heavy rain range [�10 in. (254 mm)], but
it underproduces rain flux for the extreme rain amounts
[�10–15 in. (254–381 mm)]. The R-CLIPER has the
closest resemblance to the observed flux distributions
in the inner core (Fig. 8b), showing the ability to pro-

FIG. 6. (a) PDF of rain flux within 600 km of the observed storm
track for all storms in this study for all models and observations.
(b) As in (a), but for the CDF. The median (50%) level is indi-
cated by the horizontal dashed line. Vertical dashed lines indicate,
for each model and the observations, the rainfall threshold asso-
ciated with the median rain flux value.
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duce rain flux that matches the observed for light, mod-
erate, heavy, and extreme rain amounts.

The corresponding rain flux PDFs are shown in Figs.
8c and 8d for the 300–400-km swath, where a mixture of
rainband and stratiform rain would likely predominate.
While the rain flux PDF from the GFDL model (Fig.
8c) agrees well with the observations in this swath, the
NAM model has a tendency to produce peak rain flux
values in higher rain amounts than the observed distri-
bution. The GFS (Fig. 8d) shows a slight tendency to
overpredict rain flux for the light-to-moderate amounts

and underpredict rain flux for the heavy rain amounts.
Whereas the R-CLIPER 0–100-km rain flux PDF
agrees very well with the observations, the 300–400-km
rain flux PDF is significantly skewed toward lighter rain
rates. That is, the R-CLIPER significantly overpro-
duces rain flux for the light rain amounts in the 300–
400-km swath and significantly underproduces rain flux
for the moderate-to-heavy rain amounts. A likely ex-
planation is that R-CLIPER is based on azimuthally
averaged rainfall amounts that at outer radii are often
composed of a few relatively large amounts and other
areas of little or no rain. At these radii, the mean rain-
fall rate produced by R-CLIPER is probably a poor
estimate of the rainfall at any given point.

This example of R-CLIPER highlights one of the
advantages of this new validation scheme: by examining
the data from a variety of different perspectives, model
deficiencies and biases in the forecasts can be isolated.
The analysis of mean rainfall rate (cf. Fig. 5) indicated
that the R-CLIPER does an excellent job of approxi-
mating the mean rainfall rate out to large radii, and in
fact this matching of the observed mean rainfall rate
was a specific design consideration for R-CLIPER (Tu-
leya et al. 2007). However, in reality at large radii the
rainfall from tropical cyclones is largely determined by
rainbands that produce strong asymmetries (rainfall
maxima) over only relatively small regions of the rain
field. The result in this case is that the R-CLIPER pro-
duces unrealistically large areas of small rainfall
amounts due to its assumption of an azimuthally sym-
metric distribution. Thus, the profile of the R-CLIPER
rain flux in the 300–400-km band (Fig. 8d) is character-
ized by an overabundance of rain flux in small rainfall
thresholds and a lack of rain flux in the moderate-to-
heavy thresholds. This same line of reasoning helps to
explain why the R-CLIPER performs so poorly in ETS
compared to the dynamical models (cf. Fig. 3), despite
having a smooth field of rainfall that would normally be
considered favorable for the equitable threat score di-
agnostic. In this example, while some methods in this
validation scheme help to isolate highlights of the R-
CLIPER forecasts (i.e., mean rainfall rate), other meth-
ods (ETS) help point to a problem, and still other meth-
ods (track-relative profiles of rain flux in outer radial
bands) help to isolate the nature of the problem.

c. Extreme rain amounts

It is also important to evaluate how well each model
produces the extreme rain events. Two evaluation tech-
niques are developed for this attribute. The first tech-
nique compares the rain flux CDF (cf. Fig. 6b) for the
observed rainfall within 600 km of the best track against
that of each model and determines how far the model-

