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ABSTRACT

In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we present non-
ideal two-dimensional magnetohydrodynamic simulations of the nonlinear evolution of MRI in the experimental
geometry. The simulations adopt initially uniform vertical magnetic fields, conducting radial boundaries, and pe-
riodic vertical boundary conditions. No-slip conditions are imposed at the cylinders. Our linear growth rates com-
pare well with existing local and global linear analyses. The MRI saturates nonlinearly with horizontal magnetic
fields comparable to the initial axial field. The rate of angular momentum transport increases modestly but sig-
nificantly over the initial state. For modest fluid and magnetic Reynolds numbers Re;Rem � 102 103, the final state
is laminar reduced mean shear except near the radial boundaries, and with poloidal circulation scaling as the square
root of resistivity, in partial agreement with the analysis of Knobloch and Julien. A sequence of simulations at
Rem ¼ 20 and 102 P Re P 104:4 enables extrapolation to the experimental regime (Rem � 20, Re � 107), albeit
with unrealistic boundary conditions. MRI should increase the experimentally measured torque substantially over its
initial purely hydrodynamic value.

Subject headings: accretion, accretion disks — instabilities — methods: numerical — MHD

1. INTRODUCTION

Rapid angularmomentum transport in accretion disks has been
a long-standing astrophysical puzzle. The molecular viscosity of
astrophysical gases and plasmas is completely inadequate to ex-
plain observationally inferred accretion rates, so a turbulent vis-
cosity is required. Recent theoretical work (Pringle 1981; Balbus
& Hawley 1991, 1998; Hawley & Balbus 1991) indicates that
purely hydrodynamic instabilities are absent or ineffective but
that magnetorotational instabilities (MRIs) are robust and sup-
port vigorous turbulence in electrically conducting disks.Although
originally discovered by Velikhov (1959) and Chandrasekhar
(1960), MRI did not come to the attention of the astrophysical
community until rediscovered by Balbus & Hawley (1991) and
verified numerically (Hawley et al. 1995; Brandenburg et al.
1995; Matsumoto & Tajima 1995). It is now believed that MRIs
drive accretion in disks ranging from quasars andX-ray binaries
to cataclysmic variables and perhaps even protoplanetary disks
(Balbus & Hawley 1998). Some astrophysicists, however, argue
from laboratory evidence that purely hydrodynamic turbulence
may account for observed accretion rates, especially in cool,
poorly conducting disks where MRI may not operate (Dubrulle
1993; Richard & Zahn 1999; Duschl et al. 2000; Hure et al.
2001).

Although its existence and importance are now accepted by
most astrophysicists, MRI has yet to be clearly demonstrated in
the laboratory, notwithstanding the claims of Sisan et al. (2004),
whose experiment proceeded from a background state that was
not in MHD equilibrium. Recently (Ji et al. 2001; Goodman &
Ji 2002), we have therefore proposed an experimental study of

MRI using a magnetized Couette flow: that is, a conducting liq-
uid (gallium) bounded by concentric differentially rotating cyl-
inders and subject to an axial magnetic field. The radii of the
cylinders are r1 < r2, as shown in Figure 1; their angular veloc-
ities,�1 and�2, have the same sign in all cases of interest to us.
If the cylinders were infinitely long—very easy to assume the-
oretically, but rather more difficult to build experimentally—the
steady state solution would be ideal Taylor-Couette flow:

�(r)¼ aþ b

r 2
; ð1Þ

where a¼ (�2r
2
2 ��1r

2
1 )/(r
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2
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2
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r 21 ). In the unmagnetized and inviscid limit, such a flow is linearly
axisymmetric stable if and only if the specific angular momen-
tum increases outward: that is, (�1r

2
1 )

2 < (�2r
2
2 )

2, or equiva-
lently, ab > 0. Avertical magnetic fieldmay destabilize the flow,
however, provided that the angular velocity decreases outward,
�2

2 < � 2
1 ; in ideal MHD, instability occurs at arbitrarily weak

field strengths (Balbus & Hawley 1991). The challenge for ex-
perimentation, however, is that liquid metal flows are very far
from ideal on laboratory scales. While the fluid Reynolds num-
ber Re � �1r1(r2 � r1)/� can be large, the corresponding mag-
netic Reynolds number

Rem � �1r1(r2 � r1)

�
ð2Þ

is modest or small because the magnetic Prandtl number Prm �
�/� � 10�6 in liquid metals. StandardMRImodes will not grow
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unless both the rotation period and the Alfvén crossing time are
shorter than the timescale for magnetic diffusion. This requires
both Rem k 1 and S k 1, where

S � VA(r2 � r1)

�
ð3Þ

is the Lundquist number and VA ¼ B/ 4��ð Þ1/2 is the Alfvén speed.
Therefore, Re k 106 and fields of several kilogauss must be
achieved in typical experimental geometries.

