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kRASINSKIJ g. a.. oPREDELENIE SELENODINAMIˆESKIH PARAMETROW IZ ANALIZA
LUNNYH LAZERNYH IZMERENIJ DALXNOSTI lUNY 1970–2001 GG..

kL@ˆEWYE SLOWA: wRA]ENIE lUNY, LAZERNYE IZMERENIQ DALXNOSTI.

pROWEDENA OBRABOTKA LAZERNYH IZMERENIJ DALXNOSTI lUNY 1970–2001 GG. S
CELX@ UTOˆNENIQ ZNAˆENIJ PARAMETROW SISTEMY zEMLQ-lUNA. mODELX WRA]E-
NIQ lUNY UˆITYWAET “FFEKTY, OBUSLOWLENNYE UPRUGOSTX@, PRILIWNOJ DISSI-
PACIEJ “NERGII, FRIKCIONNYM WZAIMODEJSTWIEM VIDKOGO QDRA I MANTII. dLQ
UˆETA WLIQNIQ VIDKOGO QDRA, APPROKSIMIRUEMOGO TREHOSNYM “LLIPSOIDOM, RAZ-
WITA MODELX, OSNOWANNAQ NA TEORII pUANKARE, NO UˆITYWA@]AQ OSOBENNOSTI
WRA]ENIQ lUNY. sOWOKUPNOSTX OCENIWAEMYH SELENODINAMIˆESKIH PARAMETROW
WKL@ˆAET ˆISLA lAWA h2, l2, k2, Q-FAKTOR DISSIPACII, NORMIROWANNYJ MOMENT
INERCII, KO“FFICIENT FRIKCIONNOJ SWQZI, GARMONIKI WTOROGO I TRETXEGO PO-
RQDKOW LUNNOGO POTENCIALA I TRI PARAMETRA, HARAKTERIZU@]IE VIDKOE QDRO.
dLQ WSEH PARAMETROW KROME TREH POSLEDNIH NAJDENNYE OCENKI PREDSTAWLQ@TSQ
WPOLNE NADEVNYMI. tAKIM OBRAZOM UBEDITELXNYH DOKAZATELXSTW PRQMOGO WLI-
QNIQ VIDKOGO QDRA NA WRA]ENIE lUNY POLUˆITX NE UDALOSX. dLQ PARAMETRA Q
(SWQZANNOGO S NEPOSREDSTWENNO OCENIWAEMYM UGLOM ZAPAZDYWANIQ PRILIWOW δ
SOOTNO[ENIEM Q = 1/2δ) OCENKI NAHODQTSQ W INTERWALE OT Q = 13 DO Q = 18 W
ZAWISIMOSTI OT WARIANTA RE[ENIQ, ˆTO DOWOLXNO BLIZKO K POLUˆENNOMU ZNAˆE-
NI@ Q = 11.032±0.004 DLQ zEMLI. nAJDENNAQ WELIˆINA Q DLQ lUNY UKAZYWAET
NA ZNAˆITELXNU@ DISSIPACI@ “NERGII W lUNE (SOPOSTAWIMU@ S ZEMNOJ) NESMO-
TRQ NA OTSUTSTWIE NA NEJ OKEANOW, WNOSQ]IH, KAK PRINQTO SˆITATX, OSNOWNOJ
WKLAD W PRILIWNU@ DISSIPACI@ zEMLI. tAKIM OBRAZOM, “TA GIPOTEZA PRED-
STAWLQETSQ SOMNITELXNOJ. aNALIZ WREMENNOGO POWEDENIQ NEWQZOK WYQWLQET IH
UWELIˆENIE POSLE MARTA 1998 G. —TOT “FFEKT UDAETSQ USTRANITX TOLXKO WKL@ˆE-
NIEM KOORDINAT OTRAVATELEJ POSLE “TOJ DATY W KAˆESTWE NEZAWISIMO OCENIWAE-
MYH PARAMETROW. rAZNOSTI KOORDINAT OTRAVATELEJ DO I POSLE UKAZANNOJ DATY
OKAZALISX NE ZAWISQ]IMI OT OTRAVATELQ (W PREDELAH TOˆNOSTI OCENIWANIQ),
ˆTO, PO WIDIMOMU, MOVET BYTX INTERPRETIROWANO KAK SWIDETELXSTWO WNEZAP-
NOGO SME]ENIQ NA NESKOLXKO SANTIMETROW CENTRA MASS lUNY OTNOSITELXNO EE
KORY.
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LLR observations of 1969–2001 are processed to estimate a set of parameters
of the Earth-Moon system. The dynamical model accounts for effects of elasticity
of the lunar body, tidal dissipation in the Moon, and friction coupling between the
lunar mantle and its fluid core. A Poincare’s type model is developed to describe
effects of the fluid core assumed to be a three-axis ellipsoid. Estimated selenodynam-
ical parameters include Love number h2, l2, k2, dissipation factor Q, undimensional
moment of inertia, coefficients of the lunar gravitational potential of the orders 2
and 3, coupling parameter κ and three parameters describing the fluid core. Except
these three parameters the obtained estimates seem to be reliable. So no evidences
of direct effects of the fluid core is found. For the dissipation factor Q (defined by
the relation Q = 1/2δ where δ is the tidal lag) the estimates vary in the range from
Q = 13 to Q = 18 depending on solution. They are of the same order as the value
Q = 11.032 ± 0.004 obtained for the Earth, which means that the tidal dissipation
in the Moon is close to that in the Earth (notwithstanding that there are no oceans
on the Moon to contribute to the dissipation). Thus the wide spread opinion that
the largest contribution to the dissipation of energy in the Earth is due to ocean
tides becomes doubtful. Analysis of residuals reveals a sharp change of their time
behavior after March 1998 which effect could not be modeled by other ways but
including corrections to coordinates of the reflectors after this date as independent
solve-for parameters. Because the corrections derived for the all four observed re-
flectors appear to be rather close it is conjectured that near this date a jump of a
few centimeters in the position of the lunar barycenter with respect to the lunar
crust has occurred.
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1. Introduction

