
EPIDEMIOLOGICAL MODELS FOR MUTATING PATHOGENS∗

JIA LI† , YICAN ZHOU‡ , ZHIEN MA‡ , AND JAMES M. HYMAN§

SIAM J. APPL. MATH. c© 2004 Society for Industrial and Applied Mathematics
Vol. 65, No. 1, pp. 1–23

Abstract. We formulate epidemiological models for the transmission of a pathogen that can
mutate in the host to create a second infectious mutant strain. The models account for mutation
rates that depend on how long the host has been infected. We derive explicit formulas for the
reproductive number of the epidemic based on the local stability of the infection-free equilibrium.
We analyze the existence and stability of the boundary equilibrium, whose infection components are
zero and positive, respectively, and the endemic equilibrium, whose components are all positive. We
establish the conditions for global stability of the infection-free and boundary equilibria and local
stability of the endemic equilibrium for the case where there is no age structure for the pathogen in
the infected population. We show that under certain circumstances, there is a Hopf bifurcation where
the endemic equilibrium loses its stability, and periodic solutions appear. We provide examples and
numerical simulations to illustrate the Hopf bifurcation.
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1. Introduction. One of the biggest challenges in preventing the spread of in-
fectious diseases is the genetic variations of pathogens. Pathogen mutations that
circumvent the protective effects of a patient’s immune response are common in in-
fectious diseases such as measles [5], hepatitis B [20], HIV [9], West Nile virus [8], and
influenza [18, 23, 24, 25].

The generation or selection of mutants that are a reflection of attempts of the
pathogen to resist immune attacks of the host and to survive may occur naturally
or in response to treatment with antibodies or antiviral drugs. Pathogens frequently
alter their antigen expression to escape the immune defense and ensure the persistent
infection in a host [10, 19].

There were only a few existing mathematical models accounting for genetic mu-
tations of a pathogen [2, 3, 11, 17, 21], and little has been done to directly model
dynamics of mutations which describe the attempts of the pathogen, after its infec-
tion in a host, to escape the immune defense of the host. In this paper, we propose
an infection-age-structured dynamic model for a pathogen that can mutate into a
second infectious strain in the host. The mutation could be the effect of selective
immunologic pressure or possibly adaptation to a more efficiently transmitted or a
better replicating pathogen resulting from conversion of the original viral pathogen.

The model formulation for the origin of the pathogen strain is based on a sus-
ceptible-infective-recovered (SIR) model with variable infection ages and is governed
by partial differential equations (PDEs). The dynamics of the mutant are based on
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an ordinary differential equation (ODE) SIR model. We characterize the threshold
conditions of the model epidemic with an explicit formula for the reproductive num-
ber of infection, which determines the stability of the infection-free equilibrium. We
analyze the stability of boundary equilibria of the model, where some, but not all,
of the infection components are zero. We then investigate the existence and stability
of the endemic equilibrium, whose components are all positive. We obtain explicit
formulas for the endemic equilibrium and the characteristic equation of this equilib-
rium, which determines its stability. We then consider the special case where the
rate at which the pathogen converts to its mutant and the transmission rate of the
original pathogen are both independent of infection age. In this simplified situation,
the model equations reduce to a system of ODEs. We obtain global stability of the
infection-free equilibrium and a unique boundary equilibrium. We show that under
certain conditions, the unique endemic equilibrium may undergo a Hopf bifurcation
resulting in a periodic solution. We provide examples and numerical simulations to
illustrate the stability change of the endemic equilibrium and the Hopf bifurcation.

2. Model formulation. We base our SIR model on the spread of a pathogen
that can mutate in the host to create a second, cocirculating, mutant strain. We as-
sume that after a certain period of infection, the original strain, referred to as Strain 1,
is selected against in the intrahost selection process and is converted to a mutant, re-
ferred to as Strain 2, such that a proportion of the individuals infected by Strain 1
are then carrying Strain 2. Let S(t) be the susceptibles and i(t, τ) the distribution of
infectives infected by Strain 1 with infection stage, or time since infection, τ , such that∫ τ2
τ1

i(t, τ)dτ is the total number of infectives with infection ages between τ1 and τ2
[1, 7, 13, 14, 22]. Let J(t) be the infectives infected by Strain 2 and R(t) the group
of individuals who are recovered and immune to both strains. We further assume
that the genetic difference between the two strains, or the drift of the mutation, is
relatively small so that there is perfect cross-immunity; that is, once an individual is
recovered from infection by one of the two strains, the individual is immune to both
strains.

The dynamics of the transmission in this model are governed by the system

dS(t)

dt
= µ(S0 − S(t)) −

(∫ ∞

0

β1(τ)i(t, τ)dτ + β2J(t)

)
S(t),

∂i(t, τ)

∂t
+

∂i(t, τ)

∂τ
= −(µ + γ1)i(t, τ) − κ(τ)i(t, τ),

i(t, 0) = S(t)

∫ ∞

0

β1(τ)i(t, τ)dτ,

i(0, τ) = ψ(τ),

dJ(t)

dt
= β2J(t)S(t) − (µ + γ2)J(t) +

∫ ∞

0

κ(τ)i(t, τ)dτ,

dR(t)

dt
= γ1

∫ ∞

0

i(t, τ)dτ + γ2J(t) − µR(t),

(2.1)

where µS0 is the input flow into the susceptible population, µ is the total removal rate
which accounts for both natural death and people moving in and out of the susceptible
population, γ1 and γ2 are the recovery rates from the infection, β1(τ) and β2 are the
transmission rates of Strain 1 and Strain 2, respectively, κ(τ) is the mutation rate, or
the rate at which Strain 1 is converted to Strain 2, and ψ(τ) is the initial distribution
of infectives infected by Strain 1.
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3. Thresholds of the epidemic. Assume that the initial distribution of the
infectives is zero. Then E0 := (S0, 0, 0) is the infection-free equilibrium. As is well
known, its stability determines the thresholds of the epidemic [6, 7, 13, 15, 16]. We
investigate the local stability of E0 as follows.

Since the dynamics of R(t) do not affect the evolution of S, i, and J , we omit the
equation for R(t) when studying the growth of the epidemic. Linearizing system (2.1)
about E0, by defining the perturbation variables x(t) = S(t) − S0, y(t, τ) = i(t, τ),
z(t) = J(t), we obtain the system

dx(t)

dt
= −µx(t) −

(∫ ∞

0

β1(τ)y(t, τ)dτ + β2z(t)

)
S0,⎧⎪⎨

⎪⎩
∂y(t, τ)

∂t
+

∂y(t, τ)

∂τ
= −(µ + γ1)y(t, τ) − κ(τ)y(t, τ),

y(t, 0) = S0

∫ ∞

0

β1(τ)y(t, τ)dτ,

dz(t)

dt
= β2z(t)S

0 − (µ + γ2)z(t) +

∫ ∞

0

κ(τ)y(t, τ)dτ.

