Establishment of Stably EBV-Transformed Cell Lines from Residual Clinical Blood Samples

Timothy T. Stenzel, MD, PhD, Medical Director, Vysis, Inc djunct Assistant Professor of Pathology, Duke University Medical Cent

Background and Hypothesis

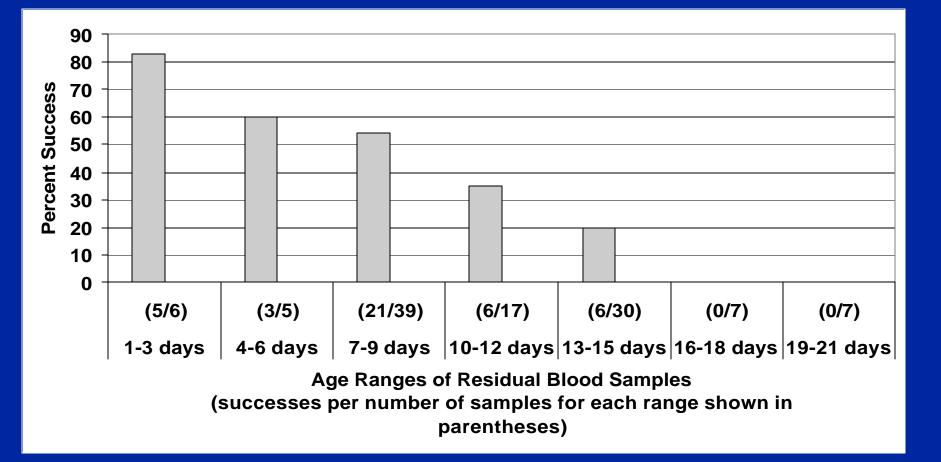
- >600 different genetic tests performed in US.
- Relatively few have readily available, sustainable positive control material.
- Residual clinical samples could be a source.
- B lymphocytes from these residual clinical samples could be transformed with EBV to create a cell line bank with readily available, stable, and sustainable samples.

CDC's "General Recommendations for Quality Assurance Programs for Laboratory Molecular Genetic Tests" - Top Recommendations

- Conduct pilot research to develop positive controls and test samples for pilot performance evaluation (PE) programs.
- The lack of positive controls/samples was identified as having the utmost urgency in the field of MGT for both routine testing and QA/PT programs.

Advantages of Using EBV-Immortalized Cell Lines

- EBV is a tried and true method of transformation
- Yields essentially an unlimited amount of cells and/or DNA
- Easily banked
- Relatively stable
- Closely mimic lymphocytes obtained from whole blood samples
- It is the same sample type used by the ACMG/CAP proficiency testing program for genetics


Major Milestones

- Convened panels of experts to prepare, implement and evaluate the pilot plan
- Recruited labs to submit samples and to perform confirmation and pilot proficiency testing
- Implemented the process of sample collection and transformation and verified the stability and presence of the mutations
- Sent samples to at least 5 labs for confirmation testing and later to at least 5 labs for pilot proficiency testing

Effect of Conditions

Sample Age	Anticoagulant and Storage Temperature				
Days Post- Draw	ACD	EDTA	4°C	Ambient	Overall
0-7 Days	85%	58%	68%	67%	68%
	(11/13)	(14/24)	(19/28)	(6/9)	(25/37)
8-14 Days	56%	24%	31%	0%	31%
	(5/9)	(11/46)	(16/51)	(0/5)	(16/56)
15-21 Days	0%	0%	0%	0%	0%
	(0/5)	(0/14)	(0/14)	(0/5)	(0/19)

The Effect of Sample Age on Transformation Success

Univariate relationships between sample variables and transformation success

SAMPLE VARIABLE	# OF SUCCESSFUL TRANSFORMATIONS/# OF ATTEMPTS (%)	P-VALUE
Age of Sample (Days from venipuncture to addition of EBV): 1-7 Days 8-14 Days >14 Days	6/ 9 (67%) 3/ 8 (38%) 0/11 (0%)	0.002**
Anticoagulant: EDTA ACD	3/17 (18%) 6/11 (55%)	0.095*
Storage Temperature: 4C RT	6/14 (43%) 3/14 (21%)	0.420*
lemolysis: No Yes	8/18 (44%) 1/10 (10%)	0.098*
Sex ***: Male Female	5/15 (33%) 4/12 (33%)	>0.999*
Age of Subject ***: <20 20-49 -50+	2/8(25%) 4/10(40%) 2/9(22%)	>0.999**
Sample Volume: <3 3 - 5.99 6+	3/8(38%) 4/12(33%) 2/8(29%)	0.794**