It is well known that the complicated non-rigid structure of the Earth
strongly influences its rotation. Resulted effects are clearly detected in the
time behavior of the Earth’s orientation parameters derived by regular
monitoring of the Earth’s rotation (mainly by VLBI technics). At present
the analogous subtle effects in the rotation of the Moon also may be studied
making use of lunar laser ranging measurements (LLR) provided by regular
observational programs started in 1969. A state-of-art analysis of the LLR
data with applications to lunar rotation is given in (Dickey et al, 1994,
[2]), and (Williams et al, 2001, [11]).

Unlike the problem of the Earth’s rotation no monitoring of rotational
parameters of the Moon is yet possible, thus the case of the Moon seems
even more complicated then that of the Earth. The small effects to be
studied are detectable only if a sophisticate dynamical model both of the
orbital and rotational motions of the Moon is constructed by simultaneous
integration of equations of motion of the major planets and the Moon
(including equations of the lunar rotation). High accuracy of the LLR
data invokes dynamical theories of the adequate precision. The works cited
above made use of dynamical models of the well-known series of Developed
Ephemerides constructed and supported by Jet Propulsion Laboratory (the
ephemerides DE403 or the more advanced version DE405, see [8]). The
present study uses as DE405 so the dynamical model EPM (Ephemerides
of Planets and Moon) which is under developing in Institute of Applied
Astronomy. For applications of EPM to planet problems see [9]. Analysis of
LLR data depends not only on a dynamical model but on partial derivatives
respectively to a number of parameters many of which also need numerical
integration to be calculated. These partials are not distributed along with
DE ephemerides and have been obtained by numerical integration with the
help of EPM in the frame of a supporting software. An earlier version of
the lunar dynamical model (in which no effects of dissipation in the lunar
rotation have been taken into account) is described in [1]. In the present
work the following improvements of this model have been carried out:

1. Torques due to elasticity of the lunar mantle and those caused by
the lag of the tides in the lunar body are modeled as it is described
in [3].
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2. Poincare’s method to model the motion of a rigid body with a fluid
core is applied to the case of the Moon.

3. Frictional interaction between the core and the mantle is taken into
consideration after [11].

2. Observations and ephemerides

In the present analysis the LLR observations of the time interval 1970–
2001 are discussed. They have been carried out mainly at McDonald
Observatory (Texas), and CERGA station (France). In McDonald at
different epochs three different sites were activated; they are referred here
as McDonald, MLRS1, and MLRS2. There exists also a set of observations
of two year duration made at Haleakala Observatory (Hawai). Number N
of the observations at each site is given in Table 1. About one hundred
observations appeared to be either roughly erroneous or of a poor quality
(with residuals about 20 nsec for the epoch after 1985). On the whole in
this study 14612 observations have been used.

Table 1. Distribution of LLR observations.

Station Time span N
McDonald 1970 Mar - 1985 Jun 3439
MLRS1 1985 Jan - 1988 Jan 275
MLRS2 1988 Aug - 2001 Dec 2416
Haleakala 1989 Nov - 1990 Aug 694
CERGA 1988 Jan - 2001 Dec 7788
Total 1970 Mar - 2001 Dec 14612

In LLR analysis a number of parameters under estimation appear to
be strongly correlated and may be reliably estimated only because not one
but four reflectors could be observed. The latest reflector installed in the
course of the Apollo program is Apollo 15; it is of the best quality and
thus most often observable. About 78% of the LLR data are obtained for
this reflector (numbers of rangings to Apollo 11, Apollo 14, Apollo 15 and
Lunachod 2 are 1407, 1410, 11369, and 427 correspondingly). Unfortunately
such disparity of the distribution deteriorates reliability of the estimates of
a number of selenodynamical parameters.
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A priory errors of observations before 1998 were calculated from
published data applying the algorithm by Newhall (1995, personal
communication). For observations after this date the a priory error of
each observation is taken from publications when it exceeds 0.1 nsec, and
set equal to 0.1 nsec in the opposite case. Before 1998 the observations
are obtained by request from the observatories, later on they have been
retrieved from FTP server cddisa.gsfc.nasa.gov/pub/slr/llmpt.

