
Evaluating the Performance of E-coli with Genetic
Learning From Simulated Testing

A. Meystel, J. Andrusenko
Drexel University, Philadelphia, PA 19104

Abstract
This paper addresses the problem of finding the techniques of performance evaluation for elementary

agents. From an evolutionary standpoint, the robust navigational algorithms were used by even the simplest of
biological systems because the systems were able to learn how to evaluate their performance. The objective of
this paper is to study one of the simplest biological, yet intelligent systems, an E. coli cell, and see how this could
be of benefit to the design of control strategies for the single-agent intelligent systems. The robot is equipped with
sensors and actuators, has a rudimentary knowledge representation system and is capable of conducting search, i.e.
is equipped by the means of decision making. The robot itself is looked upon from a two-dimensional perspective
and is analyzed in a computer-simulated environment. We present a design of the Variable Structure Controller
(VSC) that combines the properties of any two structures or strategies from the ten initially available to our robot.
VSC equipped robot should be able to come up with its own strategies of motion, without human intervention.
The system under consideration supports the rudimentary learning subsystems that could be envisioned. The idea
of using Genetic Programming (GP) is not introduced here for the sake of finding the best controller but rather
for the purpose of demonstrating that improved functionality can be achieved via on-line or simulated learning.

Keywords: Escherichia coli; evolutionary computation; genetic algorithms; genetic programming; intelligent
agents, mobile robots; motion planning; navigation, natural search

1. Genetic Programming as a Combination
Mechanism in VSC

We introduce a VSC that combines
properties of any two strategies using the principles
of Genetic Programming (GP) [1]. The idea of
using GP is not introduced here for the sake of
finding the best controller, but rather for
demonstrating that the improvement of functioning
can be achieved without making a thorough
investigation, and, even ON-LINE, while moving
towards the goal. By thorough investigation we
mean the investigation of ALL possible meaningful
combinations of strategies’ properties, which could
be a very time consuming task. Our robot has 10
different strategies to choose from (Appendix 1). It
knows how well each strategy performs in the
environment it is in right now. It also knows which
of the five performance criteria it wants to either
minimize or maximize (Appendix 2). Lets assume
that we want to maximize the efficiency (ε = [DEUC /
Dtotal] * 100 %). It is our desire for the robot to
reach the goal while traveling along the most
prferable trajectory. Under the first scenario
conditions, Experiment 1, simply choosing Strategy
5a as the most efficient one will not lead to the
efficiency optimization. Hence, we must allow our
robot to somehow let its controller to evolve in order
to maximize (minimize) a desired criterion.

Genetic Programming (GP) originated from
Genetic Algorithms (GAs). The main difference

between GP and GAs is in the way the solution to the
problem is represented. GP creates new computer
programs as the solution whereas GAs generate a
string of numbers or some quantity that represent the
solution. GP is a lot more powerful than GAs. In
essence, GP is the key in creation of intelligent
systems that program themselves.

GP can be useful in the problems where
there is no ideal solution, (for example, a program
that drives a car or operates a tank) [2]. Moreover,
GP is very useful in finding solutions where the
variables are constantly changing (for instance, a
robot’s positioning). Generally, the program will
find one solution for one type of environment, while
it will find an entirely different solution for another
one.

Step 1 - Initial (Virtual) Population
First, an initial population of random

computer programs is generated. In our case we will
assume that our 10 strategies comprise the initial
population. All of the computations and changes take
place within a single robot’s "mind".

Step 2 - Reproduction Mechanism
Then, each program (strategy) in the

population is executed and assigned a fitness value
according to how well it solves the problem. Our E.
coli robot already knows how well each strategy
performs in the environment it is currently in. If a

strategy performs above or below the average
depending on the performance criterion chosen, it
is considered to be “fit”, and, hence, will be allowed
to participate in the reproduction process. For
example, if our fitness function is based upon the
efficiency criterion, a strategy with the efficiency
criterion above the average is considered to be "fit".
However, if the fitness function is based on the
energy criterion , a strategy with the energy
criterion above the average is considered to be
“unfit”. The pseudocode for the reproduction
mechanism is shown in Table 1.