Recently, it has been discovered that MRI modes may grow
at much reduced Rem and S in the presence of a helical back-
ground field, a current-free combination of axial and toroidal
field (Hollerbach&Rüdiger 2005; Rüdiger et al. 2005).We have
investigated these helicalMRImodes.Whilewe confirm the quan-
titative results given by the authors just cited for the onset of in-
stability, we have uncovered other properties of the new modes
that cast doubt on both their experimental realizability and their
relevance to astrophysical disks. To limit the length of the pre-
sent paper, we present results for purely axial background fields
only. A paper on helical MRI is in preparation.

One may question the relevance of experimental to astro-
physical MRI, especially its nonlinear phases. In accretion disks,
differential rotation arises from radial force balance between the
gravitational attraction of the accreting body and centrifugal force.
Thermal and magnetic energies are small compared to orbital en-
ergies, at least if the disk is vertically thin compared to its radius.
Consequently, nonlinear saturation of MRI cannot occur by large-
scale changes in rotation profile. In experiments, however, differ-
ential rotation is imposed by viscous or other weak forces, and the
incompressibility of the fluid and its confinement by a container
allow radial force balance for arbitrary�(r). Thus, saturation may
occur by reduction of differential rotation, which is the source of
free energy for the instability. In this respect, MRI experiments
and the simulations of this paper may have closer astrophysical
counterparts among differentially rotating stars, where rotation is
subsonic and boundaries are nearly stress-free (Balbus&Hawley
1994; Menou et al. 2004). Both in the laboratory and in astro-
physics, however, nonlinear MRI is expected to enhance the ra-
dial transport of angular momentum. Quantifying the enhanced

transport in a Couette flow is a primary goal of the Princeton
MRI experiment and of the present paper.

Another stated goal of the Princeton experiment is to validate
astrophysical MHD codes in a laboratory setting. Probably the
most widely used astrophysical MHD code is ZEUS (Stone &
Norman 1992a, 1992b), which exists in several variants. The sim-
ulations of this paper use ZEUS-2D. Like most other astro-
physical MHD codes, ZEUS-2D was designed for compressible,
ideal-MHD flow with simple boundary conditions: outflow, in-
flow, reflecting—but not no-slip. ZEUS would not be the natural
choice of a computational fluid-dynamicist interested in Couette
flow for its own sake. Nevertheless, after modifying ZEUS-2D
to incorporate resistivity, viscosity, and no-slip boundary condi-
tions, we find it to be a robust and flexible tool for the subsonic
flows of interest to us. It reproduces the growth rates predicted
for incompressible flow (x 3) and agrees with hydrodynamic lab-
oratory data (Burin et al. 2006); MHD data are not yet available.
Of course, all real flows are actually compressible; in an ideal gas
of fixed total volume, density changes generally scale�M 2 when
the Mach number VCow/Vsound < 1. Incompressibility is an ideal-
ization in the limitM ! 0. We have used an isothermal equation
of state in ZEUS with a sound speed chosen so that the maximum
of M � 1

4
and obtain quantitative agreement with incompressible

codes at the few-percent level (x 2).
Most of the parameters of the simulations in xx 3 and 4 are

chosen to match those of the experiment. We adopt the same cyl-
inder radii (Fig. 1). The experimental rotation rates of both cyl-
inders (and of the endcaps) are separately adjustable, as is the
axial magnetic field. For these simulations, we adopt fixed values
within the achievable range: �1 ¼ 4000 rpm, �2 ¼ 533 rpm,
and Bz0 ¼ 5000 G. We set the density of the fluid to that of
gallium, � ¼ 6 g cm�3.

Our simulations depart from experimental reality in two
important respects: Reynolds number and vertical boundary con-
ditions. Computations at Re k 106 are out of reach of any present-
day code and computer, at least in three dimensions; Re � 106

might just be achievable in axisymmetry, but higher Re flows are
more likely to be three-dimensional, so an axisymmetric simula-
tion at such a large Re is of doubtful relevance. (The same ob-
jection might be leveled at all of our simulations for Re3 103.
Those simulations are nevertheless useful for establishing scaling
relations, even if the applicability of the relations to real three-
dimensional flows is open to question.)We use an artificially large
kinematic viscosity so that Re ¼ 102 104:4, whereas for the true
kinematic viscosity of gallium (� ’ 3 ; 10�3 cm2 s�1), Re �
107 at the dimensions and rotation rates cited above. In defense
of this approximation, we point to the fact that extrapolations
of Ekman circulation rates and rotation profiles simulated at
Re < 104 agree well with measurements taken at Re ¼ 106 both
in a prototype experiment (Kageyama et al. 2004) and in the
present apparatus (Burin et al. 2006). We are able to repro-
duce the experimental values of the dimensionless parameters
based on resistivity: Rem � 20, S � 4; we also report simula-
tions at Rem � 102 104. (The actual diffusivity of gallium is
� ’ 2 ; 103 cm2 s�1.)