The dynamical model EPM has been constructed by simultaneous
numerical integration of equations of orbital motion of the Moon, major
planets, five biggest asteroids, and the lunar rotation. The integration
includes reduced equations of 293 asteroids; it is important for the major
planets, but not for the Moon. So in this study to save computing time
perturbations only from 5 biggest asteroids are accounted for. Potential of
the Moon is calculated up to the 4-th order of the zonal index, that of the
Earth includes the 2-th order harmonics c20 and c22.

To model effects of the fluid core the Poincare’s method has been
accommodated by accounting peculiarities of the rotational dynamics of the
Moon. Some details are given in Appendix, here only a brief summary is
outlined for understanding the discussion of the results of LLR processing
given beneath. As in the case of the Earth, a resonance between the
frequency of free core oscillations with the rotational frequency (one month
for the Moon) takes place. Due to this resonance the model of the lunar
rotation is very sensitive to the polar and equatorial dynamical flattenings
βc, γc of the core defined by the relations

βc =
Cc −Ac
Bc

, γc =
Bc −Ac
Cc

,

where Ac, Bc, Cc are moments of inertia of the core. Unlike the Earth’s
case the equatorial flattening of the core cannot be ruled out. As at
present there is no reliable information on values of βc, γc, it is not yet
possible to carry out rigorous integration of the combined equations of
rotation of the Moon and its core. Nevertheless one can model the main
contribution from the core by a simplified model of Appendix. In this model
the equations of lunar rotations include some additional terms depending on
three parameters ν1, ν2, ν3 which depend on γc, βc and the ratio ρ = Cc/C
of the moments of inertia of the core and the Moon in the following way:
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ν1 = Gργc, ν2 = Gρβc, ν3 = G2ργc,

where the ”gain-factor” G is

G =
n

Ω̇ + n(βc − 0.5γc)
,

n, Ω̇ being the mean motion and the rate of nodes of the lunar orbit.
Meaning of the gain-factor may be understood taking in mind the

conventional approach to modeling the fluid core effects in the theory of
the Earth’s rotation. For the Earth the equatorial flattenings γc is set equal
to zero, n is the angular velocity of the Earth, and the value νc = nβc is the
frequency of so called free core nutation (one revolution in 430 days) while
for the Moon this frequency is given by the relation νc = n(βc−0.5γc) that
enters the expression for G. To account for effects of the fluid core of the
Earth a transfer function has to be applied: it multiplies any rigid body
nutational harmonics of the frequency ν by a factor which is proportional
to 1/(ν − νc) (see for instance [7]). In the case of the Moon the largest
harmonics corresponds to motion of the lunar nodes and that explains the
origin of the gain-factor G given above.

The parameters ν1, ν2, ν3 enter the equations of rotation in different ways
and can be estimated simultaneously with other parameters of the Earth-
Moon dynamical system. Then applying the relations G = ν3/n1, γc/βc =
ν1/ν2 it is possible to derive all three parameters involved γc, βc and ρ.
If the combination (2βc − γc) is small in comparison with |Ω̇/n| ≈ 1/216
(as it is naturally to suggest) then for G we could expect the estimate
G ≈ −200 from the analysis of LLR data.

Tidal perturbations in the lunar orbital motion caused by tidal
dissipation on the Earth’s body is computed by the model with a constant
lag.

Partials of rangings respectively to dynamical parameters of the orbital
and rotational model of the Moon are computed mostly by integration of
variational equations; in a few cases they have been obtained by integration
of the rigorous system of equations with slightly varied values of the
parameter under study.

The LLR dataset has been also processed with the help of DE405
lunar ephemerides making use of the partials obtained with EPM.
However nominal values of many of the estimated parameters in DE405
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are not known; that is why only corrections to such parameters could
be determined. Moreover we might implement the improved values of
dynamical parameters only to EPM, but not to DE405. In Solution A
values of 65 parameters listed in Table 2 have been improved, all of them
being then fed back to EPM by iterations.

Table 2. List of estimated parameters.

