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FOREWORD 

This Annual Report descr ibes  the work performed by the Chemicals 

and Materials Research Department, Ultrasystems , Inc . under Contract 

NAS2-7981, “Study of Crosslinking and Degradation Mechanisms in  

Model Sealant Candidates”.  The investigations were carried out during 

the period from 15 September 1974 to 22 April 1977 by R. H. Kratzer, 

J. Kaufman, T. I. Ito, J’. H. Nakahara, and K. L. Paciorek, project 

manager. This contract w a s  administered by NASA Ames Research Center 

with Dr. Robert W. Rosser as technical manager. 
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1. SUMMARY 

The a im of this  program was to determine on model compounds which 

type of heterocyclic ring is the m o s t  advantageous for cbring sealants  

based on perfluoroalkylether chains.  The study included the synthesis 

of specifically substituted materials and the evaluation of their stabil i t ies 

in  air, inert atmosphere, water,  and Jet-A fuel  at 235 and 325 C.  

Three heterocyclic ring systems were considered, namely, triazine, 

1,2 , 4- and 1 , 3,4-oxadiazoles. 

0 

The major portion of the triazine and some of the 1,2,4-oxadiazole 

investigations have been completed under Phase I of this contract. 

The current phase included complete evaluation of the 1 ,3  , 4-oxadiazole 

system and the perfluoroalkylether substituted-lt2,4-isomer as well  

as determination of the effect of Jet-A and water on the previously studied 

perfluoroalkyl-1 , 2 ,4-oxadiazole and perfluoroalkylether triazine. 

3-Perfluoroalkyle ther- 5-perfluoro-n-heptyl-1 ,2 ,4-oxadiazole and 

its bisperfluoroalkylether analogue were obtained in  64 and 40% yields , 

respectively, using a three s tep  synthesis. The 2,5-bis(perfluoro-n-heptyl)- 

1,3,4-oxadiazole w a s  prepared in 74% yield via reaction of 5-perfluoro-n- 

heptyltetrazole with perfluoro-n-octanoyl chloride: utilizing perfluoroalkyl- 

ether acid chloride gave 2-perfluoro-n-heptyl-5-perfluoroalkylether-1,3 , 4- 

oxadiazole in 38% yield. The 2,5-bis(perfluoroalkylether)-1,3,4-oxadiazole 

w a s  formed in 31% yield from the corresponding acyl  fluoride and hydrazine 

hydrate followed by phosphorus pentoxide dehydration. 

The perf luoroalk yle ther substituted triazine exhibited good stabil i ty 

to water even at  325OC and it was  virtually unaffected by Jet-A fuel and 

air at  235OC. 

3 , 5-Bis (perfluoro-n-heptyl)-1,2 , 4-oxadiazole was  a l so  found to 
0 be stable to attack by water at 325 C; however, in air in the presence 

of Je t -A at 235OC the extent of degradation was  in excess of 10%. 

1 



I ts  perfluoroalkylether analogue showed excellent thermal, thermal 

oxidative, and hydrolytic stabil i ty at 235 and 325OC as evidenced by 

practically quantitative recovery of the test samples. In the presence 

of Jet-A fuel at 235OC a low degree of degradation, -4%, w a s  observed. 

2 , S - B i s  (perfluoro-n-heptyl)-1,3,4-oxadiazole in  the absence of 

oxygen w a s  s table  up to 325OC in both pyrolytic and hydrolytic environ- 

ments. In a i r  at 235OC the results were not reproducible , indicating 

catalytic effects: at 325 C complete oxygen consumption accompanied 

by extensive material degradation took place,  Its perfluoroalkyle ther 

analogue exhibited good oxidative stabil i ty at 235 C and w a s  unaffected 

by Jet-A/air at this  temperature: at 325 C in  air some oxidation occurred 

as shown by 20% oxygen consumption and 96% starting material recovery. 