Except for hydrodynamic test simulations carried out to com-
pare with incompressible results and laboratory data (x 2), we
adopt vertically periodic boundary conditions for all fluid var-
iables, with a periodicity length Lz ¼ 2h, where h ¼ 27:9 cm is
the actual height of the experimental flow. Such boundary
conditions are physically unrealistic, but almost all published
linear analyses of MRI in Couette flows have adopted them be-
cause they permit a complete separation of variables (Ji et al.
2001; Goodman & Ji 2002; Noguchi et al. 2002; Rüdiger &

Fig. 1.—Geometry of Taylor-Couette flow. In the Princeton MRI experiment,
r1 ¼ 7:1 cm, r2 ¼ 20:3 cm, and h ¼ 27:9 cm.
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Shalybkov 2002; Rüdiger et al. 2003); an exception is Rüdiger
& Zhang (2001). Thus, by adopting periodic vertical bound-
aries, we are able to test our code against well-established linear
growth rates and to explore—apparently for the first time in
Couette geometry—the transition from linear growth to nonlinear
saturation. The imposition of no-slip conditions at finite endcaps
introduces important complications to the basic state, including
Ekman circulation and Stewartson layers (Hollerbach&Fournier
2004), which we are currently studying, especially as regards
their modification by the axial magnetic field. But the experi-
mental apparatus has been designed to minimize these complica-
tions (e.g., by the use of independently controlled split endcaps)
in order to approximate the idealized Couette flows presented
here, whose nonlinear development already presents features of
interest. This paper is the first in a series; later papers will address
the effects of finite endcaps on magnetized flow, helical MRI in-
stabilities, etc.

2. MODIFICATIONS TO ZEUS-2D AND CODE TESTS

ZEUS-2D offers the option of Cartesian (x; y), spherical (R; �),
or cylindrical (z; r) coordinates. We use (z; r). Although all quan-
tities are assumed independent of the azimuth ’, the azimuthal
components of velocity (v’) and magnetic field (B’) are rep-
resented. We have implemented vertically periodic boundary
conditions (period ¼ 2h) for all variables and conducting radial
boundary conditions for the magnetic field. Impenetrable, no-
slip radial boundaries are imposed on the velocities. Viscosity
and resistivity have been added to the code. In order to conserve
angular momentum precisely, we cast the azimuthal component
of the Navier-Stokes equation in conservative form:

@L

@t
þ @

@z
VzLþ Fzð Þ þ 1

r

@

@r
rVrLþ rFrð Þ ¼ 0; ð4Þ

in which L ¼ rV’, and Fr and Fz are the viscous angular mo-
mentum fluxes per unit mass,

Fz ¼ ��
@L

@z
; Fr ¼ ��r 2

@

@r

L

r 2

� �
: ð5Þ

In the spirit of ZEUS, the viscous part of equation (4) is im-
plemented as part of the ‘‘source’’ substep. In accord with the
constrained transport algorithm (Evans & Hawley 1988), which
preserves:=B ¼ 0, resistivity is implemented by an ohmic term
added to the electromotive force, which becomes

E ¼ V <B� �:<B: ð6Þ

2.1. Code Tests 1: Wendl’s Low-Re Solution

At ReT1 and Rem ¼ 0, poloidal flow is negligible and the
toroidal flow is steady. The value of V’ satisfies

� 9 2 � 1

r 2

� �
V’ ¼ 0: ð7Þ

Wendl (1999) has given the analytic solution of this equation for
no-slip vertical boundaries corotating with the outer cylinder.
This serves as one benchmark for the viscous part of our code;
note that the vertical boundary conditions differ from those used
in the simulations of xx 3 and 4.
Figure 2 compares results from ZEUS-2D with the analytical

result. The maximum relative error is less than 3%.We have also
calculated the viscous torque across the mean cylinder [r ¼ (r1þ
r2)/2]. Wendl’s solution predicts �1:5004 ; 109 g cm2 s�2, and
our simulations yield �1:5028 ; 109 g cm2 s�2.

2.2. Code Tests 2: Magnetic Diffusion

If the fluid is constrained to be at rest, then the toroidal in-
duction equation becomes

@B’

@t
¼ �

@ 2B’

@r 2
þ 1

r

@B’

@r
� B’

r 2
þ @ 2B’

@z2

� �
: ð8Þ

An exact solution compatible with our boundary conditions is

B ¼ êzB
0
z þ ê’

B0
’

r
cos (kz) exp (��k 2t); ð9Þ

where k is the wavenumber and B0
z and B0

r are constants. A
comparison of the theoretical and simulated results shows that
the error scales quadratically with cell size, as expected for our
second-order difference scheme (Table 1).

2.3. Comparison with an Incompressible Code

ZEUS-2D is a compressible code. However, our experimen-
tal fluid, gallium, is nearly incompressible at flow speeds of in-
terest, which are much less than its sound speed, 2.7 km s�1. As
mentioned in x 1, we can approximate incompressible flow byFig. 2.—Radial profile of the azimuthal velocity for Re ¼ 1.