(3.1)

Let x(t) = x0e
ρt, y(t, τ) = p(τ)eρ(t−τ), and z(t) = z0e

ρt, where x0, p(τ), z0, and ρ
are to be determined. Substituting them into (3.1), we obtain the equations

ρx0 = −µx0 − S0

∫ ∞

0

β1(τ)p(τ)e−ρτdτ − β2S
0z0,(3.2)

dp(τ)

dτ
= −(µ + γ1)p(τ) − κ(τ)p(τ),(3.3)

p(0) = S0

∫ ∞

0

β1(τ)p(τ)e−ρτdτ,(3.4)

ρz0 = (β2S
0 − µ− γ2)z0 +

∫ ∞

0

κ(τ)p(τ)e−ρτdτ(3.5)

for p(τ) �≡ 0, x0 �= 0, z0 �= 0, and ρ.
Equations (3.3) and (3.4) are decoupled from (3.2) and (3.5). Integrating (3.3)

from 0 to τ gives

p(τ) = p(0)e−(µ+γ1)τ−∆(τ),(3.6)

where ∆(τ) :=
∫ τ

0
κ(v)dv. Substituting (3.6) into (3.4) yields the characteristic equa-

tion

p(0) = S0p(0)

∫ ∞

0

β1(τ)e−ρτe−(µ+γ1)τ−∆(τ)dτ.(3.7)

Defining

C(ρ) = S0

∫ ∞

0

β1(τ)e−ρτe−(µ+γ1)τ−∆(τ)dτ,

we note that (3.7) has a nonzero solution p(0) if and only if there exists ρ such that
C(ρ) = 1.

We first consider the case where ρ is a real number. Since

C ′(ρ) = −S0

∫ ∞

0

τβ1(τ)e−ρτe−(µ+γ1)τ−∆(τ)dτ < 0,
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C(ρ) is a decreasing function of ρ. Noticing limρ→−∞ C(ρ) = ∞ and limρ→∞ C(ρ) =
0, if we define the number

R1 := C(0) = S0

∫ ∞

0

β1(τ)e−(µ+γ1)τ−∆(τ)dτ,(3.8)

then there exists a unique real solution ρ to the equation C(ρ) = 1, which is negative
if R1 < 1 and positive if R1 > 1.

If ρ := ρ1 + iρ2 is a complex number, where i =
√
−1, then by separating the real

and imaginary parts of C(ρ) = 1, the real part ρ1 satisfies

1 = S0

∫ ∞

0

β1(τ)e−ρ1τe−(µ+γ1)τ−∆(τ) cos(ρ2τ)dτ.(3.9)

However, since

S0

∫ ∞

0

β1(τ)e−ρ1τe−(µ+γ1)τ−∆(τ) cos(ρ2τ)dτ ≤ S0

∫ ∞

0

β1(τ)e−ρ1τe−(µ+γ1)τ−∆(τ)dτ,

solution ρ1 to (3.9) must be negative if R1 < 1. That is, equation C(ρ) = 1 can have
solutions with negative real part only if R1 < 1.

The solution ρ of C(ρ) = 1 can be used to determine p(τ). The initial values, x0

and z0, can now be defined from (3.2) and (3.5). The number R1 defined in (3.8) is a
threshold value for Strain 1 because if R1 > 1 the epidemic for Strain 1 grows, while
if R1 < 1 it delays. It is also the number of secondary infective cases generated by
infection of Strain 1. We refer to R1 as the reproductive number for Strain 1.

If initially no one is infected with Strain 1, i.e., i(t, τ) = 0, then p(τ) = 0 for all τ .
Equations (3.2) and (3.5) can be reduced to

ρx0 = −µx0 − β2S
0z0,

ρz0 = (β2S
0 − µ− γ2)z0,

(3.10)

and they determine threshold conditions for Strain 2. Define

R2 :=
β2S

0

µ + γ2
.(3.11)

All solutions ρ of system (3.10) are negative if and only if R2 < 1. Therefore, R2 is a
threshold value for Strain 2 and is the number of secondary infective cases generated
by infection of Strain 2. We refer to R2 as the reproductive number of Strain 2.

The thresholds for the epidemic can be summarized as follows.
Theorem 3.1. Define the reproductive number, R0, of infection in the total

population by

R0 := max {R1, R2} ,

that is,

R0 = max

{
S0

∫ ∞

0

β1(τ)e−(µ+γ1)τ−∆(τ)dτ,
β2S

0

µ + γ2

}
.

Then the infection-free equilibrium E0 is asymptotically stable if R0 < 1 and is un-
stable if R0 > 1.
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4. Boundary equilibrium. Cocirculating strains of the pathogen compete with
each other to infect the susceptible population. When only one strain is present, the
solution is on the boundary of the feasibility solution space and we call the stationary
solution a boundary equilibrium.

An equilibrium of system (2.1), (S, i(τ), J), satisfies the system

µ(S0 − S) −
(∫ ∞

0

β1(τ)i(τ)dτ + β2J

)
S = 0,(4.1a)

di(τ)

dτ
= −(µ + γ1)i(τ) − κ(τ)i(τ),(4.1b)

i(0) = S

∫ ∞

0

β1(τ)i(τ)dτ,(4.1c)

β2JS − (µ + γ2)J +

∫ ∞

0

κ(τ)i(τ)dτ = 0.(4.1d)

It follows from (4.1d) that if J = 0, then i(τ) = 0 for all τ . That is, there does
not exist a boundary equilibrium with i(τ) ≥ 0 and J = 0, and the only boundary
equilibrium has i(τ) = 0 for all τ and J �= 0. We denote it as E1 := (S1, i1(τ), J1).

Solving (4.1a) and (4.1d), we have

S1 =
µ + γ2

β2
, J1 =

µ

β2

(
S0β2

µ + γ2
− 1

)
=

µ

β2
(R2 − 1).(4.2)

Thus the boundary equilibrium E1 exists if and only if R2 > 1.
To study stability of this boundary equilibrium, we linearize system (2.1) about E1

by letting x(t) = S(t)−S1, y(t) = J(t)−J1, z(t, τ) = i(t, τ), and we obtain the system

dx(t)

dt
= −µx(t) − β2J1x(t) − β2S1y(t) − S1

∫ ∞

0

β1(τ)z(t, τ)dτ,

dy(t)

dt
= β2J1x(t) − (µ + γ2)y(t) + β2S1y(t) +

∫ ∞

0

κ(τ)z(t, τ)dτ,⎧⎪⎨
⎪⎩

∂z(t, τ)

∂t
+

∂z(t, τ)

∂τ
= −(µ + γ1)z(t, τ) − κ(τ)z(t, τ),

z(t, 0) = S1

∫ ∞

0

β1(τ)z(t, τ)dτ.

(4.3)

Using the same approach as in section 3, we first derive the characteristic equation
for E1,

1 = S1

∫ ∞

0

β1(τ)e−ρτe−(µ+γ1)τ−∆(τ)dτ,(4.4)

and define

Rb := S1

∫ ∞

0

β1(τ)e−(µ+γ1)τ−∆(τ)dτ.

If Rb < 1, then limt→∞ z(t, τ) = 0.
Next we locate the eigenvalues of the following matrix from system (4.3):[

−µ− β2J1 −β2S1

β2J1 −(µ + γ2 − β2S1)

]
=

[
−µ− β2J1 −β2S1

β2J1 0

]
.
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The trace and determinant of this matrix are negative and positive, respectively.
Therefore, its eigenvalues both have negative real part.