FIG. 7. (a) Schematic of 100-km-wide bands surrounding ob-
served track for Hurricane Isidore (2002) within which track-
relative rain flux PDFs are calculated. Storm-track positions are
marked every 12 h, beginning 1200 UTC 25 Sep 2002. (b) Rain
flux PDF from stage-IV data averaged over all cases in this study
for the 0–100-, 200–300-, and 400–500-km bands.
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produced CDF curve deviates from the observed rain-
fall’s 95th percentile. For the storms in this study (Fig.
9), the 95th percentile in the observed rain flux distri-
bution corresponds to a rainfall threshold of 8.3 in. (211
mm). For the GFDL model, the 8.3-in. threshold falls at
92%, which means that 8% of the rain flux occurs in
values greater than 8.3 in. (compared with 5% from the
observations). Thus, more of the rain flux predicted by
the GFDL model is in rain amounts greater than 8.3 in.,
which is consistent with the comparisons shown above
(cf. Figs. 6 and 8). By contrast, the 8.3-in. threshold for
the NAM and R-CLIPER models both fall at the 97%–
98% mark, which means that a too small fraction of the
rain flux occurs at rain amounts above 8.3 in. The 8.3-in.
threshold for the GFS falls at 95%, which exactly
matches the observed value.

A similar comparison of the rain flux distributions for
the extreme rain amounts is made for 100-km-wide
bands surrounding the observed and forecast tracks (cf.
Fig. 7a). The 95th percentile for the observed rain flux
distribution in the 0–100-km band corresponds to a
rainfall threshold of 9.3 in. (Fig. 10a). For these extreme
amounts, the R-CLIPER and GFS rain flux CDF
curves are close to the observed 9.3-in. (236 mm)
threshold (95% and 96%, respectively). The 9.3-in.

threshold for the GFDL model falls near the 90%
mark, which again indicates that proportionately too
much of the GFDL rain flux in the core region is oc-
curring at these extreme rain amounts. By contrast, the

FIG. 8. PDFs of rain flux for all models and observations for all storms in this study. (a)
PDFs of rain flux within 0–100-km track-relative swath for GFDL, NAM, and stage IV. (b) As
in (a) but for GFS, R-CLIPER, and stage IV. (c) PDFs of rain flux within 300–400-km
track-relative swath for GFDL, NAM, and stage IV. (d) As in (c) but for GFS, R-CLIPER,
and stage IV.

FIG. 9. Top 15% of CDFs of rain flux within 600 km of best
track for all models and observations for all storms in this study.
Positioning of the vertical dashed line that intersects the observed
profile indicates the rainfall threshold matching the 95th percen-
tile level for observed rain flux.
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NAM model rain flux CDF curve crosses the 9.3-in.
threshold at 98%, which suggests a deficiency in pre-
dicting extreme rain amounts in the 0–100-km band.

For the 300–400-km band (Fig. 10b), the 95th per-
centile for the observed rain flux distribution corre-
sponds to a rainfall threshold of 5.6 in. (142 mm). Com-
pared to the observed rain flux CDF, the GFDL and
GFS models both have proportionately too little rain
flux in the extreme amounts in this 300–400-km band,
with the CDF curves for both models crossing the 5.6-
in. rainfall threshold at the 97%–98% mark. The CDF
curve for R-CLIPER indicates this model has no skill in
predicting extreme rain amounts in these regions well
removed from the storm track. The CDF curve for the
NAM model crosses the 5.6-in. threshold at 87%, which
indicates that the NAM model produces a dispropor-

tionately large amount of rain flux at these high rain
thresholds compared to observations. This characteris-
tic in the outer regions contrasts with the NAM model’s
tendency to underpredict extreme rain amounts in the
core region.

As described above for the pattern-matching tech-
niques, tests were performed to determine the sensitiv-
ity of both of these volume-related rain flux distribution
and extreme amount techniques to grid resolution.
Similar to the results from the grid resolution sensitivity
tests for the pattern-matching techniques, plots of the
PDF of rain flux for the various models (not shown)
indicated only insignificant differences between analy-
ses done using data interpolated to 0.1° and 0.5°. The
lack of differences, both for the pattern-matching tech-
niques and for the rain-volume related techniques, is
likely due to the fact that tropical cyclones dynamically
constrain rainfall to storm-relative locations that can
persist for several hours or longer, as mentioned in the
introduction. This constraint typically produces pat-
terns of rainfall that are significantly smoother and
more uniform than those from, for example, continen-
tal summertime convection, and it is one feature that
distinguishes tropical cyclone rainfall from these other
rain-producing events. Further smoothing of the rain
field also occurs as we evaluate rainfall accumulated
over a period of 72 h.