The effect w a s ,  however, significantly lower than i n  the c a s e  of the 

perfluoroalkyl substituted compound. 

0 

0 

0 
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2. INTRODUCTION 

Perfluoroalkylethers exhibit exceptionally good thermal stabil i ty 

in  conjunction with low glass transition temperatures and fuel resistance.  

These properties render perfluoroalkylether s very attractive as potential 

candidates for advanced sealants  required to function under extremes 

of temperatures in  a fuel environment. For such a n  application it is 

of utmost importance to avoid introduction of weak links via curing 

and/or chain-extending operations. Furthermore , to develop a practical 

sealant  system the crosslinking process should proceed readily, 

preferentially in  a quantitative yield at relatively moderate temperatures. 

Ideally, it is desired for both of these conditions to be fulfilled; 

however, in real  systems compromises have to be made. 

To  determine which type of an arrangement offers optimum 

properties for curing a perfluoroalkylether-based sealant  s y s  t e m  one 

of the approaches is to study models. Thus under this  program a 

number of heterocyclic ring systems were synthesized and their 

stabil i t ies evaluated under different environments and conditions. 
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3. RESULTS AND DISCUSSION 

The objective of th i s  investigation w a s  to determine on specific 

model compounds the relative thermal, thermal oxidative, hydrolytic, and 

fuel stabil i ty of potential crosslinks useful for curing perfluoroalkylether 

elastomers. The perfluoroalkylethers available for the actual sealant  

development are composed of difunctional nitrile-terminated materials, 

obtained from diacid fluoride precursors (ref. 1). Consequently in  any 

crosslinking and/or chain extension process either the reaction of the 

nitrile or the acid fluoride group can  be utilized. 

Under the first phase of this  program (ref. 2,3) it w a s  established 

that 3,s-bis (perfluoroalky1)-1,2 ,4-oxadiazoles and perfluoroalkylether-s- 

tr iazines exhibit desirable thermal, thermal oxidative, and hydrolytic 

s tabi l i t ies .  The ultimate application visualized for these systems is as 

fuel tank sealants:  consequently, the effect of Jet-A fuel on these compounds 

at elevated temperatures had to be evaluated. 

As noted above the 1,2,4-oxadiazole ring system offers a potential 

candidate for chain extension of perfluoroalkylether materials. Unfortunately, 

no data were available regarding the perfluoroalklyether-substituted 

analogues. The s a m e  w a s  true for the l13,4-isomers.  Accordingly, the 

feasibil i ty and e a s e  of formation of these compounds needed to be explored, 

especial ly  since the ultimate objective of these s tudies  is to utilize the 

m o s t  promising ring arrangements and the m o s t  direct  processes  leading 

to their formation in chain extending or cros slinking perfluoroalkylether 

polymers. In conjunction with the above requirement it w a s  also of 

importance to determine how readily the "mixed I' perfluoroalkyl , perfluoro- 

alkylether-oxadiazole can be formed, These types of compositions 

repre sen t  potential polymer systems utilizing both perfluoroalkyl and 

perfluoroalkylether segments . 

4 



3.1 MODEL COMPOUND SYNTHESIS 

The l12,4-oxadiazole ring, when substituted by perfluoroalkyl 

groups, posses ses  very good thermal, thermal oxidative, and hydrolytic 

stabil i ty comparable to that  of the perfluoroalkylether-substituted 

s-triazines. One would expect these characterist ics to be even further 

enhanced by the presence of perfluoroalkylether substi tuents.  

