
Evolutionary experiments with a fine-grained reconfigurable architecture for analog
and digital CMOS circuits

Adrian Stoica, Didier Keymeulen1, Raoul Tawel, Carlos Salazar-Lazaro, and Wei-te Li
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

adrian.stoica@jpl.nasa.gov

1 Also member of the Electrotechnical Laboratory, Tsukuba, Japan.

Abstract

The paper describes the architectural details of a fine-
grained Programmable Transistor Array (PTA)
architecture and illustrates its use in evolutionary
experiments on the synthesis of both analog and digital
circuits. A PTA chip was built in CMOS to allow circuits
obtained through evolutionary design using a simulated
PTA to be immediately deployed and validated in
hardware and, moreover, enables a benchmarking and
comparison of evolutions carried out via simulations only
(extrinsic evolution) with the chip-in-the-loop (intrinsic)
evolutions. The evolution of an analog computational
circuit and a logical inverter are presented. Synthesis by
software evolution found several potential solutions
satisfying the a-priory constraints; however, only a
fraction of these proved valid when ported to the
hardware. The circuits evolved directly in hardware
proved stable when ported to different chips. In either
case, both software and hardware experiments indicate
that evolution can be accelerated when gray-scale (as
opposed to binary switches) were used to define circuit
connectivity. Overall, only evolution directly in hardware
appears to guarantee a valid solution.

1 Introduction

Evolvable Hardware (EHW) is reconfigurable hardware
whose configuration is under the control of an evolutionary
algorithm. The search for an electronic circuit realization
of a desired transfer characteristic can be made in software
as in extrinsic evolution, or in hardware as in intrinsic
evolution. In extrinsic evolution the final solution is
downloaded to (or become a blueprint for) the hardware. In

intrinsic evolution the hardware actively participates in the
circuit evolutionary process.

In the context of electronic synthesis on reconfigurable
devices, the architectural configurations are encoded in
"chromosomes" that define the state of the switches
connecting elements in the reconfigurable hardware. The
main steps in evolutionary synthesis of electronic circuits
are illustrated in Figure 1. First, a population of
chromosomes is randomly generated to represent a pool of
circuit architectures. The chromosomes are converted into
circuit models (for extrinsic EHW) or control bitstrings
downloaded to programmable hardware (intrinsic EHW).
Circuit responses are compared against specifications of a
target response and individuals are ranked based on how
close they come to satisfying it. Preparation for a new
iteration loop involves generation of a new population of
individuals from the pool of the best individuals in the
previous generation. Here, some individuals are taken as
they were and some are modified by genetic operators,
such as chromosome crossover and mutation. The process
is repeated for a number of generations, resulting in
increasingly better individuals. The process is usually
ended after a given number of generations, or when the
closeness to the target response has been reached. In
practice, one or several solutions may be found among the
individuals of the last generation.

A variety of circuits have been synthesized through
evolutionary means. For example, Koza used Genetic
Programming (GP) to grow an “embryonic” circuit to one
that satisfies desired requirements [1]. This approach was
used for evolving a variety of circuits, including filters and
computational circuits. An alternative encoding technique
for analog circuit synthesis, which has the advantage of
reduced computational load was used in [2] for automated
filter design. On-chip evolution was demonstrated by
Thompson [3] using an FPGA as the programmable
device, and a Genetic Algorithm (GA) as the evolutionary

mechanism. More details on current work in evolvable
hardware are found in [4], [5], [6], and [7].

Intrinsic evolution can speed-up the search for a solution-
circuit by several orders of magnitude compared to
evolution in software. This is especially true if one
simulates large, complex analog circuits (and if the circuit
response is rapid, i.e. not for circuits with time constants of
seconds). Moreover, since the software simulation relies
on limited accuracy models of physical hardware a solution
evolved in software may behave differently when
downloaded in programmable hardware; such mismatches
are avoided when evolution takes place directly in
hardware. Hardware evolution also scales well with both
size of the circuits and model accuracy. The more complex
the circuits, and more accurate their models, the longer the
time it takes for their evaluation in software; on the other
hand the time is approximately the same in hardware
evaluations.