4. Evaluation of TC QPF skill indices for recent
U.S. landfalling storms

Techniques presented in the previous section de-
scribe various methods for validating TC QPFs in three
main elements: the ability to match observed rainfall
patterns, the ability to match the mean value and vol-
ume of observed rainfall, and the ability to produce the
extreme amounts often observed in tropical cyclones.
In addition, QPF skill indices based on these techniques
are outlined in Table 4 and specific details of the for-
mulations for the skill indices are provided in the ap-
pendix. These skill indices may be useful in validations
of operational forecasts, as they allow for objective
comparisons of QPF skill among the various numerical
models and against the benchmark R-CLIPER. In this
section, we provide values for the QPF skill indices for
the storms in the 1998–2004 sample as well as discussion
of some of the highlights. Values for each of the QPF
skill indices are shown in Table 4. The QPF skill indices
in the appendix are formulated so that the numbers
closest to 1 (0) indicate the most (least) skill for that
index. The values for the indices within each of the
three attributes shown in Table 4 are combined into
one summary comparison for each attribute and pre-

FIG. 10. Similar to Fig. 9 except that data are restricted to the
track-relative (a) 0–100- and (b) 300–400-km bands surrounding
respective model forecast and observed storm tracks.
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sented in Fig. 11. As can be seen from both Fig. 11 and
Table 4, the GFS performs the best of the models for all
three categories of QPF attributes listed in column 2 of
Table 4. All of the numerical models (GFS, GFDL, and
NAM) show skill relative to R-CLIPER for all of the
TC QPF attributes, with the exception of the NAM for
the extreme rain skill index.

a. Pattern matching

For the pattern matching (Fig. 11), the GFS has the
highest skill, although all of the numerical models
(GFS, GFDL, NAM) have skill relative to R-CLIPER.
The GFDL has the lowest skill among the dynamical
models for pattern matching. The NAM model scores
better than the GFDL in this metric due to the higher
mean correlation coefficient for the NAM model de-
scribed above. In addition, the NAM has a higher ETS
than the GFDL for lighter rain rates (cf. Fig. 3a). It is
not clear why the NAM model performs better than the
GFDL, especially for the lighter rain rates. Since the
pattern-matching metric is highly dependent on track

error, the comparative skill of the GFS for this metric is
likely largely attributable to the fact that the GFS had
higher track forecast skill for the landfalling TCs ana-
lyzed in this study, particularly at the 48-h lead time
(Fig. 12).

One possible reason for why the R-CLIPER per-
formed so poorly in this metric is that the R-CLIPER
model is based on azimuthally averaged rainfall
amounts. In reality, at outer radii these averages are
composed of a few relatively large amounts and other
areas of little or no rain. Thus, the mean rainfall rate at
these distances is probably a poor estimate of the rain-
fall.

b. Mean rain and distribution of rain flux

For the mean rainfall and distributions of rain flux
(Fig. 11), the skill indices for all of the dynamical mod-
els were very similar, but the GFS had a slight edge. All
of the models have skill relative to the R-CLIPER.
While the combined index for volume and distribution
shown in Fig. 11 indicates a near equivalence among
the different dynamical models, detailed comparisons
of the entire distribution and track-relative locations
(cf. Figs. 5, 6, and 8) show marked differences. The
GFDL (NAM) produced too much (too little) rain in
the inner core (Fig. 5), and the distribution of the rain
flux was skewed toward the heavier (lighter) rain rates
for the GFDL (NAM) model (Fig. 8a). By contrast, the
GFS is better at predicting the amount and the distri-
bution of inner-core rain. There are several possible
explanations for these differences. While the GFDL
and the GFS models both employ the same simplified
Arakawa–Schubert (Pan and Wu 1995) convective pa-
rameterization scheme (CPS), the models differ both in
spatial resolution and in how they handle microphysical
processes. The finer resolution of the GFDL model
would be associated with stronger vertical motions in
the core region than the coarser-resolution GFS. Fur-
thermore, the GFDL model has only a simplified
method for handling microphysical processes in which
it rains out all supersaturation (minus evaporation as

FIG. 11. Combined TC QPF skill indices from different models
for all cases in this study showing degree of skill in the three TC
QPF attributes of pattern matching, mean value and distribution
of rainfall volume, and extreme rainfall. Scores range from 0 (no
skill) to 1 (most skill).