In summary we have the following.
Theorem 4.1. The unique boundary equilibrium

E1 = (S1, i1(τ), J1) =

(
µ + γ2

β2
, 0,

µ

β2

(
S0β2

µ + γ2
− 1

))

exists if and only if R2 > 1. It is locally asymptotically stable if

Rb =
µ + γ2

β2

∫ ∞

0

β1(τ)e−(µ+γ1)τ−∆(τ)dτ < 1

and is unstable if Rb > 1.
If R2 > 1, then S0 > (µ + γ2)/β2 := S̃1. Notice that Rb can be rewritten as

Rb = S̃1/S
0R1 = R1/R2. When the boundary equilibrium E1 exists, R2 > 1, and

hence S0 > S̃1 and Rb < R1. If R2 > 1 > R1, then Rb < 1, which implies that
the boundary equilibrium E1 is asymptotically stable. In the situation where R2 > 1
and R1 > 1, the infection-free equilibrium is unstable and the two strains cannot
both die out. If R2 > R1 > 1, then Rb < 1 and the boundary equilibrium E1

exists and is asymptotically stable. In the last possible case, if R1 > R2 > 1, then
although the boundary equilibrium E1 exists, it is unstable. This situation may lead
to the existence and stability of an endemic equilibrium or other dynamical features
of system (2.1).

5. Endemic equilibrium. The cocirculating strains of the pathogen can coex-
ist. The stationary coexistence solution is an endemic equilibrium whose components
are all positive.

5.1. Existence of the endemic equilibrium. Let E∗ := (S∗, i∗(τ), J∗) be an
endemic equilibrium of system (2.1). It follows from (4.1b) that

i∗(τ) = i∗(0)e−(µ+γ1)τ−∆(τ).

By substituting this into (4.1c), we arrive at the equation

i∗(0) = i∗(0)S∗
∫ ∞

0

β1(τ)e−(µ+γ1)τ−∆(τ)dτ = i∗(0)
S∗R1

S0
.(5.1)

Equation (5.1) has a solution i∗(0) > 0 if and only if

S∗ =
S0

R1
.(5.2)

It follows from (4.1c) that

i∗(0) = S∗W1,

where we define W1 :=
∫∞
0

β1(τ)i∗(τ)dτ . Then

i∗(τ) = S∗W1e
−(µ+γ1)τ−∆(τ).(5.3)

Define

W2 :=

∫ ∞

0

κ(τ)i∗(τ)dτ = S∗W1

∫ ∞

0

κ(τ)e−(µ+γ1)τ−∆(τ)dτ = S∗W1K,(5.4)
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where

K :=

∫ ∞

0

κ(τ)e−(µ+γ1)τ−∆(τ)dτ.

The equilibrium equations (4.1a) and (4.1d) can be expressed as

µS0 = (µ + W1 + β2J
∗)S∗,(5.5)

W2 = ((µ + γ2) − β2S
∗)J∗.(5.6)

Substituting (5.2) into (5.6) yields

(µ + γ2)

(
1 − β2S

∗

µ + γ2

)
J∗ = (µ + γ2)

(
1 − R2

R1

)
J∗ = W2.(5.7)

Since W2 > 0, there exists a positive solution J∗ of (5.7) if and only if

R2

R1
< 1.

Suppose R2 < R1. Then solving (5.7) for J∗ yields

J∗ =
W2

(µ + γ2)

(
1 − R2

R1

) .(5.8)

Substituting (5.8) into (5.5) gives

µ + W1 + β2
W2

(µ + γ2)

(
1 − R2

R1

) =
µS0

S∗ = µR1.(5.9)

We then substitute (5.4) into (5.9) to obtain

W1 +
β2S

0K

(µ + γ2)(R1 −R2)
W1 = µ(R1 − 1),(5.10)

which implies that W1 > 0 if R1 > 1.
Solving (5.10) for W1 yields

W1 =
µ (R1 − 1) (R1 −R2) (µ + γ2)

((µ + γ2) (R1 −R2) + β2KS0)
.(5.11)

W2 can be determined by substituting (5.11) into (5.4). Finally, substituting W2

and W1 into (5.3) and (5.8), we obtain the expression for the unique positive endemic
equilibrium.

Theorem 5.1. If R1 > 1 and R1 > R2, then there exists a unique endemic
equilibrium E∗ = (S∗, i∗(τ), J∗) given by

S∗ =
S0

R1
, i∗(τ) =

S0W1

R1
e−(µ+γ1)τ−

∫ τ
0

κ(v)dv, J∗ =
KS0W1

(µ + γ2) (R1 −R2)
,(5.12)

where W1 is defined in (5.11).
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5.2. Stability of the endemic equilibrium. We investigate the local stability
of the endemic equilibrium, E∗, by linearizing system (2.1) about E∗. Let x(t) =
S(t) − S∗, y(t, τ) = i(t, τ) − i∗(τ), and z(t) = J(t) − J∗. The linearization results in
the perturbation equations

dx(t)

dt
= − (µ + W1 + β2J

∗)x(t) − β2S
∗z(t) − S∗

∫ ∞

0

β1(τ)y(t, τ)dτ,⎧⎪⎨
⎪⎩

∂y(t, τ)

∂t
+

∂y(t, τ)

∂τ
= −(µ + γ1)y(t, τ) − κ(τ)y(t, τ),

y(t, 0) = S∗
∫ ∞

0

β1(τ)y(t, τ)dτ + W1x(t),

dz(t)

dt
= β2J

∗x(t) − (µ + γ2)z(t) + β2S
∗z(t) +

∫ ∞

0

κ(τ)y(t, τ)dτ.

(5.13)

Suppose x = x0e
ρt, y = ŷ(τ)eρ(t−τ), and z = z0e

ρt. Substituting these variables
into system (5.13) and solving for ŷ(τ), with initial condition ŷ(0), leads to the system

(ρ + µ + W1 + β2J
∗)x0 + β2S

∗z0 + S∗
∫ ∞

0

β1(τ)ŷ(τ)e−ρτdτ = 0,

−β2J
∗x0 + (ρ + µ + γ2 − β2S

∗)z0 −
∫ ∞

0

κ(τ)ŷ(τ)e−ρτdτ = 0,

ŷ(τ) =

(
S∗

∫ ∞

0

β1(τ)ŷ(τ)e−ρτdτ + W1x0

)
e−(µ+γ1)τ−∆(τ).

(5.14)

We simplify these notations by defining the functions

H(ρ) :=

∫ ∞

0

β1(τ)ŷ(τ)e−ρτdτ, Q(ρ) :=

∫ ∞

0

κ(τ)ŷ(τ)e−ρτdτ,

P1(ρ) :=

∫ ∞

0

β1(τ)e−ρτe−(µ+γ1)τ−∆(τ)dτ, P2(ρ) :=

∫ ∞

0

κ(τ)e−ρτe−(µ+γ1)τ−∆(τ)dτ.