Evolutions of analog circuits reported in [1] and [2] were
performed in simulations, without concern for a physical
implementation, but rather as a proof-of-concept to show
that evolution can lead to designs that compete, or even
exceed in performance those of humans. No analog
programmable devices exist that would support the
implementation of the resulting design (but, in principle,
one can test their validity in circuits built from discrete
components, or in an ASIC), and thus intrinsic evolution
was not possible. The problem of intrinsic evolution on
programmable analog devices is very interesting. One
reason is that the potential of analog processing is much
greater than what is exploited today. Analog circuitry has
advantages in cost, size and power consumption (compared
to digital), and can directly process signals that are
continual in time and amplitude, albeit at a finite

resolution. Even a single transistor has many functions that
can be exploited in computation functions such as
generation of square, square-root, exponential and
logarithmic functions. Other functions include voltage-
controlled current sources, analog multiplication of
voltages, and short term and long term analog storage [8].
The basic combinations of transistors offer a rich repertoire
of linear and nonlinear operators available for local and
collective analog processing. Using evolution, the benefits
of analog processing can be exploited, while its
disadvantages are reduced/eliminated.

Interest in analog computing dwindled with the
emergence of robust and precise digital computing
techniques. Analog computers were not easily
programmable, were prone to temperature induced drifts,
and required precise matching of components to perform
quasi-accurate computations. If the evolutionary
mechanism proves sufficiently powerful for evolving
complex analog circuits, then its combination with
reconfigurable analog devices will be able to capture the
benefits of analog in new applications. A support of
research in this area is also the current belief that the
evolutionary search works better with analog than with
digital circuits. The possible explanation lies in the fact
that analog behaviors are relatively smoother search
spaces. Thus, new perspectives are possible: evolutionary
searches offer automatic programming; sufficiently precise
equivalent components could be obtained if the
programmable analog components offer controllability of
their operating points; drifts that can be compensated for
by adjusting operating points or, if the drifts are too strong,
by a new search for a different optimal circuit
configuration and operating point. Analog computation on
simple low-power circuits can boost the emerging

Evolutionary Algorithm
Genetic search on a population of
chromosomes
• select the best designs from a population
• reproduce them with some variation
• iterate until the performance goal is

reached.

Response evaluation
 and fitness assessment

Target
response

Chromosomes

Reconfigurable
HW

10110011010
01110101101

Control
bitstrings

Conversion
to a circuit
description

Circuit
responses

Extrinsic
evolution

Intrinsic
evolution

 Models
 of circuits

Simulator
(e.g. SPICE)

Figure 1. Evolutionary synthesis of electronic circuits

applications areas of “smart matter” and distributed high
bandwidth adaptive sensing.

A shift in the design approach, from reconfigurable
devices to evolution-oriented devices (evolvable devices)
would facilitate hardware evolvability. This paper presents
the Programmable Transistor Array (PTA) as a platform
for experiments in evolutionary synthesis of both analog
and digital CMOS electronic circuits, along with
experiments that are expected to lead to design guidelines
for a truly evolvable chip. Several experiments in
evolutionary synthesis of CMOS circuits performed in
simulations as well as on a test chip, led to the
observations reported in the following. This paper is
organized as follows: Section 2 presents the PTA rationale,
and the PTA concept. Section 3 presents the experimental
setup, including details of the software evolutionary design
tool, the PTA chip, and a hardware tesbed. Section 4
describes a software experiment in which a CMOS circuit
with an imposed current-voltage characteristic was
synthesized by evolution, and discusses the effects the
impedance of the switches has on evolution. Section 5
presents intrinsic evolution (on PTA chips) of the same
analog computational circuits discussed in Section 4, as
well as of a logical inverter. Section 6 compares the
software and hardware experiments and presents some
lessons learned from the experiments. Section 7 comments
on related work. Lastly, Section 8 presents our conclusions.

2 Programmable Transistor Array

2.1 Rationale for analog reconfigurable devices

Current efforts in the evolution of hardware have been
limited to simple circuits. For experiments with digital
circuits, this limitation may be caused by a lack of power of
evolutionary techniques in such search spaces. For analog
circuits the limitation appears to come from a lack of
appropriate reconfigurable analog devices to support the
search. This precludes searches directly in hardware and
requires evolving on hardware models. Such models
require evaluation with circuit simulators such as SPICE;
the simulators need to solve differential equations and, for
anything beyond simple circuits, they require too much
time for practical searches of millions of circuit solutions.
A hardware implementation offers a big advantage in
evaluation time for a circuit; the time for evaluation is
determined by the goal function. For example, considering
an A/D converter operating at a 100 kHz sampling rate the
electronic response of the A/D converter is available within
10 microseconds, compared to (an over-optimistic) 1
second on a fast computer running SPICE; this advantage
increases with the complexity of the circuits. In this case

the 105 speedup would allow evaluations of populations of
millions of individuals in seconds instead of days. There is
also another characteristic that makes electronics an
attractive domain to apply evolution; the higher the
frequency at which a circuit needs to function, the shorter
is its evaluation time, making the design of very high
frequency circuits an excellent candidate for evolutionary
design.