TABLE 4. Value of each of the TC QPF skill indices for each model. A value of 0 indicates no skill; a value of 1 indicates the most
skill. The most skillful score for each metric is set in boldface.

Index QPF attribute described GFDL GFS NAM R-CLIPER

Large-scale ETS Pattern 0.42 0.54 0.44 0.27
Pattern correlation Pattern 0.50 0.65 0.56 0.40
Mean rainfall error index Mean/volume 0.80 0.93 0.94 0.95
Large-scale CDF median value Mean/volume 0.83 0.71 0.65 0.23
Track-relative CDF median value Mean/volume 0.58 0.82 0.65 0.17
Large-scale CDF percentage in 95th percentile Max value 0.90 1.00 0.85 0.91
Track-relative CDF percentage in 95th percentile Max value 0.80 0.93 0.71 0.66
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the rain falls) in a layer when the relative humidity of
that layer exceeds 100% (M. Bender 2006, personal
communication), while the GFS model employs an ex-
plicit prognostic equation to track cloud water (Moor-
thi et al. 2001). These differences in the resolution and
microphysical parameterization likely account for many
of the discrepancies between the two models in their
distributions of QPFs in the near-core region, although
differences in boundary layer parameterizations may
also play a role. Much of this reasoning is speculative,
and more research is needed to investigate these hy-
potheses.

By contrast, the NAM model uses a different con-
vective scheme, that of Betts–Miller–Janjić (Janjić
1994); a different microphysical parameterization; and
it also does not include a bogus vortex in its initial
conditions. All of these factors may explain why it pro-
duces too little rain in the inner core. The dependence
of convectively produced rainfall on the Betts–Miller–
Janjić convective scheme has been investigated in pre-
vious studies using the NCEP Eta Model (e.g.,
Mesinger 1998; Gallus 1999), with results also highlight-
ing the inability of the Eta Model to produce the heavi-
est amounts of rainfall from convective events. Addi-
tionally, with no bogus vortex in the initial conditions,
the inner core is less well defined (i.e., weaker) prior to
landfall. A weaker inner-core circulation would be as-
sociated with weaker vertical motion, which would re-
sult in lighter rainfall. These hypotheses also require
further research to investigate their validity.

The R-CLIPER produced too little rain at distances
far removed from the track of the system. The reason

for this problem is likely similar to the problem with
pattern matching: calculating rain rates from an axisym-
metric distribution produces a poor estimate of total
rainfall at large distances from the center. Because a
symmetric distribution of rain is assumed in R-
CLIPER, no far-field influences in the environment are
predicted that may produce asymmetries in the rain
field, such as frontal boundaries.

c. Extreme rain amounts

For the extreme rain amounts (Fig. 11), the GFS has
the highest skill. The GFDL produces too much of the
heaviest rain (Fig. 6a), but both the GFDL and GFS
have skill relative to R-CLIPER. The NAM has no skill
relative to R-CLIPER, due mainly to its inability to
produce the extreme rain amounts observed in the
core. Since the highest rain rates are likely to occur in
the inner core (cf. Fig. 7b), the explanation for these
discrepancies is likely similar to that described above
for the rain flux distribution. That is, the GFDL pro-
duces too much rain in the inner core (Fig. 10a) due to
a finer grid resolution and a primitive handling of the
microphysical processes. Even though the GFS has
coarser resolution, the cloud water is handled explicitly,
which may explain the higher skill for inner-core rain-
fall. The NAM model, which does not have a bogus
vortex in its initial conditions, produces too little rain in
the inner core.