TABLE 1

Magnetic Diffusion Test

Rem Resolution

Decay Rate

(s�1)

Exact Rate

(s�1)

Error

(%)

400................................ 100 ; 100 382.52642 392.26048 2.482

50 ; 50 352.76963 391.87454 9.979

100................................ 100 ; 100 1533.6460 1569.0419 2.256

50 ; 50 1420.4078 1567.4982 9.384
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using a subsonic Mach number, M < 1. However, since ZEUS
is explicit,MT1 requires a very small time step to satisfy the
CFL stability criterion. As a compromise, we have usedM ¼ 1

4
(based on the inner cylinder) throughout all the simulations
presented in this paper.We assume an isothermal equation of state
to avoid increases inM by viscous and resistive heating; the non-
linear compressibility and thermodynamic properties of the ac-
tual liquid are in any case very different from those of ideal gases,
for which ZEUS was written. Figure 3 compares results obtained
from ZEUS-2D with simulations performed by Kageyama et al.
(2004) using their incompressible Navier-Stokes code.

3. LINEAR MRI SIMULATIONS

In the linear regime, MRI has been extensively studied both lo-
cally and globally (Ji et al. 2001; Goodman & Ji 2002; Rüdiger
& Zhang 2001; Noguchi et al. 2002; Rüdiger & Shalybkov 2002;
Rüdiger et al. 2003). We have used these linear results to bench-
mark our code.

In the linear analyses cited above, the system is assumed to be
vertically periodic with periodicity length 2h, twice the height
of the cylinders. In cylindrical coordinates, the equilibrium states
are B0 ¼ B0êz and V0 ¼ r�ê’. WKB methods describe the sta-

bility of this system very well even on the largest scales (Ji et al.
2001; Goodman & Ji 2002). Linear modes are proportional to
exp (�t � ikzz) f (krr), where � is the growth rate and f (x) is an
approximately sinusoidal radial function, at least outside bound-
ary layers, whose zeros are spaced by�x � �. Thewavenumbers
kz ¼ n�/h and kr � m�/(r2 � r1), where n and m are positive
integers. We consider only the lowest value of kr (m ¼ 1) but
allow n � 1. The initial perturbation is set to an approximate
eigenmode appropriate for conducting boundary conditions:

�Bz ¼ Asin kzz
r1þ r2� 2r

r
; �Br¼ kzAcos kzz

(r2 � r)(r � r1)

r
;

�B’ ¼ 0; �Vz ¼ B cos kzz
r1þ r2� 2r

r
;

�Vr ¼ kzB sin kzz
(r2 � r)(r � r1)

r
; �V’ ¼ 0: ð10Þ

Evidently, the fast-growing mode dominates the simulations
no matter which n is used initially. Figure 4 compares the MRI

Fig. 3.—Comparison with incompressible code at Re ¼ 1600: (a) contours
of toroidal velocity from Kageyama et al. (2004); (b) results from ZEUS-2D
with M ¼ 1

4
.

Fig. 4.—MRI growth rate vs. Rem for conducting radial boundaries. As-
terisks: Simulations. Curve: Global linear analysis (Goodman & Ji 2002) with
Re ¼ 25;600.

TABLE 2

Growth Rates from Semianalytic Linear Analysis versus Simulation

Rem Re n

Prediction

(s�1)

Simulation

(s�1)

400.............................. 400 1 41.67 77.66

2 72.71 77.66

3 77.69a 77.66

4 56.88 77.66

5 0.283 77.66

20................................ 1 1 23.31 30.83

2 32.43a 30.83

3 23.73 30.83

4 6.905 30.83

a Largest growth rate predicted by the linear analysis.

Fig. 5.—Angular velocity profile before and after saturation at several heights,
for Re ¼ Rem ¼ 400. ‘‘Jet’’ is centered at z ¼ 0 (squares).
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growth rate obtained from the simulations with those predicted
by global linear analysis (Goodman & Ji 2002) as a function of
magnetic Reynolds number.

The radially global, vertically periodic linear analysis of
Goodman & Ji (2002) found that the linear eigenmodes have
boundary layers that are sensitive to the dissipation coefficients
but that the growth rates agree reasonably well with WKB esti-
mates except near marginal stability. A comparison of the growth
rates found by this analysis with those obtained from our sim-
ulations is given in Table 2. In the context of the simulations,
‘‘Re ¼ 1’’ means that the explicit viscosity parameter of the
code was set to zero, but this does not guarantee inviscid behav-
ior, since there is generally some diffusion of angular momentum
caused by finite grid resolution. Nevertheless, since the magnetic
Reynolds number of the experiment will be about 20 and since
Re/Rem � 106, these entries of the table probably most closely
approximate the degree of dissipation in the gallium experiment.
In Table 2, the largest growth rate predicted by the linear analysis
has been marked with a footnote. The simulations naturally tend
to be dominated by the fastest numerical mode—that is, the fast-
est eigenmode of the finite-difference equations, which need not
map smoothly into the continuum limit. Fortunately, as asserted

by the table, the fastest growth occurs at the same vertical har-
monic n in the simulations as in the linear analysis.