2.2 Rationale for fine-grained granularity

Most reconfigurable devices are digital, and while
several levels of granularity are in use, the most common
ones are configurable at the gate-level. In the analog
programmable devices the reconfigurable active elements
are Operational Amplifiers, such as in Field Programmable
Analog Arrays (FPAA) with only very coarse granularity
and few programmable components, allowing specified
functionality with good precision, having a limited range
of possible EHW experiments.

The optimal choice of elementary block type and
granularity is task dependent. At least for experimental
work in evolvable hardware, it appears a good choice to
build reconfigurable hardware based on elements of the
lowest level of granularity. Virtual higher-level building
blocks can be considered by imposing programming
constraints. An example of this would entail forcing
groups of elementary cells to act as a whole (e.g. certain
parts of their configuration bitstrings with the
interconnections for the N transistors implementing a
NAND would be frozen). Ideally, the “virtual blocks” for
evolution should be automatically defined/clustered during
evolution (an equivalent of the Automatically Defined
Functions predicted and observed in software evolution).

2.3 PTA concept

The idea of a programmable transistor array was
introduced first in [11]. The PTA is a concept design for
hardware reconfigurable at transistor level. As both analog
and digital CMOS circuits ultimately rely on functions
implemented with transistors, the PTA appears as a
versatile platform for the synthesis of both analog and
digital (and mixed-signal) circuits. Further, it is considered
a more suitable platform for synthesis of analog circuitry
than existing FPGAs or FPAAs, extending the work on
evolving simulated circuits to evolving analog circuits
directly on the chip. The PTA module is an array of
transistors interconnected by programmable switches. The
status of the switches (ON or OFF) determines a circuit
topology and consequently a specific response. Thus, the
topology can be considered as a function of switch states,
and can be represented by a binary sequence, such as

“1011… ”, where by convention one can assign 1 to a
switch turned ON and 0 to a switch turned OFF . The PTA
is planned to expand much like an FPGA with versatile
functional cells. Figure 2 illustrates an example of a PTA
module consisting of 8 transistors and 24 programmable
switches. In this example the transistors P1-P4 are PMOS
and N5-N8 are NMOS, and the switch-based connections
are in sufficient number to allow a majority of meaningful
topologies for the given transistor arrangement, and yet
less than the total number of possible connections.
Programming the switches ON and OFF defines a circuit
for which the effects of non-zero, finite impedance of the
switches can be neglected in the first approximation. An
example of a circuit drawn with this simplification is given
in Figure 3.

Figure 2. Module of the Programmable Transistor Array

Figure 3. Schematic of a simple circuit implemented on a
PTA module (with leakage through the finite resistance of
OFF switches as dotted lines on the right figure).

The left drawing illustrates the ideal circuit, the right
drawing shows with dotted lines the finite resistance of
open switches. A power supply, input signals and a
biasing current source have been added.

3 Testbed for evolutionary experiments

3.1 A software tool for evolutionary design

An evolutionary design tool was developed to facilitate
experiments in simulated evolution. The tool illustrated in
Figure 4 can be used for synthesis and optimization of new
devices, circuits, or architectures for reconfigurable
hardware. These operations get performed before any
hardware gets fabricated. The tool proved very useful in
testing architectures of reconfigurable HW and
demonstrating evolution on them before the fabrication of
a dedicated reconfigurable chip. In its current
implementation the tool uses the public domain Parallel
Genetic Algorithm package, PGAPack, and a public
domain version of SPICE 3F5 as circuit simulator. An
interface code links the GA with the simulator where
potential designs are evaluated, while a GUI allows easy
problem formulation and visualization of results. At each
generation the GA produces a new population of binary
chromosomes, which get converted into voltages in
netlists that describe candidate circuit designs. Netlists are
further simulated by SPICE. More details about the tool are
given in [10].