Multiplying ŷ(τ) in (5.14) by β1(τ)e−ρτ and κ(τ)e−ρτ , respectively, and then inte-
grating from 0 to ∞ yields

H(ρ) =
W1P1(ρ)

1 − S∗P1(ρ)
x0(5.15)

and

Q(ρ) = (S∗H(ρ) + W1x0)P2(ρ) =

(
S∗W1P1(ρ)

1 − S∗P1(ρ)
+ W1

)
P2(ρ)x0.(5.16)

Substituting (5.15) and (5.16) into system (5.14), we obtain the characteristic equation

(
ρ + µ + β2J

∗ +
W1

1 − S∗P1(ρ)

)
(ρ + µ + γ2 − β2S

∗) +

(
β2J

∗ +
W1P2(ρ)

1 − S∗P1(ρ)

)
β2S

∗ = 0

(5.17)

and arrive at the following result.
Theorem 5.2. The endemic equilibrium, given in (5.12), is locally asymptotically

stable if all roots, ρ, of the characteristic equation (5.17) have negative real part.
The results obtained for the two-strain SIR model (2.1) are summarized in Table 1.

The stability of the endemic equilibrium is not listed because it requires knowledge of
the roots of the characteristic equation (5.17) and we have not established the explicit
criterion.
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Table 1

The existence conditions for the boundary and endemic equilibria, E1 and E∗, and stability
conditions for the infection-free and boundary equilibria, E0 and E1. These conditions are based on
the relations between the two reproductive numbers, R1 and R2, for the two strains.

R1 < 1, R2 < 1 R2 < 1 < R1 R1 < 1 < R2 1 < R1 < R2 1 < R2 < R1

E0 stable unstable unstable unstable unstable
E1 does not exist does not exist stable stable unstable
E∗ does not exist exists does not exist does not exists exists

6. Constant mutation rate. Because (5.17) is a transcendental equation, it is
difficult to determine when all the roots of the characteristic equation have negative
real part and, hence, whether the endemic equilibrium is stable. To gain insight into
the transmission dynamics of the disease governed by system (2.1), we consider the
special case where the mutation rate from Strain 1 to Strain 2 is constant and where
the infection rate of Strain 1 is independent of the infection stages. We define these
constant rates as κ(τ) := k and β1(τ) := β1.

Let the total infectives be I(t) :=
∫∞
0

i(t, τ)dτ . Integrating the equation for i(t, τ)
in (2.1) with respect to τ and using the initial condition i(t, 0) reduces the system of
PDEs to the system of ODEs,

dS

dt
= µ(S0 − S) − β1IS − β2JS,(6.1a)

dI

dt
= β1SI − (µ + γ1 + k)I,(6.1b)

dJ

dt
= β2SJ − (µ + γ2)J + kI.(6.1c)

The reproductive numbers of Strains 1 and 2, R1 and R2, for system (6.1) are

R1 =
S0β1

µ + γ1 + k
, R2 =

S0β2

µ + γ2
.(6.2)

The only boundary equilibrium with I = 0 and J > 0 exists if R2 > 1 and it has the
same expression as in section 4. This boundary equilibrium is stable if R1 < R2 and
is unstable if R1 > R2.

We now establish existence and local stability of the endemic equilibrium of system
(6.1).

For κ(τ) = k, the term K defined in (5.4) becomes

K =
k

µ + γ1 + k
.(6.3)

Substituting (6.2) and (6.3) into (5.12), we obtain the endemic equilibrium, E∗ =
(S∗, I∗, J∗), with

S∗ =
µ + γ1 + k

β1
,

I∗ =
µ
(
S0β1 − (µ + γ1 + k)

)(
β1(µ + γ2) − β2(µ + γ1 + k)

)
β1

(
β1(µ + γ2) − β2(µ + γ1)

)
(µ + γ1 + k)

,

J∗ =
µk

(
S0β1 − (µ + γ1 + k)

)(
β1(µ + γ2) − β2(µ + γ1)

)
(µ + γ1 + k)

.

(6.4)



10 JIA LI, YICAN ZHOU, ZHIEN MA, AND JAMES M. HYMAN

By solving (6.1) for an endemic equilibrium, we have the equivalent solution

S∗ =
S0

R1
,

I∗ =
µ(µ + γ1 + k)(R1 − 1)(R1 −R2)

β1

(
kR1 + (µ + γ1)(R1 −R2)

) ,

J∗ =
µkS0(R1 − 1)

(µ + γ2)
(
kR1 + (µ + γ1)(R1 −R2)

) .
Hence E∗ exists if and only if R1 > 1 and R1 > R2.

Based on µ+β2J
∗ = µS0/S∗ −β1I

∗, the characteristic equation for system (6.1)
has the form

(
ρ + µR1 +

γ1 + µ + k

ρ
β1I

∗
)

(ρ + µ + γ2 − β2S
∗) +

(
β2J

∗ +
k

ρ
β1I

∗
)
β2S

∗ = 0.

(6.5)

This can be expressed as

ρ3 + a1ρ
2 + a2ρ + a3 = 0,

where

a1 := µR1 + µ + γ2 − β2S
∗ = µ

S0

S∗ + k
I∗

J∗ ,

a2 := µR1(µ + γ2 − β2S
∗) + (µ + γ1 + k)β1I

∗ + β2
2J

∗S∗

= β2
1S

∗I∗ + β2
2S

∗J∗ + µ
S0

S∗ k
I∗

J∗ ,

a3 := ((µ + γ2)β1 − β2(µ + γ1)) (µ + γ1 + k)I∗ = β1S
∗k

I∗

J∗ (β1I
∗ + β2J

∗) .

Since a1 > 0 and a3 > 0, it follows from the Routh–Hurwitz criterion that all charac-
teristic roots of (6.5) have negative real part if and only if a1a2 > a3.

A straightforward calculation yields

a1a2 − a3 = µ
S0

S∗

(
β2

1S
∗I∗ + β2

2S
∗J∗ + µ

S0

S∗ k
I∗

J∗

)
+ µ

S0

S∗

(
k
I∗

J∗

)2

+ kS∗I∗β2(β2 − β1)

=
µ(R1 − 1)(R1 −R2)

(σ1 + k)R1 − σ1R2

(
µR1(σ1 + k)2 +

µσ2R
2
2k

R1 −R2

−
kσ2R2

(
R1(σ1 + k) −R2σ2

)
R2

1

)

+
µ(R1 −R2)

R2
1

(µσ2R
3
1 + σ2

2(R1 −R2)R1)

=
µ(R1 − 1)(R1 −R2)

R2
1

(
(σ1 + k)R1 − σ1R2

) (c2k
2 + c1k + c0),

(6.6)
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where

σ1 := µ + γ1, σ2 := µ + γ2,

c0 := µσ2
1R

3
1 + σ2R1

(
µR2

1 + σ2(R1 −R2)
)σ1(R1 −R2)

R1 − 1
,

c1 := 2µσ1R
3
1 +

µσ2R
2
1R

2
2

R1 −R2
+

σ2R
2
1

(
µR2

1 + σ2(R1 −R2)
)

R1 − 1
− σ2R2(σ1R1 − σ2R2),

c2 := µR3
1 − σ2R1R2.

Hence all roots of (6.5) have negative real part if c2k
2 + c1k + c0 > 0, and at least

one of the roots of (6.5) has positive real part if c2k
2 + c1k + c0 < 0.