4. NONLINEAR SATURATION

As noted in x 1, instabilities cannot easily modify the differ-
ential rotation of accretion disks because internal and magnetic
energies are small compared to gravitational ones, and MRI is
believed to saturate by turbulent reconnection (Fleming et al.
2000; Sano & Inutsuka 2001). In Couette flow, however, the
energetics do not preclude large changes in the rotation profile.
As shown by Figure 5, the differential rotation of the final state
is reduced somewhat compared to the initial state in the interior
of the flow, and steepened near the inner cylinder.

4.1. Structure of the Final State

For moderate dissipation (Re;Rem P 103), the final state is
steady. Typical flow and field patterns are shown in Figure 6.
The poloidal flux and stream functions are defined so that

VP � Vr er þ Vzez ¼ r�1e’ <:�;

BP � Br er þ Bzez ¼ r�1e’ <:�; ð11Þ

Fig. 6.—Contour plots of final-state velocities and fields. Re ¼ 400, Rem ¼ 400. (a) Poloidal flux function � (G cm2). (b) Poloidal stream function � (cm2 s�1).
(c) Toroidal field B’ (G). (d ) Angular velocity � � r�1V’ (rad s�1).
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which imply :=VP ¼ 0 and :=BP ¼ 0. [Our velocity field is
slightly compressible, so eq. (11) does not quite capture the full
velocity field. Nevertheless, the error is small, and� is well de-
fined by 92(�e’/r) ¼ :<VP with periodic boundary condi-
tions in z and @�/@z ¼ 0 on the cylinders.]

The most striking feature is the outflowing ‘‘jet’’ centered
near z ¼ 0 in Figure 6. The contrast in flow speed between the
jet and its surroundings is shown more clearly in Figure 7. Fig-
ure 6 also shows that the horizontal magnetic field changes
rapidly across the jet, which therefore approximates a current
sheet.

The radial flow speed in the jet scales with Rem as (Fig. 8)

Vjet / Re�0:53
m : ð12Þ

We find that the radial speed outside the jet scales similarly,

Vext / Re�0:56
m / �0:56: ð13Þ

Mass conservation demands thatVjetWjet ¼ Vext(2h�Wjet), where
Wjet is the effective width of the jet. Thus, we can conclude that
this width is independent of magnetic Reynolds number:

Wjet / Re0m: ð14Þ

Additional support for this conclusion comes from the nearly
equal scaling ofVr and�with Rem (Fig. 8), which indicates that
the spatial scales in the velocity field are asymptotically inde-
pendent of Rem. The toroidal flow perturbation and toroidal field
are comparable to the rotation speed and initial background field,
respectively:

1:18 Pmax
B’

Bz0

P1:52; 0:28 Pmax
�V’

r1�1

P 0:56: ð15Þ

We emphasize that the scalings (12)–(15) have been estab-
lished for a limited range of flow parameters, 102PRe;RemP
104:4. The jet is less well defined at lower Rem, especially in the

Fig. 7.—Radial velocity vs. z for Re ¼ 400, at radii 8.42 cm ( plus signs), 10.27 cm (asterisks), 11.98 cm (crosses), 13.70 cm (triangles), 16.87 cm (diamonds), and
18.98 cm (squares). For clarity, only half the full vertical period (56 cm) is shown. (a) Rem ¼ 400; (b) Rem ¼ 6400.

Fig. 8.—Maximum radial speed in the jet (a) and maximum of poloidal stream function (b) vs. magnetic Reynolds number, for Re ¼ 400. Power-law fits are shown
as dashed lines with slopes (a) �0.53 (eq. [12]) and (b) �0.57.
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magnetic field. Extrapolation of these scalings to laboratory
Reynolds numbers (Re k106) is risky, and indeed our simula-
tions suggest that the final states are unsteady at high Re and/or
high Rem (Fig. 9).