3 -Perf luoroalk yle the r- 5 - perfluoro- n- he ptyi- 1 ,2  ,4- oxadiazole w a s  

prepared in an  overall 64% yield by the general procedure of Brown and 

Wetzel (ref. 4): 

C3F70[CF (CF3)CF20] 2CF (CF3)CN 

1 NH20H 

C F 7O [ C F (C F 3) C F 01 C F (CF ) C (N H 2) =N OH 

1 n-C7F15COC1 

C3F70[CF (CF3)CF201 2CF (CF3)C (NH2)=N-O-C (0)-n-C 7F15 

&N-- 0, 
C-n-C F ' N / /  7 15 

I p2°5 
C 3F70[CF (CF3)CF201 2CF (CF3) C 

The analogous bis-perfluoroalkylether-1,2,4-oxadiazole was  

obtained in an  overall 40% yield employing the above procedure and 

substituting a perfiuoroalkylether acid chloride for the octanoyl 

chloride to give: 

a- 0 \ 
C 3F 70[CF (CF3)CF20] 2CF (CF3) C- 'c CF ( C F ~ ) O C F ~ C F  ( c F ~ )  O C ~ F ~  

N// 

It has  been reported that  the 1,3,4-oxadiazole ring system is 
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inherently more thermally stable than the isomeric 1,2,4-arrangement 

(ref. 5).  

utilizing the reaction of an acyl  halide with a tetrazole (ref. 6) offers a 

definite advantage over the relatively tedious procedures required to 

produce the 1 , 2  , $-materials. In view of the above considerations, 

investigation of the 1,3,4-oxadiazoles as potential crosslinking and/or 

chain extending 'I segments" appeared warranted. 

In addition, the one step synthesis of 1,3,4-oxadiazoles 

The f i rs t  member of this  s e r i e s ,  2,5-bis (perfluoro-n-hepty1)- 

1,3,4-oxadiazole w a s  synthesized by the following sequence: 

H 
I 

7F15CN 7 15 +N-Np 
NaN3 N-N C7Fl5C0C1 0, 

C7F15 w C F  C' 

The tetrazole w a s  prepared in  82% yield following the procedure of 

Finnegan and Boschan 

chloride, the desired oxadiazole w a s  obtained in  90% yield. 

(ref. 7) and on treatment with perfluoro-n-octanoyl 

What appeared to be the perfluoroalkylether-substituted tetrazole , 

// N- N-H 
I C F 7O [CF (CF3 CF201 C F (C F3) C \ 

N= N 

w a s  readily formed (in 

azide: however, the subsequent reaction with acid fluoride, C F OCF (CF ) -  

CF20CF(CF3)COF, failed to give the oxadiazole . It was  assumed 

that t h i s  failure w a s  due either to the use  of the acyl fluoride which w a s  

decomposed by reaction with the glass wal ls  during the heating process or 

83% yield) from the respective nitrile and sodium 

3 7  3 
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to the unreactive nature of t h e  CF(CF )COX arrangement. Neither of 

these assumptions w a s  correct since the perfluoroalkylethertetrazole , 
when reacted with perfluoro-n-octanoyl chloride, formed only t races  of 

the 2-perfluoro-n-heptyl-5-perfluoroalkylether-l , 3,4-oxadiazole admixed 

with unidentified polychlorinated materials. The latter compound w a s ,  

however, obtained in -47% yield from the reaction of the perfluoro-n- 

heptyltetrazole with the perfluoroalkylether acid chloride Consequently, 

it has  to be deduced that the perfluoroalkylethertetrazole is responsible 

for t h e  observed lack of reaction. 

3 

2,5-Bis (perfluoroalkylether)-1,3,4-oxadiazole w a s  finally 

obtained in 31% yield, using the procedure of Chambers and Coffman 

(ref. 8 ) ,  i .e.: 

2 C3F70CF(CF3)CF20CF(CF3)COF + H2N-NH2 * H 2 0  
I 
1 

O H H O  
\I 1 1 I \  

c F ?OC F (C F ~ )  c F~ o CF (CF 3) c - N- N- cc F ( c F ~ )  O C F ~  c F (C F ~ )  oc F 