Table 1: Pseudocode for the Reproduction

Mechanism

 CHOSE the Performance Criterion for optimization,

PCO

FIND AVE = average (PCOStrategy 1 PCOStrategy 1a …

PCOStrategy 5a)

for i=1:10

 if PCO of a particular strategy > (<) AVE, name this

strategy FIT

 else, name it UNFIT

 end

end

Step 3 – Formation of a New Population
After that, a new population of computer

programs (strategies) is created. "Parents" are chosen
randomly, in pairs, based upon their fitness. Two
parents produce two children. The population size
usually remains fixed for the duration of the search
[3, 4].

The following sub-steps take place:
a) The best existing strategies are copied into a new
population.
b) Crossover

New computer programs (strategies) are formed
as a result of a crossover (sexual reproduction). In
our case, during crossover, the chosen "parenting"
strategies swap the bottom halves of their programs
(second parts) to produce two children. This process
is represented below graphically:

The probability of crossover was chosen to be
0.6. If a randomly generated number in [0,1] interval
is less than a crossover probability, the chosen pairs
of strategies will go for crossover [5]. If crossover
doesn’t occur, the exact copies of parents are placed

into the new population. The pseudocode for the
process of crossover is represented in Table 2.

c) Mutation
New strategies are formed as a result of

mutation . Here, we will somewhat deviate from the
traditional definition of the mutation

 Figure 1: The Process of Crossover

mechanism to suit the design purposes of our
robot’s controller. First of all, in our design, it
was a desire to have a mutation probability of 1
(usually it is preferred to have a very low
mutation rate[5]). Then, we define the mutation
operator as a change of some Control Variable
Parameter’s value to a randomly generated
number. For instance, the average length of the
robot’s jump µJ can undergo mutation when
specified, i.e. µJ will be changed to some random
value. The pseudocode of the mutation process
is shown below:

Table 2: Pseudocode for the Process of

Crossover

while the formation of a new population is NOT completed

 {

 Randomly choose two parents out of FIT strategies

 Generate a random number P in the [0, 1] interval

 if P < 0.6, CROSSOVER and place two children into a

new population

 else, place the exact copies of parents into a new

population

 end

 }

CALCULATE Performance Criteria of a new population

Table 3: Pseudocode for the Mutation Process

while the formation of a new population is NOT completed

{

MUTATE a particular strategy by randomly changing a

specified Control Variable Parameter

}

CALCULATE Performance Criteria of a new population

Step 4 - The Best-So-Far Solution

The best strategy that appeared in any
generation, “the best-so-far solution”, is
designated as the result of GP [6].

Benefits of GP Implementation in VSC
In previous chapter, we roughly

estimated the most plausible ranges of operation
for the Control Parameters . However, for the
particular scenario, we never found a specific
value of each Control Parameter under which a
specific strategy would perform the best. We
have 6 Control Parameters, 6 sets of values per
Control Parameter, and 10 control strategies.
Under assumption that there are at least 20
values per set, we would have to perform 1200
computations! Instead of performing all 1200
computations we could simply allow our
strategies to mutate, let's say for 5 generations.
In other words, now, we would do the same type
of calculations but with 5 randomly chosen
values from each set of 20. The number of
computations reduces to 300. However, we are
not guaranteed that these 300 computations
would contain the best solutions (but we are
hoping). Most likely, we are able to determine
just improved solutions.

In a summary, what are the possible
benefits of GP implementation into our
controller? First of all, as it was mentioned
earlier, we believe that it is possible to find the

improved (not necessarily the best of all)
solution without making a thorough investigation
of all meaningful combinations of control rules.
Second, with this type of controller, our robot
could improve its operability while still moving
towards the goal, i.e. being ON-LINE!

