Full Text View
Tabular View
Contacts and Locations
No Study Results Posted
Related Studies
Dendritic Cells (White Blood Cells) Vaccination for Advanced Melanoma
This study is currently recruiting participants.
Verified by Washington University School of Medicine, August 2008
Sponsored by: Washington University School of Medicine
Information provided by: Washington University School of Medicine
ClinicalTrials.gov Identifier: NCT00683670
  Purpose

The purpose of this study is to investigate a method of using dendritic cells (a kind of white blood cell) as a vaccine to stimulate your own immune system to react to your melanoma cells.


Condition Intervention Phase
Melanoma
Drug: cyclophosphamide
Biological: Mature dendritic cell vaccine
Phase I
Phase II

MedlinePlus related topics: Melanoma
Drug Information available for: Cyclophosphamide
U.S. FDA Resources
Study Type: Interventional
Study Design: Treatment, Open Label, Active Control, Single Group Assignment, Safety/Efficacy Study
Official Title: Mature Dendritic Cell Vaccination Against gp100 in Patients With Advanced Melanoma

Further study details as provided by Washington University School of Medicine:

Primary Outcome Measures:
  • To determine the immunological response based on measuring increased numbers of peptide specific CD8+ T cells as calculated by the tetramer assay. [ Time Frame: tumor response ] [ Designated as safety issue: No ]

Secondary Outcome Measures:
  • To determine the time to progression [ Time Frame: disease progression ] [ Designated as safety issue: No ]
  • To assess regulatory T cell depletion after cyclophosphamide administration. [ Time Frame: 1 day ] [ Designated as safety issue: No ]
  • To perform exploratory biomarker analysis of accessible tumors [ Time Frame: 1 day ] [ Designated as safety issue: No ]
  • To determine the safety and side effect profile of mDC administered to patients given after a single dose of cyclophosphamide. [ Time Frame: 30 days ] [ Designated as safety issue: Yes ]

Estimated Enrollment: 12
Study Start Date: August 2008
Estimated Study Completion Date: September 2012
Estimated Primary Completion Date: August 2012 (Final data collection date for primary outcome measure)
Arms Assigned Interventions
1: Experimental
mature dendritic cell vaccine and cyclophosphamide
Drug: cyclophosphamide
cyclophosphamide 300 mg/m2 IV over 1 hour on Day minus 3 of first dose of vaccine
Biological: Mature dendritic cell vaccine
Mature dendritic 15 million/peptide, 60 million total IV over 30 minutes (first dose)
Biological: Mature dendritic cell vaccine
mature dendritic cell booster dose X5 (q3 weeks) (5 million/peptide, 20 million total)

Detailed Description:

Eligible patients that provide written informed consent will undergo apheresis to collect blood mononuclear cells for vaccine production. All patients will be given cyclophosphamide 300mg/m2 IV three days prior to vaccine dose #1 in order to deplete regulatory T cells. All patients will receive mature DC for each dose of vaccine. For each dose all patients will receive autologous dendritic cells pulsed with 3 melanoma peptides (gp100 antigen) and one control (CMV) peptide. All patients will receive booster doses with mature DC. The DC vaccine will be given intravenously every three weeks for a total of six vaccine doses. Peripheral blood (16 ml) will be taken weekly to monitor the immune response to each peptide by tetramer assay. Apheresis is repeated after vaccine dose #3 and dose #6 in order to collect PBMC for immune monitoring. Restaging is performed after three and six vaccine doses. Patients with stable disease or better (partial response/complete response) after six doses will be eligible to receive additional vaccinations as maintenance therapy every 2 months until progression.

  Eligibility

Ages Eligible for Study:   18 Years and older
Genders Eligible for Study:   Both
Accepts Healthy Volunteers:   No
Criteria

Inclusion Criteria:

  • Unresectable stage III and stage IV M1a/M1b melanoma
  • Age > 18 years
  • Life expectancy > 4 months
  • ECOG performance status 0-2
  • HLA-A2 positive
  • gp100 expression in primary lesion or metastasis
  • At least 28 days from prior treatment (including adjuvant interferon)
  • Required initial laboratory values (submitted within 14 days prior to registration):

WBC >3,000/mm3 Platelets >75,000/mm3 Serum Bilirubin < 2.0 mg/dl Serum Creatinine < 2.0 mg/dl