1'2'5 
n 
W 

/ \  
C3F70CF (CF3)CF20CF (CF3)-C C-CF ( C F ~  1 O C F ~ C F  (C F ~ ) O C ~  F 

N-NN 

3.2 DEGRADATION STUDIES 

3.2.1 Jet-A Fuel Investigations 

One of the requirements of the program is the evaluation of the 

thermal stability of the model sealant  system in Jet-A fuel. A given fuel 

cons is t s  of a number of components the nature and relative concentration 

of which could very wel l  be affected by the model sealant: thus these  

7 



had to be determined quantitatively. To facilitate the GC-MS analyses  

the fuel  w a s  first  fractionated using vacuum line techniques. The 

fractionation data  for the Fuel and fuel model sealant  mixtures 

are given in  Table I. It w a s  found that  neither the nature nor component 

distribution varied for the Jet-A fuel when subjected to the heat treatment; 

consequently, only the GC-MS of the material heated in a i r  atmosphere 

at 235OC is given (see Table 11). Apparently, the temperatures up to 

325OC do not produce significant pyrolytic degradations, which is to be 

expected. In air at 235 oxidation does occur as shown by the complete 

oxygen consumption and the products formed l is ted in Table 111. However, 

since the quantity of oxygen available w a s  very s m a l l  (5.9 mg) as 

compared to the quantity of Jet-A employed ( -1 g) , the extent of oxidation 

as evidenced by carbon dioxide, carbon monoxide, and carbonyls 

0 

formation w a s  also very low and the nature of the Jet-A was  essent ia l ly  

unchanged. The oxygen-containing volatiles formed accounted for N 10% 

of the oxygen consumed. It is quite plausible that  at least 50% of the 

oxygen consumed was  transformed into water (which would correspond 

to N 0.15 mmol)  . 
other oxygenated spec ies  which provide the degradative environment 

of a fuel system. 

It is mainly the water in conjunction with the 

3.2.2 Perfluoroalkylether-s-triazine , 

Lc3F;OCF(CF,)CF20CF(CF32]3-c3-N3 

Degradations performed on the perfluoroalkylether-s-triazine 

during Phase I of this  program (ref. 2 ,3 )  showed th is  material to exhibit 

exceptional. thermal, thermal oxidative, and hydrolytic stability. At 

that  t i m e  the hydrolytic stability w a s  determined only at 235OC; it was  

thus of interest  to evaluate the effect of water at temperatures higher 

than 235OC. As can  be seen  from Table IV 95.5% of the starting material 

was  recovered unchanged. The three main products formed were 

a 



C3F70CF(CF3)CF20CF(CF3)CN, C3F70CF(CF3)CF20CF(CF3)CONH2 and 

C3F70CF(CF3)CF20CF (CF3)H. The recovery of the nitrile after the 
#% 

treatment at 325°C in the presence of water is very surprising. Inasmuch 

a s  the nitrile, C F OCF(CF3)CF20CF(CF3)CN, and the corresponding 3 7  
amide were the major spec ies  formed, one is tempted to  speculate that 

the triazine first dissociates  thermally and this  process is then followed 

by hydrolysis of the produced nitrile. 

It is apparent from the data  presented in  Table IV that  the triazine 

was  only slightly affected by the exposure to Jet-A fuel/air at 235OC. 

Based on its stabil i ty in air and water up to 325OC, this  result  was  to 

be expected. 

3.2.3 3,5-Bis(perfluoro-n-heptyl)-1,2,4-oxadiazole 

3,S-Bis (perfluoro-n-heptyl)-l, 2,4-oxadiazole w a s  previously 

subjected to nitrogen and air at 325OC as well  as to ni t rogedwater  

atmospheres at 235OC (ref. 3 ,2) .  The effect of higher temperatures on 

its stabil i ty in the presence of water w a s  of particular interest  since the 

absence of hydrolysis at  235 C in water w a s  surprising in view of 

the -CF2-CGN arrangement present in  the 1,2,4-oxadiazole ring. This 

s a m e  grouping is a component of the s-triazine ring and must be in this  

combination responsible for the hydrolytic instabil i ty of t r is  (perfluoro-n- 

hepty1)-s-triazine (ref. 3 ,2) .  It is obvious from the data  presented 

in Table V that  even at 32SoC, the extent of degradation of 3,S-bis (perfluoro- 

n-heptyl)-l,2,4-oxadiazole w a s  very minor. This unexpected finding 

is so far unexplained. 