5. Assessing the impact of TC track forecast error
on QPF skill

In this section, we investigate the impact of model TC
track forecast errors on QPF skill. Lonfat et al. (2004)
showed that the distribution of rainfall from a TC is
closely related to the track of the storm. In the discus-
sion of the QPF validation scheme presented previously
in this paper, the impact of track forecast error was
indirectly accounted for in some of the metrics. For
example, as part of the techniques for examining the
distribution of the rain flux and the extreme rain
amounts, we use a track-relative analysis so that we can
compare the distribution of forecast rain flux along the
model forecast track with the distribution of observed
rain flux along the best track. This helps to reduce the
impact of track forecast error, but it does not eliminate
it, since significant differences in terrain and proximity
to environmental atmospheric features may exist along
the two different tracks. The pattern-matching tech-
niques involving ETS and pattern correlations that
were described previously are particularly sensitive to
track forecast errors, especially for higher-resolution

FIG. 12. Mean track forecast errors (n mi) at 24- and 48-h lead
times for the GFDL, GFS, and NAM models for the specific set of
landfalling cases included in this study.
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data. Here, we will focus specifically on the impact of
track forecast error on these pattern-matching QPF
metrics.

Differences in track forecast errors among the mod-
els can be significant, especially at lead times beyond 24
h. For the sample of landfalling cases in this study, the
GFDL and GFS models have comparable track fore-
cast skill at 24 h, and the error from both of these
models is about 30% less than that of the NAM (cf. Fig.
12). At 48 h, the GFS was the best model for predicting
the tracks of the landfalling storms in this study, with
mean track forecast errors 19% less than those of the
GFDL and 48% less than the NAM.

By removing the track error, one can quantify the
impact of track error on track-dependent validation al-
gorithms such as the ETS and pattern correlations.
Such modified forecasts can also be used to more di-
rectly compare the contributions to the rainfall forecast
error from other sources, such as resolution and param-
eterization deficiencies. Track-error removal is accom-
plished by shifting each 6-h rainfall forecast pattern by
a distance equal to the difference in position of the
forecasted versus the observed storm location. The
field of rainfall that is shifted includes only those grid
points that are within 400 km of the midpoint between
two successive 6-hourly forecast positions. We use a
400-km threshold here as opposed to a 600-km thresh-
old since we want to limit the areal coverage of rainfall
that is being shifted in order to more effectively isolate
rainfall associated with the storm at each 6-hourly lo-
cation. These shifted rainfall predictions are then
summed over the lifetime of the storm at each 6-hourly
interval to produce storm-total shifted rainfall predic-
tions. An example of a shifted GFDL storm-total rain-
fall field for Hurricane Georges of 1998 is shown in Fig.
13. The original GFDL forecasted rainfall field (Fig.
13a) and the resultant storm-total GFDL forecasted
rainfall field after the 6-hourly rainfall fields are shifted
(Fig. 13b) may be compared with the observed (stage
IV) field (Fig. 13c) during the same 72-h period. For
this case, shifting the rainfall field results in an increase
in the correlation of storm-total rainfall from 0.14 to
0.73, which indicates a significant contribution due to
the track error.

The ETS and pattern correlations are compared in
Fig. 14 for all of the storms from 1998 to 2004, before
and after the rainfall fields are shifted. Caution should
be exercised when comparing the ETS and correlation
results from Fig. 14 with those from Figs. 3 and 4, as
they will be different. The analyses for Figs. 3 and 4 use
all available storm-total rainfall data within 600 km of
the best track, while the analyses for Fig. 14 use only
data within 400 km of the midpoint between two suc-

cessive 6-hourly storm locations. Since this latter
method focuses only on near-storm data during each
6-h forecast period, the ETS and pattern correlations
will be higher than those for the analyses presented in
Figs. 3 and 4. It is still worthwhile, however, to compare
ETS and correlation scores among the different models
for the shifted rainfall fields.