Figure 4. A software tool for evolutionary design tool

S7
P1

S4

S1

P2

V +

S12

S5

P4

S14

S15

S22

N6

N8

S24S23

N 7

S20

N 5
S11

S18

S17

S6
S9

S8
S2

S3
P3

S13
S10

S16

S19
S21

V -

V-

Rload

V+

Iout

Vin

V+

V-

Iout

Rload

Vin Graphical
User Interface

PGAPACK
Parallel

Genetic Algorithm

Evolutionary Design Tool

Genes

Fitness of individual
device/circuit

Desired
Data

Data from simulation

Simulator
SPICE

Parametric
 model

1 of 256 processors
Caltech supercomputer (HP Exemplar)

3.2 PTA chip and hardware testbed

Successful evolution on the simulated PTA encouraged the
development of a test chip implementing the PTA
architecture. Experiments with the chip could offer an
estimate on how reliable is the evolution on SW models.
More importantly, evolution of the circuit directly on the
chip becomes possible, and at an expected accelerated pace
of over two orders of magnitude compared to the
simulation (estimated ~5 seconds compared to ~20
minutes on the supercomputer for the experiment
described). As in the experimental simulations, the size of
the transistors was fixed. The programmable switches were
implemented with transistors, acting as simple T-gate
switches. The considerations for this choice were:
- The switch has to pass analog signals
- The resistance of the switch needed to be variable

between low (~tens/hundreds of ohms) and high (in
excess of tens and hundreds of MOhms).

- Intermediate resistance values were necessary but
linearity (R=R(Vgate-control)) was not important.

The analog gradual switches act in circuit evolution very
much like resistive weights in an artificial neural network.

Each chip implements one PTA module. In this
implementation only four layers of pairs of transistors (two
PMOS and two NMOS) were chosen for simplicity. The
PTA architecture allows the implementation of bigger
circuits by cascading PTA modules. To offer sufficient
flexibility the module has all transistor terminals
connected via switches to expansion terminals (except
those connected to power and ground). Further issues
related to chip expandability are treated in [11]. The chip
was fabricated as a Tiny Chip through MOSIS, using 0.5-
micron CMOS technology. The test board with four chips
mounted on it is illustrated in Figure 5.

Figure 5. A test board with four PTA chips

The hardware testbed was built around National
Instruments data acquisition hardware and software
(LabView). A graphical tablet is attached to the system,
allowing the user to introduce the characteristic of the
desired circuit in a graphical way.

4 Evolution on a simulated PTA

4.1 Evolution using binary switches

The following experiment illustrates the evolutionary
synthesis of a computational circuit. The goal of evolution
was to synthesize a “Gaussian” circuit: a circuit that
exhibits a Gaussian I-V (current-voltage) input-output
characteristic. In a previous experiment [8] the circuit
topology was fixed and the search/optimization addressed
transistor parameters (channel length and width). Such
evolution proved quite simple. The search for a topology
turned out to be a much harder problem and several
architectures were unsuccessfully attempted before the
PTA was conceived. In the case of PTA, the transistor
parameters were kept fixed and the search was performed
for the 24 binary parameters characterizing the status of
the switches. The fitness function was specified as a
weighted combination of parameters x1,… ,x7 in Figure 6.
In some experiments the fitness was simply determined by
an Euclidian distance between the candidate circuit
response and the target response.

The evolution was simulated on a Caltech supercomputer
(HP-Exemplar), using the Evolutionary Design Tool.
Successful evolution was demonstrated on multiple runs
with populations between 50 and 512, evolving for 50 or
100 generations. The execution time depends on the above
variables and on the number of processors used (usually 64
out of the 256 available), averaging around 20 minutes (the
same evolutions took about 2 days on a SUN SPARC 10).
In some runs the solution circuit shown in Figure 3
(human-designed) was rediscovered by evolution.