We summarize the results in the following theorem.
Theorem 6.1. When the mutation rate is constant, the dynamical behavior of

epidemic model (6.1) can be described as one of the following cases:
1. If we define R0 := max {R1, R2} and R0 < 1, then the infection-free equi-

librium, E0 := (S0, 0, 0), is the only equilibrium and is locally asymptotically
stable. If R0 > 1, then E0 is unstable.

2. If R1 < 1 < R2, or 1 < R1 < R2, the only boundary equilibrium, given by

E1 :=
(
S̃, 0, J̃

)
=

(
S0R2, 0,

µS0

σ2R2
(R2 − 1)

)
,(6.7)

exists and is locally asymptotically stable. In this case, the endemic equilib-
rium, E∗, does not exist.

3. If R2 < 1 < R1, the endemic equilibrium, E∗, exists and is the only nontrivial
equilibrium. It is locally asymptotically stable if c2k

2 + c1k + c0 > 0 and
unstable if c2k

2 + c1k + c0 < 0.
4. If 1 < R2 < R1, the boundary equilibrium, E1, exists but is unstable. The

endemic equilibrium, E∗, exists and is locally asymptotically stable if c2k
2 +

c1k + c0 > 0 and unstable if c2k
2 + c1k + c0 < 0.

6.1. The global stability of the equilibria. In this section we establish that
when the infection-free equilibrium and the boundary equilibrium of system (6.1) are
locally asymptotically stable, they are globally stable.

Theorem 6.2.

1. If the infection-free equilibrium, E0, is locally asymptotically stable, then it is
globally stable; that is, E0 is globally asymptotically stable if R0 < 1.

2. If R1 < 1 < R2, the only boundary equilibrium, E1, given in (6.7), is globally
asymptotically stable.

Proof. It follows from (6.1b) that

I(t) = I(0)e
∫ t
0
β1S(τ)dτ−(µ+γ1+k)t

for all t ≥ 0. Hence, the hyperplane I = 0 is invariant for system (6.1).
If R1 < 1, we can further show that the hyperplane attracts all solutions started

in the first octant, S ≥ 0, I ≥ 0, J ≥ 0. That is, limt→∞ I(t) = 0. It can be seen
from (6.1a) that dS/dt ≤ µ(S0 − S) and hence S(t) ≤ S0 + S(0)e−µt and from (6.1b)
that

I(t) ≤ I(0)e
∫ t
0
β1(S0+S(0)e−µτ)dτ−(µ+γ1+k)t = I(0)e(µ+γ1+k)(R1−1)t+

β1S(0)
µ (1−e−µt)

≤ I(0)e
β1S(0)

µ e(µ+γ1+k)(R1−1)t → 0

as t → ∞.
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Based on the attractiveness of the hyperplane I = 0, to prove the global asymp-
totic stability of the infection-free equilibrium E0 or the boundary equilibrium E1 in
the first octant, it suffices to show that these two equilibria are globally asymptotically
stable in the hyperplane I = 0.

We first show that all the solutions of (6.1) in the hyperplane I = 0 approach E0

if R0 < 1. We use the Lyapunov function V1 defined by

V1(S, J) := J + S − S0 − S0 ln
S

S0

for system (6.1). Along the trajectories of system (6.1) in the hyperplane I = 0 we
have

dV1

dt

∣∣∣∣
(6.1)

= (β2S − (µ + γ2))J +
S − S0

S

(
µ(S0 − S) − β2JS

)

= −µ(S − S0)2

S
+
(
S0β2 − (µ + γ2)

)
J

= −µ(S − S0)2

S
+ J(R2 − 1)σ2 < 0

if R2 < 1. Hence it follows from Lyapunov stability theory that E0 is globally asymp-
totically stable.

We next assume R1 < 1 < R2 and show the global stability of the boundary
equilibrium E1 = (S̃, 0, J̃). We use

V2(S, J) = J − J̃ − J̃ ln
J

J̃
+ S − S̃ − S̃ ln

S

S̃

as a Lyapunov functions for system (6.1). In the hyperplane I = 0,

dV2

dt

∣∣∣∣
(6.1)

= (β2S − (µ + γ2)) (J − J̃) +
µ(S0 − S)(S − S̃)

S
− (S − S̃)β2J

= β2(S − S̃)(J − J̃) +
µ(S0 − S)(S − S̃)

S
− (S − S̃)β2J

= −β2(S − S̃)J̃ +
µ(S0 − S)(S − S̃)

S

= −S − S̃

S

(
Sβ2J̃ − µ(S0 − S)

)
= −S − S̃

S

(
(β2J̃ + µ)S − µS0

)

= −S − S̃

S

(
µS0

S̃
S − µS0

)
= −µS0(S − S̃)2

S̃S
≤ 0.

The maximum invariant subset of the set
{
(S, I, J)

∣∣ dV
dt = 0

}
in the hyperplane

I = 0 contains only E1. Then it follows from the LaSalle invariance principle that E1

is globally asymptotically stable on the hyperplane I = 0.
Note that we have not been able to prove the global stability of the boundary

equilibrium E1 for the case 1 < R1 < R2.

6.2. Hopf bifurcation near the endemic equilibrium. We know from The-
orem 6.1 that if R2 < 1 < R1 or 1 < R2 < R1, the boundary equilibrium either does
not exist or is unstable, and the positive endemic equilibrium is asymptotically stable
if c2k

2 + c1k+ c0 > 0 and is unstable if c2k
2 + c1k+ c0 < 0. We now show that as the
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endemic equilibrium loses stability, periodic solutions can bifurcate from the endemic
equilibrium.

To investigate the bifurcation and to simplify the mathematical analysis, we study
the bifurcation in terms of the mutation rate k and the two basic reproductive numbers
R1 and R2 and assume that individuals infected by the two strains have the same
recovery rate γ1 = γ2 := γ, and hence σ1 = σ2 := σ. Under these assumptions, and
after some tedious algebraic manipulations, (6.6) becomes

a1a2 − a3 = µ(R1 − 1)(R1 −R2)
(
µ− σR2

R2
1

)
k + σµ2R1(2R1 −R2 − 1) +

µσ2(R1 −R2)
2

R1
.

(6.8)

All terms in (6.8) are positive except µ− σR2/R
2
1. If µR2

1 ≥ σR2, then a1a2 > a3. It
follows from the Routh–Hurwitz criterion that the endemic equilibrium E∗ is locally
asymptotically stable.

Suppose µR2
1 < σR2. We define a critical number k0 as

k0 =
σµR3

1(2R1 −R2 − 1) + σ2(R1 −R2)
2R1

(R1 − 1)(R1 −R2)(σR2 − µR2
1)

(6.9)

such that E∗ is locally asymptotically stable if k < k0 and is unstable if k > k0.
For k = k0, the characteristic equation (6.5) for the linearization of system (6.1) has
two pure imaginary roots. The parameter k can be used as a bifurcation parameter
such that as k passes through k0, a Hopf bifurcation occurs and a periodic solution
bifurcates from the endemic equilibrium.