1-6 Lunar orbital state vector for the epoch JD 2446000.5
7-12 Euler’s angles and their time derivatives for the same epoch
13 Lag of the Moon’s body tides
14-16 Lunar Love numbers k2, h2, l2
17 Lag of the Earth’s body tides
18-29 Harmonics of lunar potential from c20 to s33

30-38 Coordinates of reflectors A11, A14, L2
39 Coordinates X of A15
40-54 Coordinates of 5 stations
55-56 Corrections to orientation of the Earth’s equator ε, φ

57-58 Secular trends ε̇, φ̇
59-60 Secular trends in sidereal angles of the Earth and Moon
61 Undimensional lunar moment of inertia g = C/mR2

62-64 Moon’s core factors ν1, ν2, ν3

65 Moon’s core-mantle coupling factor κ

Some comments have to be done.

1. As lunar rangings are invariant relatively to rotations of the Earth-
Moon system as whole, all set of parameters of orientation of this
system cannot be determined simultaneously. Due to this reason two
coordinates of the most often observable reflector Apollo 15 have been
fixed (longitude and latitude). Values of these two parameters were
obtained from a simplified solution made as the first step, in which
lunar librations have not being improved.

2. LLR observations are sensitive to the Earth’s gravitational constant
GmE . However our experience has shown that the observable effect
reduces to scaling of distances and cannot be reliably separated from
corrections to the X coordinate of the reflectors. Thus the value GmE

has not been not included to the list of estimated parameters.
3. For meaning of the coupling parameter κ see Appendix.

9



3. Discussion of results

The estimates of selenodynamical parameters (which are of primary
interest of this study) are given in Table 4 both for EPM and DE405
as Solution A (65 parameters mentioned above). As improved values of
dynamical parameters of DE405 could not be derived, only the obtained
corrections to them are presented being marked by the prime symbol
′. corrections are presented being marked by the prime symbol ′. Post-
fit residuals for EPM are presented in Fig 1. Analogous residuals for
DE405 appear to be about 5 % less noisy; visually two plots could not be
distinguished and thus the plot for DE405 is not given.

Because the EPM model has been implemented by the obtained
corrections the post-fit residuals practically coincide with differences O−C
computed with the improved model. For DE405 a similar work could
not be carried out in the full scale and only estimates of coordinates
of the reflectors and Love numbers h2, l2 of the Moon have been
incorporated. Corresponding differences O-C are presented in Fig. 3. The
plot demonstrates that the lunar ephemerides DE405 need considerable
corrections as it was naturally to expect because these ephemerides have
been completed a number of years ago on the base of less set of the LLR
data than used in the present work.

The plot of LLR residuals in Fig 1 shows that some sharp change
of them has occurred after March 1998 (residuals for DE405 demonstrate
quite the same type of the behavior). Being independent of the model
applied such effect cannot be explained by any drawbacks of the dynamical
models. Checking the algorithms and software used for reduction of LLR
data has not revealed errors which could explain this effect. Experiments
have proved that the degradation of fitting for the epoch after March
1998 disappears if coordinates of the all four reflectors after this epoch
are estimated as independent parameters. Because the time span after
March 1998 is comparatively small it appears possible to estimate all three
coordinates of Apollo 15 for this epoch (unlike for the previous one). Indeed
strong correlations with lunar librations do not arise as the librations are
mainly depend on the observations of the previous epoch. In this way an
alternative solution has been produced (Solution B; see Table 4) in which
coordinates of the reflectors after March 1998 are determined independently.
For this solution the noticed above peculiarities of the post-fit residuals
vanish and the overall fitting becomes considerably better (see Fig. 2 where
the plot is given for EPM, and Fig. 4 for DE405).

10



Fig. 1. EPM residuals, Solution A.

Fig. 2. EPM residuals, Solution B.
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Fig. 3. DE405 prefit residuals.

Fig. 4. DE405 residuals, Solution B.
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In Table 3 the differences Dx, Dy, Dz between the two sets of coordinates
of the reflectors related to the epoch before and after March 1998 are given
for the DE405 model. One can see that the corrections for each reflectors
are close. That makes plausible a conjecture that a sharp jump of the
lunar crust (to which the reflectors are rigidly fixed) as whole relatively to
the barycenter of the Moon took place at March 1998. Similar effects of
a smaller scale are known to exist for the Earth from analysis of satellite
ranging data.

Table 3. Jump in coordinates of reflectors after March 1998 (m).

Dx Dy Dz

-0.171 ± 0.054 0.066 ± 0.083 -0.308 ± 0.077 Apollo 11
-0.192 ± 0.053 0.110 ± 0.104 -0.021 ± 0.096 Apollo 14
-0.090 ± 0.081 0.237 ± 0.086 -0.604 ± 0.256 Lunachod 2
-0.117 ± 0.049 0.270 ± 0.035 -0.240 ± 0.027 Apollo 15

By averaging the values given in Table 5 we have the following estimates
of the jumps Dx, Dy, Dz in each of the coordinates X,Y, Z (in meters):

Dx = −0.15± 0.04

Dy = 0.23± 0.07

Dz = −0.23± 0.07.