0 

.N 

0 The Jet-A fuel/air at 235 C presented a much more severe degradative 

environment for the 3,5-bis (perfluoro-n-hepty1)-1, 2 ,4-oxadiazole than 

any of the other treatments investigated. The oxadiazole recovered 

corresponded to 73% of the starting material: adding all the other fluorinated 
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compounds identified and quantitated brings this  figure to 82%. A 

portion of the unaccounted for 18% are  fluorinated moieties which could 

not be detected or separated using the techniques employed; in  addition 

the experimental error in actual  determinations will  also contribute to 

the material balance discrepancy. The major product formed w a s  the 

amide, n-C7F15CONH2. From the data  given in Table V it can  be 

calculated that  the quantity of 3,5-bis (perfluoro-n-hepty1)-1 ,2,4-oxadiazole 

employed w a s  1.03 mmol and as noted in Section 3.2.1 I the water from 

oxidation of the fuel is of the order of ~ 0 . 1 5  mmol; consequently, the 

quantity of the amide theoretically possible is in reasonable agreement 

with the 6.6% of n-C F CONH2 produced. Based on these findings it 7 15 
is apparent that  this  oxadiazole is susceptible to hydrolysis provided 

a solubilizing medium is present. This is in agreement with Dr. Tamborski's 

investigations (ref. 9) which showed that  in the presence of tetrahydrofuran 

and water,  3,5-bis (perfluoro-n-heptyl)-1,2,4-oxadiazole undergoes 

extensive hydrolysis at 100 C. These results would indicate that  if the 

polymer system containing the perfluoroalkyl-1 ,2,4-oxadiazole linkage 

is essent ia l ly  insoluble in  Jet-A or any other fuel or solvent,  no hydrolytic 

0 

degradation should occur since water alone is ineffective. 

3.2.4 3,5-Bis (perfluoroalkylether)-1,2 , 4-oxadiazole 

The resul ts  of the studies performed on the perfluoroalkylether- 

substituted 1 , 2  I 4-oxadiazole are summarized in  Table VI. Under all the 

conditions, with the exception of the air-Jet-A treatment, N 99% of the 

starting material w a s  recovered unchanged. The effect of air at 235 and 

325OC w a s  virtually the same, based on starting material recovery and 

oxygen consumption. This is unexpected and may be attributable to the 

presence of a s m a l l  quantity of an impurity, From the air-Jet-A exposure 

at 235OC, 92.3% of the starting material w a s  recovered intact: the detected 

10 



and quantitated products , however, accounted for only -4% of the material 

loss. In view of the experimental difficulties associated with physically 

separating the Jet-A fuel from the (liquid) test sample , it is quite plausible 

that the actual extent of degradation is better represented by the amount 

of products formed than by the quantity of starting material recovered 

s ince no other indication of degradation such as discoloration could be 

observed. In the case of 3 , 5-bis (perfluoro-n-heptyl)-l,Z , 4-oxadiazole , 

this argument cannot be made because the starting material is a solid 

which could be fairly readily separated from Jet-A fuel. In addition, the 

dark brown discoloration observed in this  test indicated that degradation 

w a s  extensive.  

3.2.5 2 , 5-Bis (perfluoro-n-heptyl)-lI3 , 4-oxadiazole 

The resul ts  of the s tudies  performed on the 2,s-bis(perf1uoro-n- 

hepty1)-1 , 3 , 4-oxadiazole are summarized in Table VII. It can  be seen  

that  in  the absence of oxygen the material exhibited good stability up 

to 325OC. This w a s  true both in inert atmospheres and in the presence 

of water. These investigations were performed in argon to  allow the 

detection of nitrogen s ince the la t ter  w a s  postulated as a breakdown 

product in the 1 , 3  , 4-oxadiazole s under electron impact (ref. 10, 11). 