The reproductive numbers R1 and R2 can also be used as bifurcation parameters.
Rewrite a1a2 − a3 as a quadratic function of R1 −R2:

a1a2 − a3 = µd2(R1 −R2)
2 + µd1(R1 −R2) + µd0,

where

d0 := σµR1(R1 − 1),

d1 := (R1 − 1)(µ− σ/R1)k + σµR1,

d2 := σ2/R1 + σ(R1 − 1)k/R2
1.

Fixing R1 and then solving the equation d2(R1 −R2)
2 + d1(R1 −R2) + d0 = 0 for R2

yields the two solutions

R+
2 = R1 +

d1 +
√
d2
1 − 4d2d0

2d2
, R−

2 = R1 +
d1 −

√
d2
1 − 4d2d0

2d2
.

For R1 > 1, d2 > 0 and d0 > 0. If R1 > R2 and d2
1 < 4d2d0, the inequality

a1a2 − a3 > 0 always holds. The endemic equilibrium, E∗, is locally asymptotically
stable. If d2

1 > 4d2d0, E
∗ is locally asymptotically stable provided 0 < R2 < R−

2 or
R+

2 < R2 < R1 and is unstable provided R−
2 < R2 < R+

2 . As R2 passes through
R−

2 or R+
2 , periodic solutions bifurcate from the endemic equilibrium.

The dynamics of system (6.1) are summarized, based on R1 and R2, in Figure 1.
We divide the R1-R2 plane into five regions. In Region I, R1 < 1 and R2 < 1. The
infection-free equilibrium, E0, is the only equilibrium and is globally asymptotically
stable. In both Regions II and III, the boundary equilibrium, E1, is globally asymp-
totically stable, whereas the endemic equilibrium, E∗, does not exist in Region II
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Fig. 1. Schematic illustrations of dynamical behavior of system (6.1) based on the reproductive
numbers, R1 and R2. The infection-free equilibrium, E0, is the only equilibrium in Region I and is
globally asymptotically stable. The boundary equilibrium, E1, exists in Regions II, III, and V. It is
globally asymptotically stable in both Regions II and III but is unstable in Region V. The endemic
equilibrium, E∗, exists in Regions III, IV, and V. It is unstable in Region III and in the interior of
the region enclosed by the bifurcation curve L. It is locally asymptotically stable in the complement
of the region enclosed by curve L in IV and V. For a fixed R1 in the interval of the projection of
curve L on the R1-axis, as R2 crosses through curve L, periodic solutions are bifurcated.

and exists but is unstable in Region III. While E∗ exists in both Regions IV and V
and is the only nontrivial equilibrium in Region IV, and E1 exists but is unstable in
Region V, the stability of E∗ is determined by the closed bifurcation curve L in these
two regions. E∗ is unstable and a Hopf bifurcation takes place in the interior of the
region enclosed by L. E∗ is asymptotically stable elsewhere in Regions IV and V.

We illustrate these results by examples using k, or R1 and R2, as bifurcation
parameters.

Example 6.1. We use k as a bifurcation parameter and let σ1 = σ2 = 1/2,
µ = 1/100, R1 = 3, and R2 = 2. System (6.1) becomes

dS

dt
=

1

100
(S0 − S) −

(
3 + 6k

2S0
I +

1

S0
J

)
S,

dI

dt
=

3 + 6k

2S0
SI − 1 + 2k

2
I,

dJ

dt
=

1

S0
SJ − 1

2
J + kI

(6.10)

and has the endemic equilibrium

E∗ =

(
S0

3
,

S0

75(1 + 6k)
,

2kS0

25(1 + 6k)

)
= (S∗, I∗, J∗).

The linearization of system (6.10) at E∗ has the characteristic equation

f(ρ) = ρ3 +
59

300
ρ2 +

(
k

150
+

3

200

)
ρ +

k

300
+

1

600
= 0.(6.11)
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The critical number k0 defined in (6.9) can be determined as k0 = 33/52. Then,
if k < 33/52, all roots of (6.11) have negative real part, and hence the endemic
equilibrium of (6.10) is stable. If k > 33/52, there exist two roots with positive real
part, and hence the endemic equilibrium of system (6.10) is unstable. For k = 33/52,
(6.11) has a negative real root and two pure imaginary conjugates:

ρ1 = − 59

300
, ρ2 =

√
13

26
i, ρ3 = −

√
13

26
i.

For k greater than, but near 33/52, (6.11) has a negative real root ρ1(k) and a
pair of complex conjugates ρ2(k) = ρ̄3(k) := ξ(k) + iη(k). Substituting the complex
conjugates into (6.11) and then separating the real and imaginary parts yields the
equations for ξ(k) and η(k):

ξ3 − 3ξη2 +
59

300
ξ2 − 59

300
η2 +

k

150
ξ +

3

200
ξ +

k

300
+

1

600
= 0,

3ξ2η − η3 +
59

150
ξη +

k

150
η +

3

200
η = 0.

(6.12)

By differentiating (6.12) with respect to k, we have

(
3ξ2 − 3η2 +

59

150
ξ +

k

150
+

3

200

)
dξ

dk
−
(

6ξη +
59

150
η

)
dη

dk
+

1

150
ξ +

1

300
= 0,(

6ξη +
59

150
η

)
dξ

dk
+

(
3ξ2 − 3η2 +

59

150
ξ +

k

150
+

3

200

)
dη

dk
+

1

150
η = 0.

(6.13)

Solving (6.13) for dξ/dk and substituting k = 33/52, ξ = 0, and η =
√

13/26 into the
expression of dξ/dk yields dξ/dk = 169/9679 > 0. Therefore, system (6.10) undergoes
a Hopf bifurcation and a periodic solution is bifurcated near k = 33/52.

To determine the bifurcation direction, we first discuss the stability of the endemic
equilibrium of system (6.10) as k = 33/52. Let x1 = S − S∗, y1 = I − I∗, and
z1 = J − J∗ to transform the endemic equilibrium to the origin of a new system.
Using the linear transformation

x1 =
3125

√
13

767
y − 125

6
z,

y1 = x + z,

z1 =
639

236
x− 1125

√
13

3068
y − 539

39
z,

and rescaling t = 2
√

13 t̂, we transform the resulting system into

dx

dt̂
≈ y + 319.95

(
S0

)−1
xy − 453.74

(
S0

)−1
xz − 6.93

(
S0

)−1
y2

+ 243.20
(
S0

)−1
yz − 330.96

(
S0

)−1
z2,

dy

dt̂
≈ −x + 13.55

(
S0

)−1
xy − 19.22

(
S0

)−1
xz + 19.36

(
S0

)−1
y2

+ 228.07
(
S0

)−1
yz − 362.37

(
S0

)−1
z2,

dz

dt̂
≈ −1.42z + 40.63

(
S0

)−1
xy − 57.62

(
S0

)−1
xz + 6.93

(
S0

)−1
y2

+ 117.39
(
S0

)−1
yz − 180.40

(
S0

)−1
z2.

(6.14)
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The nonlinear terms of the right-hand side of system (6.14) are quadratic and satisfy
the existence conditions of the center manifold theorem [4, 12]. Hence, there exists a
manifold z = h(x, y) of system (6.14) which can be expanded as

z = h20x
2 + h11xy + h02y

2 + o(r2), r =
√
x2 + y2,(6.15)

where o(r2) denotes higher order terms and hij are to be determined.