The analogous jumps in coordinates obtained with the EPM model are
not so consistent but do not contradict to the DE405-based estimates:

Dx = −0.17± 0.03

Dy = 0.37± 0.21

Dz = −0.10± 0.26.

Comparing the residuals obtained with EPM and DE405 as well as the
formal errors of the estimates one can see that DE405 provides somewhat
better fitting (about 5-10 %). Origin of these systematic errors in EPM
is not yet clear. They are probably due to some mismodeling of lunar
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rotations because the experiments in which the orbital motion of the Moon
is taken from EPM but its rotational motion from DE405 indeed improve
fitting.

In Table 4 there are also presented LLR-based results from [2] and from
the more recent publication [11]. For the aims of comparison we present
our estimates of the lunar tidal lag δ also in terms of the quality factor Q
defined as Q = 1/2δ. Comparing the values of Q in papers [2], [11] with the
given there time delays τ = δ/n (n is the Moon’s mean motion), it becomes
clear that another definition has been used in these works: Q = 1/δ. We
prefer the conventional definition and thus the values Q in Table 4 taken
from [2], [11] are transformed to be in accordance with it. Statistical errors
in Table 4 are given only for the estimated parameters, but not for the
derived ones.

In the equations of motion of the Moon the tidal lag is multiplied by
k2; so sometimes the effective parameter of dissipation is presented as the
product k2δ (or as k2/Q). For the aims of comparison the combination
k2/Q also is presented. In the last line of the table the undimensional
moment of inertia of the Moon g = C/mR2 is given. This value was
obtained by confronting the estimate of the gravitational coefficients c20

derived from its contribution to the orbital motion of the Moon, with the
value β = −c20/g derived from its impact on the rotation of the Moon.

The errors of our estimates are formal ones given in the sense of one σ.
As the residuals still expose signatures due to some unmodeled effects, the
formal errors are too optimistic and in order to get more realistic values
they have to be multiplied at least by the factor 2. That must be taken
in mind when comparing our estimates with those from [2], [11]. Another
reason why our formal errors sometimes are much less is the larger duration
of our dataset (the end of the time span in [2] is December 1993, that of
[11] is July 1998).

The following comments to the results presented in Table 4 are to be
done:

Lunar Love number k2. In paper [2] the estimate k2=0.0302 is given
and discussed in some detail. It is argued that lunar seismic velocity
profiles provided by the Apollo mission correspond to smaller value
k2 ≈ 0.021− 0.024. The value k2=0.0285 obtained in Solution B is
well in accordance with the estimate k2=0.0287 given in [11]; so our
analysis has confirmed the noticed discrepancy.
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Table 4. Selenodynamical parameters derived from LLR.

EPM-A EPM-B DE405-A DE405-B Paper [2] Paper [11]

k2 0.0381 0.0285 0.0064′ 0.0022′ 0.0302 0.0287
±9 ±8 ±9 ±8 ±12 ±8

h2 0.0903 0.0861 0.0996 0.0916 0.0340
±42 ±35 ±39 ±32 ±180

l2 0.0514 0.0426 0.0510 0.0510
±33 ±27 ±31 ±25

Lag, 1.6249 2.0559 0.0001′ 0.0004′ 2.204 1.518
deg ± 31 ± 28 ± 29 ± 25 ± 32
Q 17.630 13.034 13.250 18.870

± 500
k2/Q 0.00215 0.00218 0.002272 0.00152

± 32
κ, -70 -80 -66 -59 1122
10−11/d ±6 ±5 ±5 ±5 ±257
g 0.39268 0.39223 0.00027′ −0.00018′ 0.3940

±4 ±4 ±4 ±4

Lunar Love numbers h2, l2. The estimates of lunar Love numbers h2

and l2 are only slightly sensitive to the used models as well as to the
two versions of solution. These estimates seem to be reliable, though
our h2 is 2.5 times larger then that given in [11]. The estimate of l2
is probably obtained in the first time and we do not aware of other
publications to compare with.