Thus it w a s  of importance to determine whether this  degradation path 

is also present under thermal or hydrolytic conditions. In none of the 

tests w a s  nitrogen evolution observed , which is in  agreement with 

thermal breakdown findings of others (ref. 11). After subjecting the sample 

to argon/water environment at 235OC the only products formed in the 

volatile s were s m a l l  quantities of carbon dioxide and fluorohydrocarbons 

(most likely from further degradation of R CN and related precursors), 

whereas in the involatile residue traces of RfCONH2 were present a s  shown by 

a weak infrared band at 5 . 9 ~ .  No amide was  detected by gas chromatography. 

f 
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0 Under analogous conditions but at 325 C ,  the resul ts  were virtually 

identical. In the absence of water at 325OC perfluoro-n-octanonitrile 

w a s  the only constituent of the volatiles. Thus it can  be deduced that 

water as such h a s  no degradative action upon 2,5-bis (perfluoro-n-hepty1)- 

1,3,4-oxadiazole. The products formed are derived from the hydrolysis 

of the nitrile initially produced. This behavior is analogous to that  

observed for the 1 2,4-oxadiazole. 

Contrary to the behavior of the 1,2,4-analogue the 1 3,4-oxadiazole 

w a s  found to be oxidatively unstable. N o  reproducible results could be 

obtained in  a i r  at 235OC. Using an identical sample of starting material 

in one test resulted in complete oxygen consumption together with 

production of volatiles . In another test, employing a much larger relative 

quantity of oxygen, virtually no degradation took place.  This would then 

indicate that  in the f i rs t  test a trace of impurity, possibly present in 

the reaction vesse l ,  catalyzed the decomposition. The susceptibility 

of the 1,3,4-oxadiazoles to nuclephilic attack w a s  demonstrated by Brown 

and Cheng (ref. 12); on the other hand, this isomer is supposed to exhibit 

better thermal stabil i ty than the 1,2,4-isomer (ref. 5), The low oxidative 

stability w a s  clearly shown by the exposure to a i r  at 325OC when all the 

available oxygen w a s  consumed and only 60% of the starting material was  

recovered. The products formed are l isted in Table VIII. It should be noted 

BF3, and part of CO are  derived m o s t  likely from the reaction of 2 that  SiF4, 

COF and R COF spec ies  with the walls of the ampoule. The unidentified 

products consisted of perfluoroalkyl carbonyls, RfCOF (identified by 

infrared absorption at 5.27 p and mass spectral  abundances a t  m/e = 97, 

47 and 66), perfluoroalkyl acid anhydrides (RfCO) 0 (identified by 

infrared absorptions at 5.38 and 5.52 p) and a completely unknown compound 

which exhibited strong absorptions in the infrared at 6.18 and 6.31 ~ 1 .  

The latter material was present also i n  the involatile residue, which 

2 f 

2 
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would indicate that it is a relatively high molecular weight species .  

The relative quantity of the nitrile, C7F15CN, produced w a s  much 

higher than in the argon test performed a t  the same temperature which 

shows clearly that  oxygen-initiated ring opening is operative here. 

Inasmuch as all the oxygen w a s  consumed, it is safe to assume that  

in the presence of sufficient a i r  (oxygen) no oxadiazole would be 

recovered. 

In view of the above findings it was  concluded that 2,s-bis- 

(perfluoro-n-heptyl)-l13, 4-oxadiazole and related compositions 

are not suitable for the visualized sealant  applications. Consequently 

no studies involving the Jet-A fuel were carried out. 