Substituting (6.15) into system (6.14), we obtain

h20 = 8.38
(
S0

)−1
, h11 = 11.89

(
S0

)−1
, h02 = −3.50

(
S0

)−1
.

Substituting (6.15) with these hij again into the first two equations of system (6.14),
we have the following equations on the center manifold:

dx

dt̂
= y − 6.93

(
S0

)−1
y2 + 319.95

(
S0

)−1
xy − 3802.35

(
S0

)−2
x3 − 3357.04

(
S0

)−2
x2y

+ 4479.62
(
S0

)−2
xy2 − 851.17

(
S0

)−2
y3 + o(r3),

dy

dt̂
= −x + 13.55

(
S0

)−1
xy + 19.36

(
S0

)−1
y2 − 161.06

(
S0

)−2
x3

+ 1682.70
(
S0

)−2
x2y + 2779.06

(
S0

)−2
xy2 − 798.25

(
S0

)−2
y3 + o(r3).

(6.16)

Consider the function

V (x, y) = x2 + y2 − 239.10
(
S0

)−1
x3 − 38.71

(
S0

)−1
xy2 + 4.42

(
S0

)−1
y3

+ 59133.80
(
S0

)−2
x4 − 6381.38

(
S0

)−2
x3y − 151.46

(
S0

)−2
xy3

− 2462.13
(
S0

)−2
y4.

It is positive definite in a small neighborhood of the origin. Along the trajectories of
system (6.16),

dV (x, y)

dt

∣∣∣∣
(6.16)

= −1223.33
(
S0

)−2
(x2 + y2)2 + o(r4) < 0.

Therefore, V is a Lyapunov function for system (6.16) and the trivial solution of
system (6.16) is asymptotically stable. It follows from the reducible principle of the
center manifold theorem that the trivial solution of system (6.14), and hence the
endemic equilibrium of system (6.10), is asymptotically stable for k = 33/52. Since
the endemic equilibrium is unstable for k > 33/52, it follows from the Hopf bifurcation
theorem that there exists a stable periodic solution in the neighborhood of the endemic
equilibrium of system (6.10).

We illustrate the stable endemic equilibrium (k < k0) and the stable periodic
solutions (k > k0) in Figures 2 and 3. In Figure 2, k = 0.135 < k0 = 0.6346, and
the endemic equilibrium E∗ = (3.3363, 0.0074, 0.0059) is asymptotically stable. In
Figure 3, k = 0.9846 > k0 = 0.6346, and the endemic equilibrium E∗ is unstable. The
solutions quickly converge to the stable periodic solution.

Example 6.2. In this example, we use R1 and R2 as bifurcation parameters. Let
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Fig. 2. The solutions of system (6.1) for µ = 0.01, γ1 = γ2 = 0.49, R1 = 3, and R2 = 2.
The mutation rate k = 0.135 is used as a bifurcation parameter and is less than the critical value
k0 = 33/52. The endemic equilibrium (3.3363, 0.0074, 0.0059) is asymptotically stable. The top two
figures are the solutions of I and J versus time t. The bottom figure is the projected I-J phase plane
of the phase space.

σ1 = σ2 = 1/10, µ = 1/100, and k = 9/10 in system (6.1), so that we have

dS

dt
=

1

100
(S0 − S) −

(
R1

S0
I +

R2

10S0
J

)
S,

dS

dt
=

R1

S0
SI − I,

dS

dt
=

R2

10S0
SJ − 1

10
J +

9

10
I.

(6.17)

In region D := {(R1, R2) | R1 > R2, R1 > 1}, the endemic equilibrium of system
(6.17) is given by

E∗ =

(
S0

R1
,
S0(R1 − 1)(R1 −R2)

10(10R1 −R2)R1
,

9S0(R1 − 1)

10(10R1 −R2)

)
.

The characteristic equation of the linearization of system (6.17) at E∗ is

f(ρ) = ρ3 + a1ρ
2 + a2ρ + a3 = 0,(6.18)
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Fig. 3. All parameters are the same as those in Figure 2, except the mutation rate k = 0.9846 is
greater than the critical value k0 = 33/52. The endemic equilibrium is unstable and a stable periodic
solution is bifurcated from the endemic equilibrium. The top two figures show how the solutions with
initial values near the unstable endemic equilibrium rapidly converge to the stable periodic solution.
This can be also seen in the bottom figure of the I-J phase plane.

where

a1 =
R2

1 + 10R1 − 10R2

100R1
,

a2 =
11R2

1 − 10R1R2 − 10R1 + 9R2

1000R1
,

a3 =
(R1 − 1)(R1 −R2)

1000R1
.

E∗ is asymptotically stable if

a1a2 − a3 =
100R2

2R1 − 90R2
2 − 101R2R

2
1 + 90R1R2 − 10R3

1R2 + 11R4
1

100000R2
1

> 0.(6.19)

Define function H(R2) as the numerator in (6.19). Then

H(R2) = (100R1 − 90)R2
2 −

(
10R3

1 + 101R2
1 − 90R1

)
R2 + 11R4

1.

The two zeros R
(1)
2 < R

(2)
2 , for R1 and R2, are in D, if

Q(R1) :=
(
10R3

1 + 101R2
1 − 90R1

)2 − 44R4
1 (100R1 − 90) > 0.
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Fig. 4. The reproductive numbers R1 and R2 are used as bifurcation parameters. The param-

eters R1 = 3, R
(1)
2 = 1.5, and R2 = 0.2 are chosen so that R2 < R

(1)
2 . Then R1 and R2 are in

Region IV in Figure 1. The endemic equilibrium exists and is asymptotically stable.

Numerical computations verify that Q(R1) has two zeros, R
(1)
1 < R

(2)
1 , in the intervals

(1.01, 1.04) and (4.50, 4.60), respectively. If R1 < R
(1)
1 or R1 > R

(2)
1 , then Q(R1) < 0,

and if R
(1)
1 < R1 < R

(2)
1 , then Q(R1) > 0.

Suppose R1 < R
(1)
1 or R1 > R

(2)
1 . Then Q(R1) < 0 and H(R2) is always positive.

If R
(1)
1 < R1 < R

(2)
1 , then Q(R1) > 0 and there are two zeros of H(R1), R

(1)
2 < R

(2)
2

in D. If, moreover, R2 < R
(1)
2 or R2 > R

(2)
2 , then H(R2) > 0. Hence, in either

case, H(R2) > 0 and E∗ is asymptotically stable. However, if R
(1)
1 < R1 < R

(2)
1 but

R
(1)
2 < R2 < R

(2)
2 , then H(R2) < 0, for R2 in D, and the endemic equilibrium is

unstable.

For each R1 in the interval (R
(1)
1 , R

(2)
1 ), E∗ changes its stability as R2 increases

from 0 to R1. E
∗ is stable for R2 in (0, R

(1)
2 ), unstable for R2 in (R

(1)
2 , R

(2)
2 ), and stable

again for R2 in (R
(2)
2 , R1). At R2 = R

(1)
2 or R2 = R

(2)
2 , the roots of characteristic

equation (6.18) are imaginary indicating the existence of a periodic solution by Hopf
bifurcation theory.