Figure 6. Parameters used for the specification of the
fitness function. Fitness = f(x1,… ,x7)

Besides rediscovering a human-designed solution,
simulated evolution leads to several circuits that are
unusual from the perspective of current design practice,
which were facilitated by the characteristics of the
switches. While those observed so far were, in fact,
mutants (2-4 bits away) of the same solution humans
would design, it is expected that quite different solutions
can be obtained. Even if this were not the case, mutants
increase the number of valid solutions, and ease the search
for a solution.
 Examples of solutions found include the circuits
illustrated in Figure 7, which produce the first two
responses in Figure 8; some other responses from the same
generation are illustrated in Figure 8 for comparison. It is
interesting to analyze in more detail the unusual solutions
found by evolution. Circuits like those illustrated in Figure
7 resulting from evolutionary synthesis are very similar
(under certain test conditions) to that of the circuit shown
in Figure 3. Thicker dotted lines show connections that
existed in the circuit in Figure 3, but are missing in the
circuits in Figure 7. As one can see these circuits are
outside normal design practices, e.g., the transistors P2, P4
and N8 on the left circuit in Figure 7 have floating gates.
The reality is that the switches have a big, but finite,
resistance in the OFF state (~MOhms or GOhms) and a
non-zero resistance/impedance in the ON state (~ tens of
Ohms). An immediate observation is that while the effects
of non-perfect switches may be negligible in a first
approximation for many digital circuits, such effects may
fundamentally affect analog programmable circuits.

Figure 7. Circuits obtained by evolution; their design is
unusual for common practice

Figure 8. Best circuit responses in a simulated evolution

4.2 Evolution using an annealing effect on gray-
scale switch conductance: morphing through
fuzzy topologies

Two effects are explored in this section: the use of gray-
level switches (with controllable conductance) and an
annealing-like effect introduced to control switch
conductance during evolution. A topology with gray-level
switches is named here a fuzzy topology, because it blurs
the borders between distinctive circuit topologies: the
resulting circuits belong only to certain degrees to fixed,
standard topologies in which two components are either
connected or not. This diffuse, fuzzy topology resembles
having many seeding topologies simultaneously co-
existing, with superimposing effects, the role of evolution
being to isolate the most promising topology. In a sense,
evaluation of a fuzzy topology is equivalent to
simultaneous concurrent evaluation of several
superimposed circuit configurations.

Instead of being only ON/OFF, the switches were
considered as having a Low/High resistance (Low for ON
state). The binary genetic code would thus specify if the
switch is Low or High, but the numerical meaning of this
qualitative code would change gradually as a function of a
temperature-like parameter. Initially the temperature is
high, and Low and High switch status have values close to
each other (2M for Low, 20M for High). Gradually the
temperature goes down and the switch resistance polarizes
to the extremes (10s of Ohms for Low and 10s of GOhms
for High). The number of generations (100 in most runs)

V+

V-

Iout

Rload

Vin

V+

V-

Iout

Rload

Vin

was chosen to ensure some quasi-static behavior (the
response of the same best individuals from older
generation differed in the newer generation because the
circuit had different resistance for switches). The
annealing effect induces a modification in the circuit to be
evolved rather than a modification in the fitness function
or in a parameter of the search algorithm directly (e.g. the
mutation rate). This technique, which we refer to as
“morphing through fuzzy topologies” was evaluated in
conjunction with the fitness function from Figure 6, which
considered shape information. The technique proved about
one order of magnitude more efficient than the search with
binary switches. Promising individuals (with higher
fitness) have shown-up much earlier in the search. This is
probably because of the richer set of effects due to the
active contribution of all switch transistors (not only for
signal passing), but also because through the gray-switches
signals get to the output test/probe points (albeit
attenuated) even through “closed” switches along the path.

Many solutions were actually observed while running
through this “annealing”. If the goal is to design a
blueprint “binary” topology (a wire connecting two
components either exists or does not) the annealing
technique could be used as a catalyst to accelerate
evolution. If on the other hand evolution takes place on
hardware that supports gray-level switches, then the degree
of opening of the switches could be an extra degree of
freedom for the problem, enabling an increased number of
solutions. It is possible that these solutions are more
sensitive (to various drifts, etc.) than solutions with binary
switches.

5 Evolution on PTA chips

5.1 Evolution of a Gaussian circuit on a single PTA
and on cascaded PTAs

The same evolutionary experiment, aiming at the
synthesis of a DC circuit with a Gaussian response, was
performed in hardware on the PTA chips. Four chips were
programmed in parallel with bit-string configurations
corresponding to four individuals of a population of 1000;
then, the next four were programmed, and so on until all
1000 in one generation were tested. Evolution led to
“Gaussian” circuit solutions within 20-30 generations. The
current speed of evaluation is 1000 circuits in 8.25 seconds
using the four PTA chips in parallel; another order of
magnitude speed-up is expected when some existing data
acquisition bottlenecks will be solved.