4.2. Angular Momentum Transport

Figure 10 displays the radial profiles of the advective, viscous,
and magnetic torques integrated over cylinders coaxial with the
boundaries:

�advective(r)¼
Z h

�h

dz �r 2vrv’; ð16Þ

�magnetic(r)¼
Z h

�h

dz � r 2BrB’

4�

� �
; ð17Þ

�viscous(r)¼
Z h

�h

dz �r 3��
@

@r

v’
r

� �� �
; ð18Þ

�total(r)¼�advective(r)þ �magnetic(r)þ �viscous(r): ð19Þ

The advective and magnetic torques vanish at r1 and r2 be-
cause of the boundary conditions but are important at interme-
diate radii. All components of the torque are positive except near
r2. The total torque is constant with radius, as required in steady
state, but increases from the initial to the final state (Fig. 10).
From Figure 11, we infer the scalings

�Bnal � �init

�init

/ Re0:5Re0m; ð20Þ

at least at Re;Rem k 103. In fact, a better fit to the exponent of
Re for Rem ¼ 20 and Re k 103 would be 0.68 rather than 0.5,
but the exponent seems to decrease at the largest Re, and it is
�0.5 for Rem ¼ 400, sowe take the latter to be the correct asymp-
totic value.
Representative runs are listed in Table 3. Additional runs

have been carried out on coarser grids (smaller Nr, Nz) to check
that the values quoted for the torques are independent of spatial
resolution to at least two significant figures in the laminar cases
(Re;Rem P 103) and to better than 10% in the unsteady cases
where precise averages are difficult to obtain. In the latter cases,
the quoted values in the last two columns have been averaged
over radius but not over time.

4.3. Interpretation of the Final State

The division of the flow into a narrow outflowing jet and a
slower reflux resembles that found by Kageyama et al. (2004) in
their hydrodynamic simulations (see our Fig. 3). In that case,
the jet bordered two Ekman cells driven by the top and bottom
endcaps. In the present case, however, Ekman circulation is not
expected, since the vertical boundaries are periodic, and wemust
look elsewhere for an explanation of the final state.
Knobloch & Julien (2005, hereafter KJ05) have proposed that

axisymmetric MRI may saturate in a laminar flow whose prop-
erties depend on the dissipation coefficients � and �, with a large
change in the mean rotation profile, �(r). Although this mech-
anism of saturation probably cannot apply to thin disks for the
reasons given in x 1, it is consistent with some aspects of the fi-
nal state of our Couette flow simulations: in particular, the scal-
ings (12)–(13) of the poloidal velocities with Rem; and themean

Fig. 9.—Total toroidal magnetic energy vs. time at Re ¼ 400.

Fig. 10.—Plot of z-integrated torques vs. r. Re ¼ 400, Rem ¼ 400. Left, Initial state; right, final state.
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rotation profile does indeed undergo a large reduction in its mean
shear, except near the boundaries (Fig. 5).

One prominent difference between the final states envisaged
by KJ05 and those found here is the axial length scale. KJ05 as-
sumed the final state to have the same periodicity as the fastest
growing linear MRI mode, although they acknowledged that
their theory does not require this. In our case, the linear and non-
linear length scales differ: whereas the fastest linear mode has
three wavelengths over the length of the simulation (Table 2), the
nonlinear state adopts the longest available periodicity length,

namely, that which is imposed by the vertical boundary condi-
tions. Within that length, the flow is divided between the narrow
jet and broad reflux regions. As discussed below, a third and even
narrower reconnection region, whose width scales differently
in Rem from that of the jet itself, exists within the jet. Another
possibly important difference concerns the role of radial bound-
aries. KJ05 simply ignored these, yet our jet clearly originates
at the inner cylinder (Fig. 6). KJ05’s theory predicts that the
poloidal flow should be proportional to Re�1/2, as well as Re�1/2

m ,
yet we find that Vr; jet actually increases with Re, roughly as
Reþ1/2, up to Re � 103, above which it begins to decline and the
flow becomes unsteady.

The jet is probably the part of the flow that corresponds most
closely to the ‘‘fingers’’ envisaged by KJ05. Let us at least try to
understand how the quantities in our jet scale with increasing
Rem at fixed Re, even though it is more relevant to the experi-
ment to increase Re at fixed and modest Rem (for the latter, see
below).

In steady state, the toroidal component of the electric field
vanishes, E’ ¼ 0, because the flux through any circuit around
the axis is constant. Consequently,

½�;��� @�

@r

@�

@z
� @�

@z

@�

@r
¼�r

@ 2

@z2
þ @ 2

@r 2
� 1

r

@

@r

� �
�� �r���:

ð21Þ

The evidence from our simulations is that the peak values of �
and� scale as �1/2 and �0, respectively, in the nonresistive limit
� ! 0, Rem ! 1. The radial velocityVr ¼ r�1@�/@z also scales
as �1/2. In order that the two sides of equation (21) balance, at
least one of the derivatives of � must become singular in the
limit � ! 0. This appears to be the case. In fact, a comparison of
the flux contours in Figures 6a and 12a suggests that a current
sheet develops at the center of the jet. This is more obvious in the
horizontal components of current density, Jr and J’ , whose peak
values we find to scale as /��0:46 � Re1/2m (Fig. 13), and the
maximum toroidal magnetic field near the current sheet scales as

B’ / Re0:18m � Re1=6m : ð22Þ

From these scalings one infers that the width of the current
sheet scales as �1/3. On the other hand, the region defined by

Fig. 11.—Increase of total torque vs. (a) Rem and (b) Re. In (b), dashed lines have slopes of 0.5 (Rem ¼ 400) and 0.675 (Rem ¼ 20).