Dissipation quality factor Q. Our estimate Q=13.0 for solution B is
very close to the value 13.25 given in [2] but somewhat differs from
Q=18.870 claimed in the more recent work [11] which is based on a
larger set of LLR data (pay attention that in Table 4 the results of [2],
[11] are scaled in order to correspond to the conventional definition
of Q). Probably the discrepancy could be explained by the fact that
in [11] the value of Q has been estimated in several frequency bands
and thus Q at the monthly frequency (which value can be compared
with our estimate) would diminish.
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In this context it seems useful to give the estimate obtained for the
Earth’s dissipation factor QE (and the corresponding tidal lag δE)
from its effects in the orbital motion of the Moon: QE = 11.032±0.004
(δE = 2.5968± 0.0009 deg). It corresponds to the secular deceleration
of the lunar mean motion ṅ ≈ −25′′/cy2 well confirmed by many
studies. One can see that the Moon only slightly less dissipative than
the Earth. This result seems important bearing in mind the adopted
explanation of dissipative effects in the Earth’s rotation as caused
by the dissipation in oceans (after the well known monograph by
Lambeck [6]). Now this suggestion seems doubtful because absence
of oceans on the Moon shows that the strong dissipation originates
in the planet body, and probably the same is true for the Earth.
Another evidence that the dissipation is generated by the body tides
is the surprisingly constant value of QE during the last 600 million
years as it follows from paleontologic data (for most resent results
see [4]). This conclusion may be of a practical importance as the
adopted IERS standards for modeling the dynamics of the Earth’s
satellites deliberately do not include accounting for the lag δE of the
body tides.

Effects of fluid core. In Solution B an attempt has been undertaken to
evaluate parameters ν1, ν2, ν3 and then to derive estimates of the
parameters γc, βc and ρ of the fluid core. Unfortunately while the
estimates of ν1, ν2, ν3 appear statistically significant

ν1 = (126± 18) · 10−7

ν2 = (147± 88) · 10−8

ν3 = (267± 76) · 10−6

they lead to meaningless values of γc, βc and ρ. These values are
given here for DE405, those for EPM agree with them. So at present
with the accuracies achieved the question whether the effects of the
fluid core are detectable is still open.

Coupling factor κ. This parameter is a factor to multiply relative angular
velocities of the core χx, χy in order to calculate the corresponding
torque. In accordance with the theory developed in Appendix, on the
place of χx, χy one can take the angular velocities ωx, ωy multiplied
by the gain-factor G given above. When comparing our estimate of κ
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with that from [11] given in Table 4 it is necessary to account that
we have used the theoretical value G = −216 which corresponds to
negligible βc, γc. Reason of the disagreement with the result of [11]
is not clear, probably it is due to another scaling.

In Table 5 there are given corrections to some parameters which
probably have no clear physical meaning but characterize quality of the
dynamical theories in use. They are corrections dε, dφ to orientation of the
Earth’s equator, centennial rates dε̇, dφ̇ of these values, and corrections
to centennial rates of the Earth’s and Moon’s rotational angles. One can
see that all these values are less for DE405 comparing with EPM which
fact demonstrates again that in the lunar part of EPM there are still some
unmodeled effects.

Table 5. Corrections to Earth’s equator.

Parameter Unit EPM σ DE405 σ
dε arcs 0.0018 0.0003 0.0007 0.0003
dφ arcs 0.0239 0.0005 0.0042 0.0004
dε̇ arcs /cy 0.0089 0.0024 0.0138 0.0021

dφ̇ arcs/cy -0.2432 0.0049 -0.0116 0.0043
ṡ, Earth arcs/cy -0.0226 0.0018 0.0014 0.0014
ṡ, Moon arcs/cy -0.1165 0.0121 -0.0293 0.0122

4. Conclusive remarks

The up-to-date LLR measurements of high precision provide unique
information for selenodynamical studies. Adequate modeling of lunar
rotation puts forward a challenge for analysts because LLR residuals
still show signals of unknown origin. For instance quite mysterious is a
signature (with any of the two dynamical models in use) that gives rise
to improbable corrections to the Earth’s Love numbers h2, l2 (about 0.2
and 0.1 with formal errors as small as a few percents). Including these
parameters to the list of solve-for unknowns considerably improves the
fitting and diminishes corrections to all lunar Love numbers by the factor
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2. At this stage we have failed to find a parameter that could provoke such
special signature in the residuals.

Our study shows that the direct impact of the fluid core on the Moon’s
rotation is probably negligible but the indirect effect of the frictional mantle-
core interaction seems to be detectable. Hopefully more certain conclusions
might be derived in future with more data from the ongoing LLR programs
of CERGA and MLRS. We would like to pay attention of the contributors
on a great importance for selenodynamics to obtain more ranging data for
other reflectors but Apollo 15.

This study has been carried out by the software package ERA for
ephemeris and dynamical astronomy (see [1], [5]). DOS version of the
software with the LLR applications developed in this research, may be
retrieved by anonymous FTP quasar.ipa.nw.ru/incoming/era.
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Appendix

Modeling effects of the fluid core of the Moon

Here we follow the approach developed by Poincare for a rigid body

with a fluid cavity [10].
The following notations are used:

A < B < C are main moments of inertia of the Moon.
β, γ are combinations of A, B, C that enter the equations of lunar rotation.
θ is nutation angle of the coordinate system fixed to the main axes.
φ is precession angle of this system
ψ is rotational angle.
ωx, ωy, ωz are projections of the lunar angular velocity ω to the axes of

the rotating system fixed to the mean axes of inertia.
Nx, Ny, Nz are projections in the same system of the momentum vector

N of the perturbing forces from Sun and Earth in the rigid body

approximation.