As shown earlier (Fig. 3) and again in Fig. 14a, the
ETS for the GFS model was the highest across all rain-
fall thresholds, while the R-CLIPER had the lowest
ETS. When the rain fields are shifted to account for
track error, the NAM model ETS is significantly im-
proved, while the GFS model ETS is only slightly im-
proved. After the shift, the GFDL and NAM models
have comparable skill to the shifted GFS model over
almost all rainfall thresholds. Whereas the R-CLIPER
ETS is also improved, it is still lower than that of the
other three models. These results suggest that the lower
ETS for the NAM and GFDL compared to the GFS are
mostly due to the deficiencies in their track forecasts.
Once the track forecasts errors are accounted for, the
remaining deficiencies are attributable to other aspects
of the forecasting system, such as improper vortex ini-
tialization or deficient physical parameterizations.
However, it is worth noting that even after the shifting
is done, the equitable threat scores for the NAM still
cannot match those of the GFS for amounts greater
than 2 in. (50.8 mm). Similar results can be seen for the
changes in the pattern correlations (Fig. 14b); that is,
correlations improve the least for the GFS once the rain
fields are shifted to account for track errors. The NAM
performs almost as well as the GFS once the fields are
shifted, while the GFDL and R-CLIPER also experi-
ence significant improvements in correlations.

6. Summary and concluding remarks

The main purpose of this paper was to design a
scheme for validating the QPF for landfalling tropical
cyclones that best accounts for their unique attributes
and provides a framework for future validation efforts.
Because the distribution of TC rainfall is so strongly
dependent on storm track, a QPF validation scheme for
tropical cyclones has requirements that are different
from those for nontropical, continental summertime
rainfall. Three characteristics of the models’ perfor-
mance were identified as critical to the evaluation of
TC rainfall. These characteristics include the ability of
the models to match QPF patterns, the ability to match
the mean value and volume of observed rainfall and
reproduce the distribution of rain, and the ability to
produce the extreme amounts of rain often observed in
TCs. A validation scheme was developed that employs
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traditional, commonly used QPF validation techniques
(equitable threat score and pattern correlations) in
combination with new techniques in order to evaluate
those characteristics of QPFs that are most important
to tropical cyclones.

To test the new validation scheme, evaluations of
storm-total rainfall forecasts were performed for U.S.
landfalling tropical cyclones from 1998 to 2004 for the
following operational NWS models: NCEP/GFS,
NCEP/GFDL, NCEP/NAM, and the benchmark R-
CLIPER model. A summary of the results from these
validations is shown in Table 5. Compared to R-
CLIPER, all of the dynamical models have comparable
or greater skill for all of the attributes. For the pattern-
matching comparison, the GFS model performed the

best across a broad range of rainfall thresholds, while
the R-CLIPER performed far worse than all of the
dynamical models. The NAM and the GFDL were
comparable across all thresholds except for the very
lightest amounts, where the NAM outperformed the
GFDL. Comparisons of predictions of mean rainfall
and distributions of rain volume showed that the GFDL
produced too much of its rain flux in the higher range of
rain rates. This bias was especially evident in the inner
core. By contrast, the NAM model produced too little
of its rain flux at the higher rain rates, especially in the
inner core. The GFS model predicted the best distribu-
tion of rain flux, while the R-CLIPER produced signifi-
cantly less rain flux in the higher rain rates at large
distances from the storm track. The rainfall amount

FIG. 13. Example of storm-relative grid-shifted rainfall fields (in.) for GFDL forecast of Hurricane Georges
(initial time of 1200 UTC 27 Sep 1998): (a) original GFDL 0–72-h rainfall forecast, (b) shifted GFDL 0–72-h rainfall
forecast, and (c) observed (stage IV) 0–72-h rainfall. GFDL forecast track is shown in red and the best track is
shown in black.
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corresponding to the top 5% of the observed rain flux
distribution, which is indicative of extreme rain
amounts, was larger for the GFDL model than the ob-
servations, which again indicates that the GFDL model
predicted too much of the extreme rain. By contrast,
both the R-CLIPER and the NAM model predicted too
little of the extreme rain, while the GFS corresponded
closely with the observed rain flux distribution.