VSC should be able to:
• Reduce the computational complexity

via GP, by finding better solution (best-
so-far and not necessarily the best of
all) faster

• Create new strategies otherwise
unimaginable to humans

• Improve robot’s behavior while it is still
in motion towards the goal, i.e. stay
ON-LINE

• Reduce the cost factor
o All of the calculations and

iterations happen inside a
single robot’s "mind" (as
opposed to multiple
intercommunicating agents)

When we refer to our robot being ON-
LINE, we envision the following scenario: While
being in ON-LINE mode, i.e. while being on its
way to the goal, our robot could locally evaluate
the Performance Criteria of the strategy it’s
currently using, every n units of time. Then, it
would decide on whether to change its strategy
of motion or not in accordance with the results.

Experimentations with Genetic Operators:
Mutation and Crossover
1st Set of Tests: Using the Reproduction and
Mutation Mechanisms
 only (Scenario 1)

Below is the general schema used for this
particular set of tests:

 Figure 2: General Schema for the 1st Set of Tests

Table 4 describes the algorithm used for this set
of tests. We chose the efficiency criterion to be
our Performance Criterion for optimization
(PCO), i.e. the Fitness function in the
Reproduction mechanism is based upon
efficiency. Mutation was done by the change of
the average value of the random jump µJ to some
random value. The reason why we chose to
optimize (maximize) the efficiency via µJ is

because there is a dependency of the efficiency
criterion on µJ. For example, if we wanted to
optimize (minimize) the energy criterion we
would have to mutate either µJ, ρ or R. The
main idea is , to make sure that there is
correlation between the chosen performance
criterion and the control parameter to be
mutated.

Table 4: Algorithm of Actions for the 1st Set of Tests

Given: Initial (virtual) population – 10 control strategies

Known: Their five Performance Criteria

for j=1:G (number of generations)

CHOSE the Performance Criterion for optimization, PCO

Reproduction Mechanism (for all strategies):

FIND AVE = average (PCOStrategy 1 PCOStrategy 1a … PCOStrategy 5a)

for i=1:10

if PCO of a particular strategy > (<) AVE, name this strategy FIT

else, name it UNFIT

end

end

COPY the best existing strategy into a new population

Mutation:

while the formation of a new population is NOT completed

{

MUTATE a particular strategy by randomly changing a specified Control

Variable Parameter

}

CALCULATE Performance Criteria of a new population

 end

CHOSE the best-performed strategy from the current generation

Results:
For Scenario 1, from the initial

population we can see that Strategy 5a is the
most efficient one. The number of generations G
was set to 5. Eventually, original 10 strategies
were all replaced by Strategy 5a. In the 5th

generation, the algorithm found the value of µJ
with which the efficiency of Strategy 5a
increased. In the initial population, the efficiency
criterion (mean value of 10 runs) of Strategy 5a
was found to be 63.84 % (see Table 3.13) with
µJ = 50. However, in the 5th generation, with the

mutated µJ = 40.76, the efficiency of Strategy 5a
increased to almost 65 % .

2nd Set of Tests: Using the Reproduction and
Mutation Mechanisms only (Scenario 2)

The only difference between this set of
tests and the 1st set of tests is in the initial setup
(Scenario 2). The general schema and the
algorithm of actions are identical to those of the
1st set.

Results:

For Scenario 2, from the initial
population we can see that Strategy 4a is the
most efficient one. The number of generations G
was again set to 5. Eventually, original 10
strategies were all replaced by Strategy 4a. In
the 5th generation, the algorithm found the value
of µJ with which the efficiency of Strategy 4a
increased. In the initial population, the efficiency
criterion (mean value of 10 runs) of Strategy 4a
was found to be 57.94 % with µJ = 100.
However, in the 5th generation, with the mutated
µJ = 50.89 the efficiency of Strategy 4a increased
to 62.09 % .

Conclusion for the 1st and 2nd Sets of Tests:

From the results of 1st and 2nd sets of
tests we conclude that through the sole use of the
reproduction and mutation mechanisms we may
find the value of the chosen control parameter
under which the best-so-far strategy may
perform even better.