An example of GA parameters in one of the runs is:
Population: 1000, Chromosome size: 24 bits for 1 PTA,
and 52 to 88 bits for 2 PTAs (the number depends on

interconnection schemes), Evaluation samples: 30,
Mutation rate: 4%, Crossover rate: 70%, Tournament
Selection: 20 individuals, Elit Strategy: 9% population
size (88 individuals), Fitness Function: Square Root Mean
Error.
 The response of four mutants is illustrated in the screen
capture shown in Figure 9 (LabView display of the signals
captured by the data acquisition boards). Notice the
“mutations” in the genetic code of the solutions obtained
by evolution (vertical chromosomes R24 to R1 reading
from top to bottom, corresponding to switches S24 to S1 in
Figure 2) compared with the human-designed circuit.

Figure 9. The “Gaussian” response of four “mutants”
and their “genetic code” compared to the code of a
human-designed circuit

5.2 Evolution of an inverter

The PTA should allow evolutionary synthesis of a variety
of a variety of analog and digital circuits. The current
setup allowed only one variable inputs, therefore only the
evolution of an inverter was attempted. The characteristic
of the evolved circuit for the inverter is shown in Figure
10, and is compared with the target response.

Figure 10. The characteristic of an evolved inverter

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Vin

V
ou

t

Target Characteristic

Characteristic of
Evolved Circuit

6 Lessons learned

6.1 Limitation of the software models

An interesting observation was that, other than the
“correct” human-designed solution rediscovered by
evolution, the solutions evolved on the PTA chip were
different than those evolved in simulations. (At least the
few of them that were tested; additional circuit solutions
may exist that lead to the same response both in the SPICE
simulation and programmed on the chip). It would thus
appear that different effects are exploited to lead to
solutions in the model and in the silicon implementation.
More precisely, the circuit solutions evolved in simulations
(with SPICE resistive models for ON/OFF switches) did
not prove to be solutions when programmed on the PTA
chip, and vice-versa.

The configuration solutions that evolved directly on the
PTA chip (e.g. those in Figure 9) did not produce a
Gaussian output when simulated in SPICE. (Further
experiments using more accurate models of the PTA
silicon implementation are in progress). Thus, it appears
justifiable to express reservation on the validity of a
solution obtained by “extrinsic” evolution of analog
circuits until it is verified in hardware (at least for
particular PTA discussed here and with the limited
accuracy model used).

6.2 Effects of switches

Switches were implemented with transistors, whose
switching characteristic differs from that of an ideal switch
(zero resistance/impedance when ON, infinite when OFF).
However, instead of being a drawback, the effects of non-
perfect binary switches appear to be exploitable in favor of
evolution. The OFF state is in fact a high-impedance
connection which still allows leakage currents that can
affect the CMOS circuit behavior. The effect of partly
opened switches (variable resistance) leads to an extremely
rich set of behaviors, including solutions to the target
problem. Transistors that operate like partly open switches
become active components. Thus it is more suitable to look
at the circuit as having 32 transistors than 8 transistors
interconnected by 24 switches.

One should mention here that the richer set of behaviors
possible using transistors as variable resistance elements
rather than switches makes the testability problem harder.
However the architecture has an intrinsic higher degree of
fault-tolerance.

6.3 Speed-up by evaluations in hardware

Hardware evaluation can produce a speed-up, especially
when one simulates large, complex analog circuits, and the
circuit response is rapid. One aspect that can however be
easily overlooked is the frequency of operation for which a
certain circuit is designed. For example, the DC circuit
evolved in Section 3 was evaluated obtaining results of DC
SPICE analysis (which in principle can be accelerated by
more powerful simulation platforms). There are however
limitations to increasing the speed of configuration and test
in hardware. For example, the output of the Gaussian
circuit on the PTA started attenuation when the input ramp
signals were exceeding 1kHz. Thus, no more than 1000
circuits per second (of desired low frequency response)
could be reliably evaluated. Even though some artifacts of
the particular PTA design and load choice may be
involved, it appears natural that evaluating the circuits at a
different frequency than that of intended functioning may
introduce errors. Evaluation in parallel is an alternative
speed-up technique, and at least in the experiments with
the PTA chips no significant differences were noted
between the implementation of the same circuit on
different chips.