The likely reasons for the biases in the QPF forecasts

documented here may include deficiencies in the physi-
cal parameterizations, such as the microphysical param-
eterization, the planetary boundary layer parameteriza-
tion, and the convective parameterization. The biases
may also be related to deficiencies in the specification
of the initial conditions, such as vortex initialization. A
multitude of experiments, such as varying the physical
parameterizations and the vortex initial conditions, can
be performed to explore the sources of these biases.
This is left for future work.

In addition to the development of the TC QPF vali-
dation scheme, results were presented that evaluated
the impact of track forecast error on a model’s QPF
skill. We used a technique to shift 6-hourly accumula-
tions of predicted rainfall by a distance equal to the
difference in position of the forecasted versus the ob-
served storm location, and then compared error statis-
tics from the pattern-matching techniques before and
after the shift. The ETS and pattern correlations for the
GFDL and NAM experienced a substantial increase in
scores after the rainfall fields were shifted, and the R-
CLIPER also showed a modest improvement. After the
shift, the GFDL and NAM models had skill compa-
rable to the GFS model, suggesting that the lower
scores from the GFDL and NAM models using the
original, unshifted data are mostly due to the deficien-
cies in their track forecasts.

One of the most intriguing results from this work is
that the GFS model, despite being the coarsest-
resolution model, performed the best in all three of the
metrics. This is due to several factors. First, for this
sample of storms, the GFS had higher skill in predicting
the track of landfalling tropical cyclones. Second, the
GFS uses a more sophisticated microphysical param-
eterization scheme than the GFDL. Additionally, the
higher resolution of the GFDL and the NAM models
may be better for predicting more detailed rainfall
structures, but these structures will be misplaced if the
storm track is wrong. The impact of this effect is likely
compounded here by our use of a 72-h forecast cutoff
time, since it becomes increasingly difficult to predict
the location and timing of such small-scale features at

TABLE 5. Summary of TC QPF skill index comparisons from Fig. 13.

TC QPF attribute
Best

performer(s) Worst performer(s) Comments

Pattern matching GFS R-CLIPER All dynamical models show considerable skill relative to R-CLIPER
Mean/volume GFS R-CLIPER GFDL produces too much inner-core rain, NAM produces too little

inner-core rain, R-CLIPER produces too little rain far from track
of center

Extreme rain GFS NAM, R-CLIPER GFDL overproduces the heaviest rain rates; GFS nearly exactly
matches observations

FIG. 14. (a) Comparison of the ETS for all models before (solid
line) and after (dashed line) the grid of rainfall is shifted to ac-
count for track error. (b) Comparison of the mean QPF pattern
correlation coefficient before (solid bar) and after (dotted bar)
performing a grid shift.

AUGUST 2007 M A R C H O K E T A L . 743



extended forecast times. Thus, while higher resolution
is necessary to predict the maximum rain rates and to
improve intensity forecasts, it does not necessarily lead
to improved rainfall forecasts. The performance from
the GFS for tropical cyclone QPFs suggests that over
the forecast time scale of a TC landfall event (2–3 days),
current operational models have enough resolution to
predict the distribution of large-scale, storm-total rain-
fall, and that perhaps it is of less importance to perfectly
resolve the eyewall and rainbands in order to obtain
some measure of QPF skill. Indeed, a recent study com-
paring the microphysics fields (and by extension the
rainfall fields) of 1.67-km fifth-generation Pennsylvania
State University–National Center for Atmospheric Re-
search Mesoscale Model (MM5; Grell et al. 1994) simu-
lations of Hurricanes Bonnie (1998) and Floyd (1999)
with a microphysics observational database indicates
that, while there were notable differences between the
simulated and observed microphysics fields, both the
track and intensity of the simulated storms were rea-
sonably well reproduced (Rogers et al. 2007). This sug-
gests that, for those cases at least, accurately reproduc-
ing the microphysics fields was not crucial to obtaining
accurate track and intensity forecasts. More testing of
these issues is needed, however, including sensitivity
tests involving different physical parameterizations and
different horizontal and vertical resolutions, for both
operational models at coarser resolution and research
models at higher resolution (e.g., Zhang et al. 2000;
Braun 2002; Rogers et al. 2003). Using a validation
scheme such as the one presented here will be a key
component enabling the identification of model limita-
tions and biases in the forecasts from these models and
guide further efforts toward model development and
improvement.
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APPENDIX