3rd Set of Tests: Using the Reproduction and
Crossover
 Mechanisms only (Efficiency Fitness
Function, Scenario 1)

Below is the general schema for the 3rd

set of tests:

Figure 3: General Schema for the 3rd Set of Tests

This schema is described algorithmically in Table 5.
Once again, we chose the efficiency criterion to be
our PCO, i.e. the Fitness function in the
Reproduction mechanism is based upon efficiency.
Since we are not changing (mutating) any of the
control variable parameters, there should be nothing
that would affect the PCO. The point of performing a

crossover is in the fact that when we are pairing FIT
parents (e.g. with efficiency above the average), we’ll
have a higher probability of getting an offspring with
better PCO. However, by attempting to improve one
performance criterion we might inadvertently
improve others as well.

Table 5: Algorithm of Actions for the 3rd Set of Tests

Given: Initial (virtual) population – 10 control strategies

Known: Their five Performance Criteria

for j=1:G (number of generations)

CHOSE the Performance Criterion for optimization, PCO

Reproduction Mechanism (for all strategies):

FIND AVE = average (PCOStrategy 1 PCOStrategy 1a … PCOStrategy 5a)

for i=1:10

if PCO of a particular strategy > (<) AVE, name this strategy FIT

else, name it UNFIT

end

end

COPY the best existing strategy into a new population

Crossover:

while the formation of a new population is NOT completed

{

Randomly choose two parents out of FIT strategies

Generate a random number P in the [0, 1] interval

if P < 0.6, CROSSOVER and place two children into a new population

else, place the exact copies of parents into a new population

end

}

CALCULATE Performance Criteria of a new population

end

CHOSE the best-performed strategy from the current generation

Results:
In Scenario 1, from the initial

population we know that Strategy 5a is the most
efficient one. The number of generations G was
set to 2. During the process of crossover
Strategies 3a and 4a were chosen for mating.
One of their children turned out be highly
efficient, since it was the efficiency that we tried
to maximize. The results of this crossover are
tabulated below. Table 6 also demonstrates from
which parent the child inherited this or that
property. Table 7 compares the performance

criteria of parents, Strategies 3a and 4a, to those
of their offspring, Children 1 and 2.

From these tables one can see that,
efficiency wise, Child 1 performed extremely
well. None of the original 10 strategies, in the
same scenario, could ever achieve the efficiency
of 73 % ! However, Child 2 performed quite
poor in terms of efficiency. Nevertheless, in all
of the other aspects, it performed slightly better
than one of its parents, Strategy 3a. Thus, we
conclude that when optimizing one performance
criterion we may also inadvertently improve
other criteria as well.

Table 6: 3rd Set of Tests - Results of the Crossover

Strategy Part 1 Part 2

Control

Rules

Used

Supplemental

Rules Used

Utilized

Sensors

3a (1st move is always

a jump)
If ∆Cs & ∆Ct < 0, rotate

If ∆Cs & ∆Ct > 0,

jump_decrease,

else, rotate

1, 2,

3, 4
1, 2

head, tail,

belly

4a

rotate n times and

measure all n C's; find

max C out of n C's;

rotate; find Cnew;

while Cnew < max C,

rotate

jump_decrease 3, 4 1, 2 belly

Child 1 of 3a & 4a

rotate n times and

measure all n C's; find

max C out of n C's;

rotate; find Cnew;

while Cnew < max C,

rotate

If ∆Cs & ∆Ct > 0,

jump_decrease,

else, rotate

2, 3, 4 1, 2
head, tail,

belly

Child 2 of 3a & 4a

(1st move is always a

jump – inherited

from 3a)

If ∆Cs & ∆Ct < 0, rotate jump_decrease 1, 3 1, 2
head, tail,

belly

Table 7: 3rd Set of Tests - Parents’ Performance vs. Children’s With Efficiency Fitness Function

Strategy
Ave Time of 10

runs / Std Dev

Ave Velocity of

10 runs / Std Dev

Ave Efficiency

of 10 runs / Std

Dev

Ave Energy of

10 runs / Std

Dev

Ave Error of

10 runs / Std

Dev

Parent 1 (3a) 46.05 21.45 13.63 4.52 45.31 14.30 33 13.67 10.32 0.74

Parent 2 (4a) 151.63 40.62 2.97 0.65 55.69 10.08 148.10 39.73 11.20 0.41

Child 1 177.91 67.192 2.02 0.7314 73.35 7.435 165.1 64.578 10.65 0.26

Child 2 41.27 12.49 14.28 2.88 42.91 11.33 26.10 9.87 9.71 0.87

In Figure 4 we compare Strategies 3a and 4a
trajectories of motion to those of their "children". It
is apparent that Child 1 has the highest efficiency (the
thickness of the "tube" is smaller than that of others).