In numerical simulations, we fix R1 = 3. The two roots of H(R2) = 0 are

R
(1)
2 = 3/2 and R

(2)
2 = 99/35. The characteristic roots of (6.18), with R

(1)
2 = 3/2,

are ρ = −2/25, ρ =
√

5/20i, and ρ = −
√

5/20i. The characteristic roots of (6.18), for

R
(2)
2 = 99/35, are ρ = −1/28, ρ =

√
2/25i, and ρ = −

√
2/25i.

In Figure 4, β1 = 0.3 and β2 = 0.002, and R2 = 0.2 < R
(1)
2 . The endemic equilib-
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Fig. 5. The parameters are chosen as in Figure 4, except R2 = 2 by increasing β2 to 0.02

whereas β2 = 0.002 in Figure 4. Then R
(1)
2 < R2 < R

(2)
2 = 2.829, and R1 and R2 are in the

interior of the region enclosed by the bifurcation curve L, in Figure 1. The endemic equilibrium
loses its stability. A periodic solution is bifurcated and is asymptotically stable.

rium E∗ = (3.3348, 0.02627, 0.6032) is locally asymptotically stable, as is shown. We

then increase β2 to 0.02 so that R2 = 2, which is between R
(1)
2 and R

(2)
2 . The endemic

equilibrium loses its stability and a periodic solution is bifurcated from the endemic
equilibrium, as is shown in Figure 5. We continue increasing β2 to 0.0286 such that

R2 = 2.8571 > R
(2)
2 . The periodic solution disappears and the endemic equilibrium,

E∗ = (3.3358, 0.0035, 0.6621), regains its stability, as is shown in Figure 6.

7. Concluding remarks. One of the challenges in modeling the spread of in-
fectious diseases is to understand and predict the spread of competing strains of the
same pathogen. After a strain of a pathogen infects a host, the mutation can be
caused by an attempt of a pathogen to evade the immune defense of the host, the
effect of selective immunologic pressure, or possibly adaptation to a more efficiently
transmitted or better replicating pathogen.

We have formulated a simple compartmental mathematical model for the compe-
tition, mutation, and spread of a pathogen and its mutant strain. The model accounts
for a continuous infection-age structure for the original pathogen, and the mutation
rate of the pathogen depends on how long the host has been infected.

We model the transmission dynamics of pathogens by a system of partial differ-
ential-integral equations. We established conditions for the existence and stability of
the infection-free equilibrium, the boundary equilibrium, and the endemic equilibrium.
We derived formulas for the reproductive numbers, R1 and R2, for the two strains
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Fig. 6. The parameters are chosen as in Figure 4 except β2 = 0.0286 so that R2 = 2.857 > R
(2)
2 .

Then R1 and R2 are in Region V and above the region enclosed by the bifurcation curve L. The
endemic equilibrium regains its stability.

based on the local stability of the infection-free equilibrium. We established the
conditions for existence of the boundary equilibrium, E1, where only one strain of
the pathogen is in circulation, and the endemic equilibrium, E∗, where both the
strain and its mutant are in circulation. We obtained stability conditions for E1.
These conditions, listed in Table 1, are expressed in terms of the two reproductive
numbers. We investigated the stability of E∗ and derived the characteristic equation
of the linearization about E∗. The roots of this transcendental equation determine
the stability of E∗.

To gain insight into transmission dynamics of the diseases with mutating strains,
we simplified the model to make it more analytically tractable. By assuming the
pathogen mutates with a constant rate, the PDE system is reduced into a system of
ODEs. For pathogens with a constant mutation rate, we extended the local stability
results for the infection-free and boundary equilibria of the ODE system, to prove
that if R0 < 1, E0 is not only locally but also globally asymptotically stable. We also
proved that if R1 < 1 < R2, then E1 is globally asymptotically stable.

We established explicit conditions for the stability of the endemic equilibrium E∗

when the mutation rate is constant. Furthermore, we identified the regions for the
parameters where E∗ loses its stability and periodic solutions bifurcate from E∗.
For the special case where the two strains have the same recovery rate, we proved
Hopf bifurcations using either the mutation rate, k, or the reproductive numbers, R1

and R2, as bifurcation parameters.
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For the case where R1 = 3 > R2 = 2 > 1, we used k as a bifurcation param-
eter and identified regions where E0 and E1 are both unstable. In Example 6.1,
we established a critical value, k0, such that if k < k0, the endemic equilibrium is
asymptotically stable, and if k > k0, the endemic equilibrium is unstable and periodic
solutions appear through a Hopf bifurcation. We presented numerical simulations to
illustrate that if both reproductive numbers exceed the threshold value, then the mu-
tant cannot completely wipe out the original pathogen strain. We also showed that
if the mutation rate is below the critical value, k0, the two strains can coexist and
eventually stay at a constant steady state level. On the other hand, if the mutation
rate is above the critical value, k0, there can be sustained periodic oscillations of the
two pathogen strains. This phenomenon may furnish us with an interpretation of
periodic appearance of pathogen strains of some diseases, such as influenza, and can
provide useful guidance for disease intervention programs. Note that in this example
we fixed R2. Since R2 is a function of the mutation rate, k, as we vary k we must
also adjust the infection rate β2 in the bifurcation analysis.

We also used R1 and R2 as bifurcation parameters, while fixing other param-
eters, including the mutation rate. Figure 1 illustrates the regions in the R1-R2

plane where the equilibria have different dynamics. We identified a closed bifurcation

curve, L, for R
(1)
1 < R1 < R

(2)
1 , where if R1 and R2 are within the curve, the endemic

solution is periodic. We showed that for R1 in the interval (R
(1)
1 , R

(2)
1 ), as R2 increases

and passes through curve L, the stable steady state equilibrium changes its stability
and becomes unstable. As R2 continues to increase and passes through curve L the
second time, the steady state equilibrium regains its stability. That is, the curve L
identifies the parameter values where the solution undergoes a Hopf bifurcation.

Example 6.2 illustrates the Hopf bifurcation for R
(1)
1 < R1 < R

(2)
1 . In Figure 4,

(R1, R2) is outside the region enclosed by L with R2 below L. In this case, the
endemic equilibrium is asymptotically stable and the two strains eventually coexist
at a steady state level with I∗ = 0.0035. Figure 5 shows how when (R1, R2) is within
the L the endemic solutions are periodic. In Figure 6, (R1, R2) are again outside L,
but R2 is above L. Once again, the two strains can coexist, but the steady state level
I∗ = 0.02627 is much higher than in Figure 4 because the mutant in the latter case
has a larger reproductive number.

These examples illustrate the wide range of behavior that can exist when a
pathogen mutates in the host to create a second infectious mutant strain. The explicit
formulas for the reproductive numbers and the detailed analysis for the existence and
stability of the boundary equilibrium can provide insight into the complexity of these
epidemics. For the simplified cases where the mutation rate is not infection-age depen-
dent, we were able to establish conditions for the global stability of the infection-free
and boundary equilibria. Our analysis of the situation where the steady state equilib-
rium loses its stability through a Hopf bifurcation, and periodic solutions appear, may
also help in understanding similar transitions in epidemics with mutating pathogens.
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