Exclusion Criteria:

  • Prior treatment with cytotoxic chemotherapy
  • Active untreated CNS metastasis
  • Active infection
  • Prior malignancy (except non-melanoma skin cancer) within 3 years
  • Pregnant or nursing
  • Concurrent treatment with corticosteroids
  • Inability to provide adequate informed consent
  • Patients with known allergy to eggs
  Contacts and Locations
Please refer to this study by its ClinicalTrials.gov identifier: NCT00683670

Contacts
Contact: Gerald P Linette, M.D., Ph.D. 314-362-5677 glinette@dom.wustl.edu

Locations
United States, Missouri
Washington University Recruiting
St. Louis, Missouri, United States, 63110
Contact: Gerald Linette, M.D., Ph.D.     314-362-5677     glinette@dom.wustl.edu    
Sub-Investigator: Benjamin Tan, M.D.            
Sub-Investigator: Beatriz M. Carreno, Ph.D.            
Sub-Investigator: Lynn A. Carreno, Ph.D.            
Sub-Investigator: George Despotis, M.D.            
Sub-Investigator: Kathryn Trinkaus, Ph.D.            
Sponsors and Collaborators
Washington University School of Medicine
Investigators
Principal Investigator: Gerald P. Linette, M.D., Ph.D. Washington Univerisity
  More Information