TABLE 3

Increase of Total Torque versus Re and Rem

Rem Re

Resolution

Nz ; Nr

�init

( kg m2 s�2)

�Bnal

( kg m2 s�2 ) ��/�init

10................. 400 200 ; 50 8.60E2 8.60E2 0.00

20................. 400 200 ; 50 8.60E2 9.02E2 0.05

50................. 400 200 ; 50 8.60E2 1.12E3 0.30

100............... 400 200 ; 50 8.60E2 1.35E3 0.57

200............... 400 200 ; 50 8.60E2 1.50E3 0.74

400............... 400 200 ; 50 8.60E2 1.57E3 0.83

800............... 400 200 ; 50 8.60E2 1.57E3 0.83

1600............. 400 200 ; 50 8.60E2 1.67E3 0.94

3200............. 400 200 ; 50 8.60E2 1.65E3 0.92

6400............. 400 200 ; 50 8.60E2 1.62E3 0.88

12800........... 400 228 ; 50 8.60E2 1.62E3 0.88

400............... 100 200 ; 50 3.44E3 4.45E3 0.44

200 200 ; 50 1.72E3 2.58E3 0.50

400 200 ; 50 8.60E2 1.57E3 0.83

800 200 ; 50 4.30E2 9.70E2 1.26

1600 200 ; 50 2.15E2 6.20E2 1.88

3200 200 ; 50 1.08E2 3.90E2 2.63

6400 200 ; 50 5.38E1 2.46E2 3.58

12800 228 ; 58 2.69E1 1.55E2 4.77

20................. 100 200 ; 50 3.44E3 3.44E3 0.00

200 200 ; 50 1.72E3 1.72E3 0.00

400 200 ; 50 8.60E2 9.02E2 0.05

800 200 ; 50 4.30E2 4.95E2 0.15

1600 200 ; 50 2.15E2 2.76E2 0.28

3200 200 ; 50 1.08E2 1.57E2 0.45

6400 200 ; 50 5.38E1 9.35E1 0.74

12800 228 ; 50 2.69E1 5.75E1 1.14

25600 320 ; 50 1.34E1 3.70E1 1.75
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Fig. 12.—Same as Fig. 6, but for Rem ¼ 6400, Re ¼ 400. Symmetry about z ¼ 0 has not been enforced; the jet forms spontaneously at z � �20, but the whole
pattern has been shifted vertically to ease comparison with Fig. 6.

Fig. 13.—Maximum radial current in the current sheet (a) and maximum of toroidal magnetic field (b) vs. magnetic Reynolds number, for Re ¼ 400. Power-law fits
are shown as dashed lines with slopes (a) 0.46 and (b) 0.18 (eq. [22]).



jBrj, jB’j > jBzj appears to have a width /�0, like that of the
velocity jet. We call this the magnetic ‘‘finger’’ because of its
form in Figure 12.

It is interesting to check whether these scalings are consistent
with the observation that the total torque (radial angular mo-
mentum flux) appears to be asymptotically independent of the
resistivity. As � ! 0, the advective torque /

R
VrV’ dz tends

to zero, since Vr / �1/2 and V’ is presumably bounded by�r�1.
The viscous contribution is always dominant near the cylinders
but is reduced compared to the initial state at intermediate radii
by the reduction in the vertically averaged radial shear (Fig. 10).
Since the total torque is larger in the final than in the initial state,
a significant fraction of it must be magnetic, and this fraction
should be approximately independent of � at sufficiently small �.
If Br � B’ / �x within a vertical layer of width �z � � y, the
torque/

R
BrB’ dz / � 2xþy. Thus, we expect y � �2x. In agree-

ment with this, we have found that x � �1
2
and y � 1

3
in the cur-

rent sheet, while in the finger, x � y � 0.
One notices in Figures 12a and 12d that the angular velocity

is approximately constant along field lines: � ¼ �(�), as re-
quired by Ferraro’s law when the flow is predominantly toroidal
and the resistivity small. There must therefore be an outward
centrifugal force along the lines in the magnetic finger, which,

in combination with the reconnection layer, presumably drives
the residual radial outflow. Viscosity continues to be essential
even as � ! 0 because it is then the only mechanism for com-
municating angular momentum between field lines, and between
the fluid and the cylinders; the distortion of the field enhances
viscous transport by bringing into closer proximity lines with
different angular velocity.

To summarize, in the highly conducting limit Rem ! 1, Re ¼
constant, there appear to be at least three main regions of the
flow: (1) an ‘‘external’’ or ‘‘reflux’’ region in which the magnetic
field is predominantly axial and the velocity predominantly toroi-
dal, but with a small (/�1/2) radial inflow; (2) a ‘‘jet’’ or ‘‘finger’’
of smaller but constant vertical width in which the fields are
mainly horizontal and there is a more rapid but stillO(�1/2) flow
along field lines; and (3) a resistive layer or current sheet at the
center of the jet whose width decreases as �1/3, across which the
horizontal fields change sign.