4th Set of Tests: Using the Reproduction and
Crossover Mechanisms only (Energy Fitness
Function, Scenario 1)

The general schema and the algorithm
of actions are the same as in 3rd Set of Tests. For
this particular set of tests we chose the energy
criterion to be our PCO, i.e. the Fitness function
in the Reproduction mechanism is based upon
energy.

Results:
For Scenario 1, from the initial population

(Table 13) we know that Strategy 5a is the most
efficient one. The number of generations G was set
to 2. During the process of crossover Strategies 1a
and 2a were chosen for mating. Their children turned
out to be more energy efficient than one of their

parents (remember it was the energy performance
criterion that we tried to minimize).
The results of this crossover are tabulated below:

The comparison of performance criteria of parents,
Strategies 1a and 2a, to those of their offspring,
Children 1 and 2 are collected in the table:
From another table one can see that, energy wise,
both children performed better than Parent 2
(Strategy 2a). Also, the efficiency criterion for both
children is a lot better than that of Strategy 2a. Thus,
we come to the same conclusion (see results for the
3rd Set of tests) again that when optimizing one
performance criterion we can also unconsciously
improve other criteria as well.

Figure 5 compares the parents' trajectories of motion
to those of their offspring. Visually, it is difficult to
make any sort of conclusion about strategies’
performances. Even though the "tube" of trajectories
for Child 2 seems to be narrower, numerically,

Strategy 1a has the highest efficiency.

Figure 4: 3rd Set of Tests - Trajectories of Robotic Motion for Strategies 3a, 4a, and their Children

Table 8: 4th Set of Tests - Results of the Crossover

Strategy Part 1 Part 2

Control

Rules

Used

Supplemental

Rules Used

Utilized

Sensors

1a If ∆Cs < 0, rotate
If ∆Cs > 0,

jump_decrease
1, 2 1, 2 head, tail

2a (1st move is always

a jump)
If ∆Ct < 0, rotate

If ∆Ct > 0,

jump_decrease
3, 4 1, 2 belly

Child 1 of 1a & 2a

(1st move is always a

jump)

If ∆Cs < 0, rotate

If ∆Ct > 0,

jump_decrease

(else, rotate –

if neither of

conditions is met—

an additional rule

we had to

introduce)

1, 4 1, 2
head, tail,

belly

Child 2 of 1a & 2a

(1st move is always a

jump)
If ∆Ct < 0, rotate

If ∆Cs > 0,

jump_decrease

(else, rotate –

if neither of

conditions is met—

an additional rule

we had to

introduce)

2, 3 1, 2
head, tail,

belly

Table 9: 4th Set of Tests - Parents’ Performance vs. Children’s

With Energy Fitness Function

Strategy
Ave Time of 10

runs / Std Dev

Ave Velocity of

10 runs / Std Dev

Ave Efficiency

of 10 runs / Std

Dev

Ave Energy of

10 runs / Std

Dev

Ave Error of

10 runs / Std

Dev

Parent 1 (1a) 32.73 9.30 12.64 1.36 60.8 17.74 31.9 9.10 10.58 0.74

Parent 2 (2a) 36.1 15.18 21.88 4.29 33.96 10.64 35.2 14.78 10.09 0.52

Child 1 35.97 16.67 18.58 4.68 42.93 16.58 34.60 16.19 10.54 0.45

Child 2 34.73 9.92 14.33 3.40 50.95 11.69 33.40 9.56 10.50 1.05

Conclusion for the 3rd and 4th Sets of Tests:
From the results of 3rd and 4th sets of

tests we conclude that through the sole use of the
reproduction and crossover mechanisms we may
find new strategies that perform better than their
parents or at least one of the parents.