Publications:
Jemal, A., T. Murray, E. Ward, A. Samuels, R.C. Tiwari, A. Ghafoor, E.J. Feuer, and M.J. Thun. 2007. Cancer statistics, 2007. CA Cancer J Clin 57:42-59.
Lotze, M.T., R.M. Dallal, J.M. Kirkwood, and J.C. Flickinger. 2001. Cutaneous Melanoma. In Cancer:Principles and Practice of Oncology. V.T. DeVita, S. Hellman, and S.A. Rosenberg, editors. Lippincott, Williams, & Wilkins, Philadelphia. 2012-2069.
Eggermont AM, Kirkwood JM. Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur J Cancer. 2004 Aug;40(12):1825-36. Review.
Queirolo P, Acquati M, Kirkwood JM, Eggermont AM, Rocca A, Testori A. Update: current management issues in malignant melanoma. Melanoma Res. 2005 Oct;15(5):319-24. Review.
Serrone L, Zeuli M, Sega FM, Cognetti F. Dacarbazine-based chemotherapy for metastatic melanoma: thirty-year experience overview. J Exp Clin Cancer Res. 2000 Mar;19(1):21-34.
Huncharek M, Caubet JF, McGarry R. Single-agent DTIC versus combination chemotherapy with or without immunotherapy in metastatic melanoma: a meta-analysis of 3273 patients from 20 randomized trials. Melanoma Res. 2001 Feb;11(1):75-81.
Chapman PB, Einhorn LH, Meyers ML, Saxman S, Destro AN, Panageas KS, Begg CB, Agarwala SS, Schuchter LM, Ernstoff MS, Houghton AN, Kirkwood JM. Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol. 1999 Sep;17(9):2745-51.
Ernsdorf MS, C.T., and L Titus-Ernsdorf. 2003. Update: Medical therapy for cutaneous melanoma. ASCO Educational Book 39:198-207.
Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, Abrams J, Sznol M, Parkinson D, Hawkins M, Paradise C, Kunkel L, Rosenberg SA. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999 Jul;17(7):2105-16. Review.
Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, Abrams J, Sznol M, Parkinson D, Hawkins M, Paradise C, Kunkel L, Rosenberg SA. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999 Jul;17(7):2105-16. Review.
Morton DL, Eilber FR, Joseph WL, Wood WC, Trahan E, Ketcham AS. Immunological factors in human sarcomas and melanomas: a rational basis for immunotherapy. Ann Surg. 1970 Oct;172(4):740-9. No abstract available.
Golub SH, Morton DL. Sensitisation of lymphocytes in vitro against human melanoma-associated antigens. Nature. 1974 Sep 13;251(5471):161-3. No abstract available.
Waldmann TA. Effective cancer therapy through immunomodulation. Annu Rev Med. 2006;57:65-81. Review.
Kawakami Y, Eliyahu S, Jennings C, Sakaguchi K, Kang X, Southwood S, Robbins PF, Sette A, Appella E, Rosenberg SA. Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol. 1995 Apr 15;154(8):3961-8.
Kawakami Y, Robbins PF, Wang RF, Parkhurst M, Kang X, Rosenberg SA. The use of melanosomal proteins in the immunotherapy of melanoma. J Immunother. 1998 Jul;21(4):237-46. Review.
van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643-7.
Marincola FM, Hijazi YM, Fetsch P, Salgaller ML, Rivoltini L, Cormier J, Simonis TB, Duray PH, Herlyn M, Kawakami Y, Rosenberg SA. Analysis of expression of the melanoma-associated antigens MART-1 and gp100 in metastatic melanoma cell lines and in in situ lesions. J Immunother Emphasis Tumor Immunol. 1996 May;19(3):192-205.
Mocellin S, Mandruzzato S, Bronte V, Lise M, Nitti D. Part I: Vaccines for solid tumours. Lancet Oncol. 2004 Nov;5(11):681-9. Review. Erratum in: Lancet Oncol. 2005 Jan;6(1):4.
Parmiani G, Castelli C, Santinami M, Rivoltini L. Melanoma immunology: past, present and future. Curr Opin Oncol. 2007 Mar;19(2):121-7. Review.
Bakker AB, Schreurs MW, de Boer AJ, Kawakami Y, Rosenberg SA, Adema GJ, Figdor CG. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med. 1994 Mar 1;179(3):1005-9.
Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL Jr. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science. 1994 Apr 29;264(5159):716-9.
Skipper JC, Gulden PH, Hendrickson RC, Harthun N, Caldwell JA, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL Jr. Mass-spectrometric evaluation of HLA-A*0201-associated peptides identifies dominant naturally processed forms of CTL epitopes from MART-1 and gp100. Int J Cancer. 1999 Aug 27;82(5):669-77.
Salgaller ML, Marincola FM, Cormier JN, Rosenberg SA. Immunization against epitopes in the human melanoma antigen gp100 following patient immunization with synthetic peptides. Cancer Res. 1996 Oct 15;56(20):4749-57.
Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 1998 Mar;4(3):321-7.
Linette GP, Zhang D, Hodi FS, Jonasch EP, Longerich S, Stowell CP, Webb IJ, Daley H, Soiffer RJ, Cheung AM, Eapen SG, Fee SV, Rubin KM, Sober AJ, Haluska FG. Immunization using autologous dendritic cells pulsed with the melanoma-associated antigen gp100-derived G280-9V peptide elicits CD8+ immunity. Clin Cancer Res. 2005 Nov 1;11(21):7692-9.
Yee C, Savage PA, Lee PP, Davis MM, Greenberg PD. Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J Immunol. 1999 Feb 15;162(4):2227-34.
Skipper JC, Kittlesen DJ, Hendrickson RC, Deacon DD, Harthun NL, Wagner SN, Hunt DF, Engelhard VH, Slingluff CL Jr. Shared epitopes for HLA-A3-restricted melanoma-reactive human CTL include a naturally processed epitope from Pmel-17/gp100. J Immunol. 1996 Dec 1;157(11):5027-33.
Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell. 2001 Aug 10;106(3):255-8. Review. No abstract available.
Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G. Dendritic cells as vectors for therapy. Cell. 2001 Aug 10;106(3):271-4. Review. No abstract available.
Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998 Mar;4(3):328-32.
Thurner B, Haendle I, Röder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Bröcker EB, Steinman RM, Enk A, Kämpgen E, Schuler G. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med. 1999 Dec 6;190(11):1669-78.
Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 2001 Sep 1;61(17):6451-8.
Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med. 2004 May;10(5):475-80. Review.
Ingram SB, O'Rourke MG. DC therapy for metastatic melanoma. Cytotherapy. 2004;6(2):148-53. Review. No abstract available.
Randolph DA, Fathman CG. Cd4+Cd25+ regulatory T cells and their therapeutic potential. Annu Rev Med. 2006;57:381-402. Review.
Roncador G, Brown PJ, Maestre L, Hue S, Martínez-Torrecuadrada JL, Ling KL, Pratap S, Toms C, Fox BC, Cerundolo V, Powrie F, Banham AH. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol. 2005 Jun;35(6):1681-91.
Antony PA, Restifo NP. CD4+CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J Immunother. 2005 Mar-Apr;28(2):120-8. Review.
Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H. Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood. 2005 Apr 1;105(7):2862-8. Epub 2004 Dec 9.
Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K, Yamaguchi T, Shimizu J, Nomura T, Chiba T, Sakaguchi S. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med. 2005 Oct 3;202(7):885-91. Epub 2005 Sep 26.
Nomura T, Sakaguchi S. Naturally arising CD25+CD4+ regulatory T cells in tumor immunity. Curr Top Microbiol Immunol. 2005;293:287-302. Review.
Sakaguchi S, Sakaguchi N. Regulatory T cells in immunologic self-tolerance and autoimmune disease. Int Rev Immunol. 2005 May-Aug;24(3-4):211-26. Review.
Bass KK, Mastrangelo MJ. Immunopotentiation with low-dose cyclophosphamide in the active specific immunotherapy of cancer. Cancer Immunol Immunother. 1998 Sep;47(1):1-12. Review.
Hoon DS, Foshag LJ, Nizze AS, Bohman R, Morton DL. Suppressor cell activity in a randomized trial of patients receiving active specific immunotherapy with melanoma cell vaccine and low dosages of cyclophosphamide. Cancer Res. 1990 Sep 1;50(17):5358-64.
Miles DW, Towlson KE, Graham R, Reddish M, Longenecker BM, Taylor-Papadimitriou J, Rubens RD. A randomised phase II study of sialyl-Tn and DETOX-B adjuvant with or without cyclophosphamide pretreatment for the active specific immunotherapy of breast cancer. Br J Cancer. 1996 Oct;74(8):1292-6.
Steinman RM, Pope M. Exploiting dendritic cells to improve vaccine efficacy. J Clin Invest. 2002 Jun;109(12):1519-26. Review. No abstract available.
Belardelli F, Ferrantini M, Parmiani G, Schlom J, Garaci E. International meeting on cancer vaccines: how can we enhance efficacy of therapeutic vaccines? Cancer Res. 2004 Sep 15;64(18):6827-30.
Lin AM, Hershberg RM, Small EJ. Immunotherapy for prostate cancer using prostatic acid phosphatase loaded antigen presenting cells. Urol Oncol. 2006 Sep-Oct;24(5):434-41. Review.
Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science. 2001 Jul 13;293(5528):253-6. Review.
Moss P, Khan N. CD8(+) T-cell immunity to cytomegalovirus. Hum Immunol. 2004 May;65(5):456-64. Review.
Keilholz U, Weber J, Finke JH, Gabrilovich DI, Kast WM, Disis ML, Kirkwood JM, Scheibenbogen C, Schlom J, Maino VC, Lyerly HK, Lee PP, Storkus W, Marincola F, Worobec A, Atkins MB. Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J Immunother. 2002 Mar-Apr;25(2):97-138. Review.
Grover A, Kim GJ, Lizée G, Tschoi M, Wang G, Wunderlich JR, Rosenberg SA, Hwang ST, Hwu P. Intralymphatic dendritic cell vaccination induces tumor antigen-specific, skin-homing T lymphocytes. Clin Cancer Res. 2006 Oct 1;12(19):5801-8.
Torabian S, Kashani-Sabet M. Biomarkers for melanoma. Curr Opin Oncol. 2005 Mar;17(2):167-71. Review.

Responsible Party: Washington University ( Gerald Linette, M.D., Ph.D. )
Study ID Numbers: 07-0652
Study First Received: May 19, 2008
Last Updated: October 27, 2008
ClinicalTrials.gov Identifier: NCT00683670  
Health Authority: United States: Food and Drug Administration

Study placed in the following topic categories:
Neuroectodermal Tumors
Nevus, Pigmented
Neoplasms, Germ Cell and Embryonal
Neuroepithelioma
Cyclophosphamide
Nevus
Neuroendocrine Tumors
Melanoma

Additional relevant MeSH terms:
Neoplasms by Histologic Type
Immunologic Factors
Molecular Mechanisms of Pharmacological Action
Antineoplastic Agents
Neoplasms, Nerve Tissue
Physiological Effects of Drugs
Immunosuppressive Agents
Pharmacologic Actions
Neoplasms
Therapeutic Uses
Myeloablative Agonists
Nevi and Melanomas
Antineoplastic Agents, Alkylating
Antirheumatic Agents
Alkylating Agents

ClinicalTrials.gov processed this record on February 12, 2009