Guidelines for Residual Blood Samples Acceptable for EBV Transformation

- Age of Sample: 0-14 Days
- Anticoagulant: ACD or EDTA
- Storage Conditions:
 - 0-7 Day Old Samples: Ambient or 4°C
 - 8-14 Day Old Samples: 4°C Only
- Minimum Sample Volume: 1.0 ml
- 41 (36%) cell lines were established from the 113
 transformation attempts. The success rate for was 47% for
 the 88 samples that conformed to the submission
 guidelines.
- No successful transformations were achieved with samples that did not conform to the guidelines.

First Set

Т

DUK19061	<u>Cystic Fibrosis</u>	3120+1G>A/621+1G>1
DUK63683	<u>Cystic Fibrosis</u>	DF508/R117H
	Hemochromatosis	H63D/H63D
DUK90919	Factor V Leiden	R506Q/WT
	Hemochromatosis	C282Y/H63D
DUK89614	Prothrombin	G20210A/G20210A
	Hemochromatosis	H63D/WT
	MTHFR	C677T/WT
DUK11305	MTHFR	C677T/WT
	Prothrombin	G20210A/WT
	Factor V Leiden	R506Q/WT
	Hemochromatosis	S65C/WT
DUK46668	Sickle Cell/Hb C Disease	HbS/HbC
DUK53834	Hemochromatosis	H63D/WT
DUK29765	Hemochromatosis	C282Y/WT
DUK32053	Hemochromatosis	H63D/H63D
DUK87691	Hemochromatosis	S65C/WT

Second Set

- DUK15765 Alpha-Thalassemia
- **DUK40878** Cystic Fibrosis
- DUK13521 Fragile X (FRAXA)
- **DUK69915** Huntington Disease
- DUK60302 Craniosynostosis
- DUK19946 Connexin 26
- DUK61832 MTHFR
- DUK21185 MTHFR
- DUK34385 Hemochromatosis
- **DUK11538** Hemochromatosis
- **DUK22472** Hemochromatosis

Type 1 Het (SEA) **S1235R/WT 57/WT CGG repeats 31/18 CAG repeats** FGFR3 C749G Het 35delG/WT C677T/C677T C677T/C677T H63D/S65C **C282Y/WT** S65C/WT

Third Set

DUK82747 DUK62150 DUK54732 DUK15576 DUK65584 DUK58698 DUK10464 DUK99211 DUK64169 DUK54361 DUK66652 DUK84629

Cystic Fibrosis; I148T heterozygote Cystic Fibrosis; I148T heterozygote Cystic Fibrosis; I148T heterozygote Cystic Fibrosis; 394delTT heterozygote **Cystic Fibrosis: 1078delT heterozygote** Cystic Fibrosis; 1898+1G>A, heterozygote Cystic Fibrosis; 1898+1G>A, heterozygote Cystic Fibrosis; 1898+1G>A heterozygote Cystic Fibrosis; 1898+1G>A heterozygote Cystic Fibrosis; 2184delA heterozygote Alpha-thalassemia type 1; SEA heterozygote MTHFR; C677T/C677T homozygote

Confirmation and Pilot Proficiency Testing Results

- The reference labs confirmed all mutations in 33 cell lines
- With few exceptions, genotypes were correctly identified in pilot proficiency testing
 - A total of three results from different cell lines were incorrectly reported
 - A total of twelve results from different cell lines were not reported due to technical difficulties

Conclusions

- EBV-transformed B-lymphocyte cell lines carrying mutations of public health importanc can be derived from residual clinical blood samples up to 14 days post-draw.
- We established a total of 27 new viable cell lines with mutations of interest from residual clinical samples.
- We developed guidelines to help determine whether a particular residual sample would be a good candidate for transformation.

Conclusions

33 different point mutations, one 1-bp deletion, one bp deletion, one large deletion, and four repeat regions were stable in B-lymphocyte cell lines through 20 population doublings.

21 cell lines were successfully piloted to outside genetic testing labs as potential positive control material for PE/QA applications and have been shown to be excellent control material.

EBV transformation of residual clinical samples appears to be a very good way to sustain this effort.