Operation of the Genetically Programmed
VSC

Combining results from the four sets of
tests analyzed above, we came up with the
following design of our Variable Structure
Controller:

Figure 5: 4th Set of Tests - Trajectories of Robotic Motion for Strategies 1a, 2a, and their Children

Figure 6: Variable Structure Controller’s General Schema

Generally, VSC does the following:
• Uses the Reproduction and Crossover

mechanisms for a G number of
generations.

• It may create a new strategy that
performs better than its parents or at
least one of its parents. If a new
strategy is created, it’s placed into a
new population.

• In Gth generation it chooses the best
performed strategy and mutates it N
number of times by changing some
specified Control Variable Parameter to
a random value.

• Outputs an IMPROVED solution in
terms of the best-performed strategy
and the Control Variable Parameter’s
value it performs the best with.

Also, we believe that if we let our controller vary
the fitness function from generation to
generation, it might be able to come up with a
strategy that will have an improvement along
more than one performance criterion. Below,
we will describe the operation of our VSC
algorithmically:

Table 10: Pseudocode of the VSC’s Operation

Given: Initial (virtual) population – 10 control strategies

Known: Their five Performance Criteria

for j=1:G (number of generations)

CHOSE the Performance Criterion for optimization, PCO

Reproduction Mechanism (for all strategies):

FIND AVE = average (PCOStrategy 1 PCOStrategy 1a … PCOStrategy 5a)

for i=1:10

if PCO of a particular strategy > (<) AVE, name this strategy FIT

else, name it UNFIT

end

end

COPY the best existing strategy into a new population

Crossover:

while the formation of a new population is NOT completed

{

Randomly choose two parents out of FIT strategies

Generate a random number P in the [0, 1] interval

if P < 0.6, CROSSOVER and place two children into a new population

else, place the exact copies of parents into a new population

end

}

CALCULATE Performance Criteria of a new population

 end

CHOSE the best-performed strategy from the current generation

Mutation:

for k=1:N (number of generations)

MUTATE the best-performed strategy by randomly changing a specified Control Variable Parameter

CALCULATE Performance Criteria of a mutated strategy

end

RETAIN the value of a mutated Control Variable Parameter under which the best-performed strategy performs

even better

In essence, our VSC not only can create new
strategies , it can also determine under which
value of the specified Control Variable
Parameter they perform the best.

Conclusions and Recommendations
In this paper, the following three major goals
were pursued:

• To study a behavior of a real E. coli
bacterium

• To synthesize robotic control strategies
that are both efficient and robust based
on the observations of E. coli’s
behavior

• To design a robotic controller that
would presume a creation of a very
broad scope of logically compatible
combinations of control rules

comprising the earlier developed
control strategies

It is worth mentioning that out of our 10
designed control strategies Strategy 2 emulates
the behavior of a real E. coli bacterium the best,
even though it is not the most robust strategy. In
the figure below we compare the behavior of our
robot implementing Strategy 2 to that of a real E.
coli bacterium in a nearly isotropic homogenous
medium:

The decision-making mechanism of an E.
coli cell helped us design 10 robust control
strategies. This led to the creation of a variable
structure controller (VSC) that not only can
create new strategies all on its own, but can also
determine under which value of the specified
Control Variable Parameter they perform the
best.

 Figure 7: Robotic Trajectory of

 Motion (Strategy 2) vs. Real E. coli Bacterium's Trajectory of Motion

References
1. Andrusenko, Julia, Biologically Inspired

Variable Structure Controller (VSC) for an
Autonomous Robot, MS Thesis, Drexel
University, 2001