The following relations hold true:

β =
C −A
B

=
(4c22 − 2c20)/g

(4c22 + 2c20)/g + 2
≈ −c20

g
,

γ =
B −A
C

= 4
c22

g
,

where

g =
C

mR2

is the undimensional moment of inertia (m,R being the lunar mass and
its mean radius).

If r is radius vector of a perturbing body in the rotating frame of the

mean axes of inertia, ρ is that in the inertial frame the following relation
takes place

r = P3(ψ)P1(θ)P3(φ)ρ, (1)
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where Pi (i = 1, 2, 3) is rotational matrix for the i-th axis.

In these notations the equations of lunar rotation may written in the

form:

ω̇x =
γ − β
1− βγ ωzωy +

Nx
A
,

ω̇y = βωzωx +
Ny
B
, (2)

ω̇z = −ωyωxγ +
Nz
C
.

At the right parts of these equations the components ωx, ωy, ωz of the

angular velocity have to be expressed in terms of the Euler’s angles and
their time velocities with the help of the Euler’s kinematic relations

ωx = φ̇ sin θ sinψ + θ̇ cosψ,

ωy = φ̇ sin θ cosψ − θ̇ sinψ, (3)

ωz = φ̇ cos θ + ψ̇.

Rotation of the fluid core in the Poincare model is described by the

velocity field that can be characterized by the vector of angular velocity χ =

(χx, χy, χz) relatively to the body fixed rotating frame. If Ac, Bc, Cc (Ac <
Bc < Cc) are the main moments of inertia of the fluid core then the

following dynamical relations between ωx, ωy, ωz and χx, χy, χz hold true
[7]:

(ω̇x + χ̇x)Ac + χz(ωy + χy)Bc − χy(ωz + χz)Cc = 0,

(ω̇y + χ̇y)Bc + χx(ωz + χz)Cc − χz(ωx + χx)Ac = 0, (4)

(ω̇z + χ̇z)Cc + χy(ωx + χx)Ac − χx(ωy + χy)Ac = 0.

Differential equations (2) have to be modified by adding the perturbing

torques that depend on the vector χ. In terms of the moments of inertia

A,B,C (not of the parameters of libration β, γ as in equations (2)) the
modified equations have the form:
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Aω̇x + ωzωy(C −B)−Bcχyωz + Ccχzωy +Acχ̇x = Nx,

Bω̇y + ωxωz(A− C)− Ccχzωx +Acχxωz +Bcχ̇y = Ny, (5)

Cω̇z + ωyωx(B −A)−Acχxωy +Bcχyωx + Ccχ̇z = Nz.

Expressing χ̇x, χ̇y, χ̇z from equations (4) and inserting the results to
equations (5) we obtain:

ω̇x + ωzωy
C −B
A−Ac

+ (χyωz + χzωy + χzχy)
Cc −Bc
A−Ac

=
Lx

A−Ac
,

ω̇y + ωxωz
A− C
B −Bc

+ (χzωx + χxωz + χxχz)
Ac − Cc
B −Bc

=
Ly

B −Bc
, (6)

ω̇z + ωyωx
B −A
C − Cc

+ (χxωy + χyωx + χyχx)
Ac − Cc
C − Cc

=
Lz

C − Cc
.

In terms of the parameters of libration β, γ for the Moon as whole, and
of the analogous parameters βc, γc for the fluid core

βc =
Cc −Ac
Bc

γc =
Bc −Ac
Cc

,

and of the ratios ρA, ρB , ρC of the corresponding moments of inertia defined

by the relations

ρA =
Ac
A
≡ Cc

C

(
1− βcγc
1 + βc

)(
1− βγ
1 + β

)
,

ρB =
Bc
B
≡ Cc

C

(
1 + γC
1 + βC

)(
1 + γ

1 + β

)
,

ρC =
Cc
C
,

we can rewrite equations (6) in the form:

ω̇x + ωzωy
β − γ
1− βγ qA +Qyz

(βc − γc)
1− βCγC

ρAqA =
Lx
A
qA,
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ω̇y − ωxωzβqB +QxzβCρBqB =
Ly
B
qB , (7)

ω̇z + ωyωxγqC +QxyγCρCqC =
Lz
C
qC ,

with the notations

Qyz = χyωz + χzωy + χzχy,

Qxz = χzωx + χxωz + χxχz, (8)

Qxy = χxωy + χyωx + χyχx,

and

qA =
1

1− ρA
, qB =

1

1− ρB
, qC =

1

1− ρC
. (9)

Equations (4) may be rewritten now in the following way:

χ̇x +
1 + γc
1 + βc

χz(ωy + χy)− 1 + βc
1− βcγc

χy(ωz + χz) + ω̇x = 0

χ̇y +
1 + βc
1 + γc

χx(ωz + χz)−
1− βcγc
1 + γc

χz(ωx + χx) + ω̇y = 0 (10)

χ̇z +
1− βcγc
1 + βc

χy(ωx + χx)− 1 + γc
1 + βc

χx(ωy + χy) + ω̇z = 0

Thus we have obtained a close system of differential equations (3),

(7), (10) to describe rotation of the Moon with a fluid core. Because the
information on numerical values of the parameters of the core is rather

uncertain, in this work we consider equations (10) for the lunar rotation
under the Cassini laws. In the simplest way the Cassini laws may be

formulated in the ecliptical inertial frame. So temporarily the Euler’s angles

φ, θ, ψ at the right parts of relations (3) will be considered as defined in
the ecliptical system. For the Cassini laws we have θ = const, ψ̇ = Ω̇ (Ω̇

is the secular motion of the lunar node along the ecliptic), φ̇ + ψ̇ = n (n
is the lunar mean motion), ωz = n− φ̇+ ψ̇ ≈ n. Then Euler’s relations (3)

reduce to the form:

ωx = Ω̇ sin θ sinψ,
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ωx = Ω̇ sin θ cosψ, (11)

ωz = n.

For the time derivatives ω̇x, ω̇y we obtain:

ω̇x = Ω̇(n− Ω̇) sin θ cosψ,

ω̇y = −Ω̇(n− Ω̇) sin θ sinψ.

These relations for ω̇x, ω̇y have to be inserted to equations (10).
Assuming χz << n (which estimate is justified beneath) equations (10)

may be written in the following form (neglecting the squares of βc, γc):

χ̇x − n1χy + ω̇x = 0,

χ̇y + n2χx + ω̇y = 0,

where n1 = n (1 + βc), n2 = n (1 + βc − γc).
These equations have the particular solution for the forced oscillations:

χx = − 2Ω̇(n− Ω̇)2

(n− Ω̇)2 − n1n2

sin θ sinψ ≈ 2Ω̇n

2Ω̇ + n(2βc − γc)
sin θ sinψ,(12)

χy = − 2Ω̇(n− Ω̇)2

(n− Ω̇)2 − n1n2

sin θ cosψ ≈ 2Ω̇n

2Ω̇ + n(2βc − γc)
sin θ cosψ.(13)

Expressions (11), (12) and (13) have to be used in the equation for χ̇z
that has the form:

χ̇z + (1− βc)χyωx − (1 + γc − βc)χxωy − χxχyγc = 0.

After integration we derive the inequality

|χz | <
(

Ω̇

2Ω̇ + (2βc − γc)

)2

n sin2 θmax(βc, γc) << n,
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which justifies the derivation of relations (12), (13).

Making use of (11) expressions (12), (13) may be rewritten in the form:

χx =
2n

2Ω̇ + n(2βc − γc)
ωx, (14)

χy =
2n

2Ω̇ + n(2βc − γc)
ωy. (15)

In this invariant form they are valid in any inertial reference frame in

which the Euler’s angles are defined. Now we can substitute the derived
expressions for χx, χy to equations (7) to obtain modified Euler’s equations

which take into account the main effects of the fluid core of the Moon:

ω̇x + ωzωy

(
β − γ
1− βγ +Gρ

βc − γc
1− βCγC

)
1

1− ρ =
Lx

A(1− ρ)
,

ω̇y − ωxωz (β +GρβC)
1

1− ρ =
Ly

B(1− ρ)
, (16)

ω̇z + ωyωx (γ +Gρ (2 +G) γC)
1

1− ρ =
Lz

C(1− ρ)
,

in which the undimensional constant G is defined as

G =
2n

2Ω̇ + n(2βc − γc)
(17)

and the approximation ρA = ρB = ρC = ρ is used.

Processing of LLR observations the parameters β, γ, and ρ, βc, ργc can
be estimated simultaneously as the torques Lx, Ly, Lz at the right hand of

(16) depend on β, γ but not on ρ, βc, γc. We assume that the combination

2βc − γc has to be small in comparison with |2Ω̇/n| ≈ 0.01; then for
physically meaningful estimates we must expect G ≈ −200 and of course

ρ > 0.
In order to model the dissipative coupling between the core and mantle

after [2] we add components Lmcx , Lmcy of the coupling torque to the right

hands of the first two equations (16):

Lmcx = κχx, L
mc
y = κχy,
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where κ is a coupling factor.

Using the approximation (14), (4) we have

Lmcx = Gκωx, L
mc
y = Gκωy,

where G is given by Equation (17).
While processing LLR data these relations have been used assuming

G = −216.
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