Quantification of TC QPF Skill Indices

The validation metrics for TC QPFs outlined in sec-
tion 3 each address one or more of the following at-

tributes of TC rainfall: 1) pattern matching, 2) mean
rain and rain flux (volume), and 3) extreme rain. Here,
we provide details on the formulation of the algorithms
that are used to compute skill indices for each of these
QPF attributes. For each skill index, the associated al-
gorithm will assign a value ranging from 0 for no skill to
1 for the most skill.

a. Pattern matching

The index corresponding to the ability of the models
to reproduce patterns of rainfall is derived from the
ETS and the pattern correlations. To obtain an index
for pattern matching, a mean ETS over all thresholds is
calculated by weighting the ETS values according to the
relative distribution of the observed rain flux, or rain
volume, in these threshold bins. For each model, a pat-
tern-matching metric with values ranging from 0 to 1 is
calculated by combining the mean ETS averaged over
all thresholds with the mean correlation coefficient and
taking an average of those two values.

b. Mean rain and distribution of rain flux

The mean rain and rain flux distribution index con-
sists of equally weighted contributions from the radial
distribution of the mean rainfall (cf. Fig. 5), large-scale
CDF median value (cf. Fig. 6b), and the track-relative
CDF median value derived from the track-relative PDF
swaths (cf. Fig. 8). The contributions are calculated as
follows: for the radial distribution of mean rainfall, a
mean rainfall error index (MREI) is calculated by scal-
ing the differences between the mean rainfall in the
forecasts and the observations by the maximum ob-
served mean value found in any band and then sum-
ming over all bands out to 400 km. This is denoted by

MREI �
1
n �

i�1

n �1 �
|Rfi � Roi|

R max �, �A1�

where n is the number of radial bins, Rfi is the mean
forecast rain for the ith radial bin, Roi is the mean ob-
served rain for the ith radial bin, and Rmax is the maxi-
mum observed mean rain found in any band. In this
formulation, the index is high (low) when the inte-
grated difference between the mean rain from the fore-
casts and the observations is small (large).

For the large-scale CDF median value index
(LS_CDF_MVI), the following formulation is used:

LS_CDF_MVI � 1 � |Rf50% � Ro50%|, �A2�

where Rf50% is the rainfall threshold corresponding to
the 50th percentile on the rain flux CDF for each model
and Ro50% is the threshold corresponding to the ob-
served 50th percentile. In this formulation, the index is
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high (low) when the difference in rain flux medians is
small (large). If the difference in rain flux medians ex-
ceeds 1 in. (25.4 mm), the index is set to a no-skill score
of zero.

A track-relative median index is calculated using the
same method as in (A2), but here the method is applied
separately for each of the four bands from 0–100 km
out to 300–400 km from the storm track. The indices for
each of the four bands are averaged together to calcu-
late the track-relative median index.

c. Extreme rain amounts

The index for comparing the ability of the models to
match observed extreme rainfall amounts is calculated
by equally weighting the contributions from the 95th
percentile of the rain flux CDF for the large-scale fields
(cf. Fig. 9) and the 95th percentile of the rain flux CDF
from the track-relative 100-km bands (cf. Fig. 10). The
formulation for the large-scale CDF maximum index
(LS_CDF_MI) is given by

LS_CDF_MI � 1 � �CDFm95th � 95�2, �A3�

where CDFm95th is the percentage of each model’s rain
flux CDF profile less than the rainfall threshold value
associated with the 95% value on the observed CDF.
The difference between the CDF from the model and
from the observations is squared to give more weight to
deviations from the observations in order to provide
stronger differentiation between those models that
closely approximate the observed extreme amounts and
those that do not.

The contribution from the track-relative bands is cal-
culated in an identical fashion to that for the large-scale
distributions, except that the value for each of four 100-
km-wide bands surrounding either the best track or a
model’s forecast track is calculated. The values for the
four bands are averaged together to create an average
value for each model for this track-relative index, and
this index is averaged with the large-scale index to pro-
duce a comparison among models for the extreme rain
events.
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