6.4 Effects of fitness function and algorithm
characteristics

The use of the problem-oriented fitness function (Figure 6)
combined with a mechanism for enforcing diversity in the
population lead to evolutions an order of magnitude faster
than the use of fitness defined as Euclidian distance and
parameters for the GA illustrated in Section 4. Future
research should explore how problem-specific fitness
functions can be automatically determined from user’s
desired characteristic.

7 Related work

Evolution of circuits reconfigurable at transistor level (in
particular CMOS) was proposed and demonstrated for
parameter optimization in [11]. Evolution at transistor
level became more recently one of the focuses at Sussex
University, in particular reflected in the work of Layzell
[12]. Our focus on CMOS has some important
consequences including the existence of the effects
presented in this paper as associated with the OFF
switches. The small leakage current through OFF switches
is sufficient for CMOS but does not affect bipolar
transistors, hence some mutant solutions appear only in
CMOS for the described topology.

8 Conclusions

Automatic synthesis/self-configuration of an analog and
of a digital circuit were demonstrated on an experimental
CMOS chip implementing a PTA architecture proposed as
reconfigurable hardware platform for evolutionary
synthesis experiments. Comparative software and
hardware evolutionary experiments indicate that only
evolution in hardware guarantees a valid solution to the
evolutionary synthesis. Solutions evolved on the chip
proved robust when transferred to other chips from the
same fabrication lot. Controlling the resistance of
transistors rather than using them as binary ON/OFF
switches were shown to improve circuit evolvability.

Acknowledgments

The research described in this paper was performed at
the Center for Integrated Space Microsystems, Jet
Propulsion Laboratory, California Institute of Technology
and was sponsored by the National Aeronautics and Space
Administration.

References

 [1] J. Koza, F.H. Bennett, D. Andre, and M.A Keane,
“Automated WYWIWYG design of both the topology and
component values of analog electrical circuits using genetic
programming”, Proceedings of Genetic Programming
Conference, Stanford, CA , pp. 28-31, 1996

[2] J. Lohn, J. and S. Colombano, “Automated Analog Circuit
Synthesis using a linear representation”, M. Sipper, D. Mange
and A. Perez-Uribe (Eds.) Evolvable Systems: From Biology to
Hardware, Springer-Verlag Lecture Notes in Computer Science
Berlin 1998, pp. 125-133

[3] A. Thompson, “An evolved circuit, intrinsic in silicon,
entwined in physics”. In International Conference on Evolvable
Systems. Springer-Verlag Lecture Notes in Computer Science,
1996, pp. 390-405.

[4] E. Sanchez and M. Tomassini (Eds.) Towards Evolvable
Hardware, LNCS 1062, Springer-Verlag, 1996

[5] T. Higuchi, M. Iwata, and W. Liu (Eds.) Evolvable
Systems: From Biology To Hardware, Proc. of the First
International Conference, ICES 96, Tsukuba, Japan, Springer-
Verlag Lecture Notes in Computer Science, 1997.

[6] M. Sipper, D. Mange, A. Perez-Uribe (Eds.) Evolvable
Systems: From Biology To Hardware, Proc. of the Second

International Conference, ICES 98, Lausanne, Switzerland,
Springer-Verlag Lecture Notes in Computer Science, 1998.

[7] J. R. Koza, F. H. Bennett III,, D. Andre and M. A. Keane,
Genetic Programming III – Darwinian Invention and Problem
Solving, Morgan Kaufman, San Francisco, 1999

[8] E. Vitoz, Analog VLSI Processing: Why, Where and How,
Journal of VLSI Processing, Kluwer, 1993

 [9] Stoica, A. On hardware evolvability and levels of
granularity. Proc. of the International Conference “Intelligent
Systems and Semiotics 97: A Learning Perspective, NIST,
Gaithersburg, MD, Sept. 22-25, 1997

 [10] Stoica, A. Klimeck, G. Salazar-Lazaro, C. Keymeulen, D.
and Thakoor, A. Evolutionary design of electronic devices and
circuits, Proc. of the 1999 Congress on Evolutionary
Computation, Washington, DC, July 6-9, 1999

[11] Stoica, A. Toward evolvable hardware chips: experiments
with a programmable transistor array. Proceedings of 7th

International Conference on Microelectronics for Neural, Fuzzy
and Bio-Inspired Systems, Granada, Spain, April 7-9, IEEE
Comp Sci. Press, 1999.

[12] Layzell, P. “ A New Research tool for Intrinsic Hardware
Evolution” , ICES’98, Lausanne, Switzerland, 1998

.