2. Fernandez, Jaime, The GP Tutorial, last
updated: June 03, 2000
http://www.geneticprogramming.com/Tutori
al/index.html

3. Grefenstette, John J., Learning Decision
Strategies with Genetic Algorithms, Naval

Research Laboratory, Washington, DC,
2000

4. Aha, David W., Tutorial on Machine
Learning, 1995 AI & Statistics Workshop,
Ft. Lauderdale, FL, Jan. 1995

5. Pal, Sankar K., Wang, Paul P., Genetic
Algorithms for Pattern Recognition , Boca
Raton, FL: CRC Press, Inc., 1996

6. Koza, John R., Genetic Programming: On
the Programming of Computers by Means of
Natural Selection, Cambridge, MA: The
MIT Press, 1992

Appendix 1
Control Strategies

Strategy Part 1 Part 2
Control
Rules
Used

Supplemental
Rules Used

Utilized
Sensors

1 If ∆Cs < 0, rotate If ∆Cs > 0, jump 1, 2 1 head, tail

1a If ∆Cs < 0, rotate
If ∆Cs > 0,
jump_decrease

1, 2 1, 2 head, tail

2 (1st move is always
a jump) If ∆Ct < 0, rotate If ∆Ct > 0, jump 3, 4 1 belly

2a (1st move is always
a jump) If ∆Ct < 0, rotate

If ∆Ct > 0,
jump_decrease

3, 4 1, 2 belly

3 (1st move is always
a jump) If ∆Cs & ∆Ct < 0, rotate

If ∆Cs & ∆Ct > 0,
jump, else, rotate

1, 2,
 3, 4

1
head, tail,

belly

3a (1st move is always
a jump)

If ∆Cs & ∆Ct < 0, rotate
If ∆Cs & ∆Ct > 0,
jump_decrease,
else, rotate

1, 2,
 3, 4

1, 2
head, tail,

belly

4

rotate n times and
measure all n C's; find
max C out of n C's;
rotate; find Cnew;
while Cnew < max C,
rotate

jump 3, 4 1 belly

4a

rotate n times and
measure all n C's; find
max C out of n C's;
rotate; find Cnew;
while Cnew < max C,
rotate

jump_decrease 3, 4 1, 2 belly

5 If ∆Cs < 0, rotate
If ∆Cs > 0, jump,
rotate

1, 2 1 head, tail

5a If ∆Cs < 0, rotate
If ∆Cs > 0,
jump_decrease,
rotate

1, 2 1, 2 head, tail

Appendix 2
Performance criteria

Introduction of Performance Criteria
The performance criteria (for a single run)

of our 10 strategies are defined as follows:
Time, t (sec) – total time it takes to complete a single
run
Velocity, V (units/sec) – overall velocity, defined as
a total distance traveled, Dtotal, over total time: V =
Dtotal / t
Efficiency, ε (%) – Euclidean (shortest) distance,
DEUC, over total distance traveled: ε = [DEUC / Dtotal]
* 100 % . DEUC is the distance between initial
position of our robot’s tail and the sugar point. For

instance, for the scenario that we chose (Table 3.2),
DEUC = 232.03 units of length. The reason why we
are finding distance between the robot’s tail and the
sugar point instead of the one between the robot’s
belly and the sugar point is because of the fact that
our
Energy, E (elementary moves) – energy in this thesis
is defined as a total number of elementary moves
(jumps and rotations). It is assumed that both JUMP
and ROTATION have a unit of energy.
Error , Err (% from DEUC) – error of arrival to the
goal. When DEUC is calculated there is a need to

compensate for the error of arrival to the goal. Due
to the fact that it would be quite difficult for the E.
coli robot to find a single (sugar) point, we
introduced a Stopping Rule with its circle of radius
R around the sugar point. Introduction of this so-
called circular “sugar vicinity” also introduces an
error of arrival to the goal. To compensate for that
we do the following:

DEUC – (h / 2 + R),
where h is the height or length of our robot and h /2 +
R quantity represents the maximum Err possible in
units of length. To elaborate on what we mean by the
maximum error possible we present the picture
below:

Figure A : Depiction of the Robot’s Stop in the Sugar Vicinity when the Error (in units of length) of Arrival to
the Goal is Maximum

Remember that the robot stops if the distance
between its belly and sugar point is less or equal to
R. Thus, the Errmax = R + h / 2 since we are
calculating distances from the robot’s tail and not its
belly.