4.4. Simulations at Small Magnetic Prandtl Number

In the ongoing Princeton MRI experiment, the experiment ma-
terial, liquid gallium, has kinematic viscosity � � 3 ; 10�3 cm2 s�1

and resistivity � � 2 ; 103 cm2 s�1. The typical dimensionless
parameters are Rem � 20 and Re � 107 at the dimensions and

Fig. 14.—Same as Fig. 6, but for Re ¼ 25;600, Rem ¼ 20. The flow is unsteady but closely resembles steady flows at lower Re for this Rem.
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rotation speeds cited above. The magnetic Prandtl number Prm �
Rem/Re � 10�6 is very small. Reliable simulationswithReynolds
number as high as 107 are beyond any present-day computer, and
small Prm presents additional challenges for some codes.

Although our boundary conditions are not those of the exper-
iment, we have carried out simulations at Rem ¼ 20 and much
higher Re in order to explore the changes in the flow due to
these parameters alone. A simulation for Re ¼ 25;600 is shown
in Figures 14 and 15. Although this is still considerably more
viscous than the experimental flow, it is clearly unsteady, like
all of our simulations at Re k 3000. A narrow jet can still be
observed in the poloidal velocities, but the poloidal field is only
weakly perturbed at this low Rem: B’; max � 0:1Bz.

Since the Reynolds number of the experiment is much larger
than that of our simulations, we can estimate the experimental
torques only by extrapolation. Extrapolating according to equa-
tion (20) from the highest Re simulation in Table 3, one would
estimate ��/�init � 35 at Re � 107. There are, however, rea-
sons for caution in accepting this estimate. On the one hand, the
experimental flowmay be three-dimensional and turbulent, which
might result in an even higher torque in the final state. On the
other hand, the viscous torque in the initial state is likely to be
higher than in these simulations because of residual Ekman cir-
culation driven by the split endcaps. Nevertheless, we expect an
easily measurable torque increase in the MRI-unstable regime.

5. CONCLUSIONS

In this paper, we have simulated the linear and nonlinear de-
velopment of magnetorotational instability in a nonideal mag-
netohydrodynamic Taylor-Couette flow. The geometry mimics
an experiment in preparation except in the vertical boundary
conditions, which in these simulations are periodic in the ver-
tical (axial) direction and perfectly conducting at the cylinders;
these simplifications allow direct contact with previous linear
studies.We have also restricted our study to smaller fluidReynolds
number (Re) and extended it to larger magnetic Reynolds num-
ber (Rem) than in the experiment. We find that the time-explicit
compressible MHD code ZEUS-2D, which is widely used by as-
trophysicists for supersonic ideal flows with free boundaries, can
be adapted and applied successfully to Couette systems. MRI

grows from small amplitudes at rates in good agreement with
linear analyses under the same boundary conditions. Concerning
the nonlinear final state that results from saturation of MRI, we
draw the following conclusions:

1. Differential rotation is reduced except near boundaries, as
predicted by Knobloch & Julien (2005).
2. A steady poloidal circulation consisting of a narrow out-

flow ( jet) and broad inflow is established. The width of the jet is
almost independent of resistivity, but it does decrease with in-
creasing Re. The radial speed of the jet /Re�1/2

m .
3. There is a reconnection layer within the jet whose width

appears to decrease /Re�1/3
m .

4. The vertically integrated radial angular momentum flux
depends on viscosity but hardly on resistivity, at least at higher
Rem (eq. [20]).
5. The final state is steady and laminar at Re;RemP103 but

unsteady at larger values of either parameter (Figs. 9 and 15.)
6. The final state contains horizontal fields comparable to the

initial axial field for Remk 400, and about one-tenth as large for
experimentally more realistic values, Rem � 20.

We emphasize that these conclusions are based on axisym-
metric simulations restricted to the range 102 PRe;Rem P 104:4

and that the boundary conditions are not realistic. This paper is
intended as a preliminary exploration of MRI in the idealized
Taylor-Couette geometry that has dominated previous linear anal-
yses. We have not attempted to model many of the complexities
of a realistic flow. In future papers, we will study vertical bound-
ary conditions closer to those of the planned experiment; work
in progress indicates that these may significantly modify the
flow.

The authors would like to thank James Stone for the advice
on the ZEUS code. This work was supported by the US Depart-
ment of Energy, NASA under grants ATP 03-0084-0106 and
APRA 04-0000-0152, and also by the National Science Foun-
dation under grant AST 02-05903.

Fig. 15.—The z-averaged torques as in Fig. 10, but for the state shown in Fig. 14 (Re ¼ 25;600, Rem ¼ 20). The radial variation of the total torque, although slight,
testifies to the unsteadiness of the flow.
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