Future Directions

- Fragile X and other triplet diseases
- Funding for sustaining this effort
- Depositing these cell lines in a bank

Acknowledgements

- Susan Bernacki, PhD
- Jeanne Beck, PhD Lau
- Eugene C. Cole, DrPH D. Jo
- 32+ Testing labs

- Ana Stankovic, MD, PhI
- Laurina Williams, PhD
- PH D. Joe Boone, PhD
 - Ira Lubin, PhD
 - Others at the CDC

Expert Panelists

- Jean Amos, PhD
- Daniel Farkas, PhD
- Micheal Friez, PhD
- Wayne Grody, MD, PhD
- P. Suzanne Hart, PhD
- Karla Matteson, PhD
- Kristin Monaghan, PhD
- Walter Noll, MD

- Brad Popovich, PhD
- Victoria Pratt, PhD
- Thomas Prior, PhD
- Antony Shrimpton, PhD
- Karen Snow, PhD
- Stephen Thibodeau, Phl
- L Wasserman, MD, PhI

IRB-Approved Submitting Labs

Greenwood Genetic Center Univ. of Tennessee Medical Center Henry Ford Hospital Dartmouth-Hitchcock Medical Center Laboratory Corporation of America Ohio State University Hospital H.A. Chapman Institute S.U.N.Y. Upstate Medical University Mayo Clinic **Duke University Medical Center University of California Quest Diagnostics Specialty Laboratories**

Michael Friez, Ph.D. Karla Matteson, Ph.D. Kristin Monaghan, Ph.D. Walter Noll, Ph.D. Vicky Pratt, Ph.D **Thomas Prior, Ph.D. Frederick Schaefer, Ph.D. Antony Shrimpton, Ph.D.** Karen Snow, Ph.D. **Timothy Stenzel, M.D., Ph.D** Linda Wasserman, MD, Ph.I Feras Hantash, PhD Jean Amos, PhD

Procedure for the Establishment of a Lymphoblastoid Cell Line from Residual Blood

- **Receive blood collected with ACD or EDTA as the anticoagulant.**
- Isolate lymphocytes on a Histopaque®-1077 gradient.
- After washing, resuspend in cell culture medium (RPMI 1640, 20% FBS) and add Epstein Barr virus and PHA to initiate transformation
- When cells have transformed, collect by centrifugation.
- After washing, resuspend in cryopreservation medium (RPMI 1640, 30% FBS, 6% DMSO) and dispense into glass ampules, each containing 1 ml of medium with approximately five million cells.
- **Cryopreserve using controlled rate freezing.**
- Store in liquid nitrogen.

Cell Culture Quality Control Standard

- Cell lines must be viable, i.e., recover after cryopreservation.
- Cell lines must be free from contamination.
- Cell lines, "original sample," and DNA must have the same DNA fingerprint.

Disease Requested as Positive Controls

	Cells	DNA
Cystic fibrosis	141	902
Fragile X	104	347
BRCA1	29	101
Hemochromatosis	28	90
Factor V	16	56
Myotonic dystrophy	20	39
Huntington disease	11	38
BRCA2	14	13
Muscular dystrophy	11	2
MTHFR	0	1

Diseases Requested Through Surveys

Disease	total	%
Frag il e X	132	49.6
Cystic Fibro sis	98	36.8
Muscular Dy strophy	67	25.2
BRCA1/BRCA2 Hereditary Breast Cancer	55	20.7
Spin al Mu scular A trophy	54	20.3
Factor V	53	19.9
Hemo chro matosis	49	18.4
M yotoni c Dy strophy	46	17.3
Hun ting ton D isease	46	17.3
Connex in 26	45	16.9
M TH FR	44	16.5
APC	37	13.9
HN PC C	36	13.5
Friedreich A tax ia	30	11.3
Gauche r Disease	26	9.8
Pro thro m bin	25	9.4
Apo li popro te in E	25	9.4
Spino cerebellar Ataxia	21	7.9
Tay Sach s	19	7.1
Hemog lobin S	17	6.4
Rhesus Blood Group, DAn tigen	9	3.9

"Failed Searches"

- Reviewed 20,751 records entered since March, 2000
- 866 listed specific mutations or genes
- 296 of those 866 (34.2%) were for mutations in cystic fibrosis

CFTR Mutations Requested

Mutations Requested	Number
2184DEL A	43
I148T	39
1898+1 G>A	27
1078 DEL T	27
I507 V	20
3849+4 A>G	16
2183AA >G	16
3876DEL A (Hispanic)	9
3120+1 G>A	8
2789+5 G>A	7
711+1 G>T	7
2143DEL T (German)	5
5T/7T/9T	4
1812G >A	2