3.2.6 2,5-Bis (perfluoroalkylether)-1,3,4-oxadiazole 

As discussed above the oxidative stabil i ty of the 1,3,4-oxadiazole 

ring system when substituted by perfluoroalkyl groups was  found to be 

poor. In view of the tremendous difference in  reactivity of the perfluoro- 

alkyl- and perfluoroalkylether-substituted s-triazines , which w a s  

determined under the first phase of th i s  program, it seemed reasonable 

to assume that  similar effects might also be operative here. It has  been 

discussed previously and it is being reemphasized again that it is not the 

ether function which is responsible for this  behavior but the s ter ic  

hindrance of the -CF(CF )- arrangement adjacent to the ring. Consequently, 

2 ,S-bis (perfluoroalkylether)-1,3,4-oxadiazole w a s  synthesized and 

subjected to degradative testing. The resul ts  of these investigations 

are compiled in Table IX and the nature and relative proportion of the 

products formed under the different investigations are given in Table X. 

3 

0 It is apparent from these data  that  at 235 C under oxidizing, 

hydrolytic, and fuel environments, very little decomposition took place 

as shown by starting material recovery and the degradation products 
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found. Based on the latter value and due to the difficulty in separating 

the  oxadiazole from Jet-A fuel it is m o s t  likely that the actual degree of 

degradation is lower than that reported in Table M. Oxidatively, however, 

the lI3,4-oxadiazo1e w a s  not as stable as its 1,2,4-isomer (compare 

data  presented in  Tables VI  and E): yet ,  it w a s  definitely much more 

stable than the perfluoro-n-heptyl-substituted analogue, Among the 

products l is ted (see Table X) the nitrile, C3F,0CF(CF3)CF20CF(CF ) C N ,  3 
originates m o s t  likely from dissociation of the oxadiazole . The 

hydrogenated fluorocarbons are probably produced from further degradation 

of the nitrile to acid fluorides and from the decomposition of the other 

dissociation components. One of the operative processes is 

pre sented below: 

Si-OH 
RfOCF (CF3)COF RfOCF (CF3) COOH -!- SiF4 

RfOCF(CF3)H + C 0 2  

The presence of si l icon tetrafluoride and carbon dioxide supports th i s  

scheme. The finding of C3F70CF(CF3)CF20CF(CF3)[C2N2010CF3 is 

unexpected: on the other hand, if produced, this  species  would indicate 

a high degree of stability of this ring system. 

Based on the above findings it can be concluded that the 1,3,4- 

oxadiazole ring system can  be rendered relatively oxidatively stable by 

suitable substitution. Apparently, materials with -CF(CF )- group 

next t o  the l13,4-oxadiazole ring offer comparable, if not better,  stability 

in  the fuel environment than the 1 ,2 ,4  compounds. Since perfluoroalkyl- 

e thers  derived from perfluoropropene oxide are the current candidates 

3 
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for the sealant  applications,  the employment of the 1,3,4-oxadiazole 

as the crosslinking segments can be considered although in  view of 

the oxidative behavior at elevated temperatures might not be as 

desirable as the l12,4-ring arrangement. 
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4. EXPERIMENTAL DETAILS AND PROCEDURES 

A l l  solvents used were reagent grade and were dried and disti l led 

prior to use .  Operations involving moisture or a i r  sensit ive materials 

were carried out either i n  an  inert atmosphere enclosure (Vacuum 

Atmospheres Model HE-93B) or under a nitrogen by-pass 

available starting materials were usually purified by disti l lat ion,  crystal- 

l ization, or other appropriate means. The perfluoroalkylether nitrile and 

acid fluoride obtained from the Air Force Materials Laboratory were 

employed without purification due to the relatively s m a l l  samples 

available and the likelihood of material loss on purification. 

The commercially 

Infrared (IR) spectra were recorded either neat  (on liquids) or as 

double mulls (Kel-F oil No. 10 and Nujol) using a Perkin-Elmer Corporation 

Infrared Spectrophotometer Model 21. Molecular weights were determined 

in hexafluorobenzene solution using a Mechrolab Model 302 vapor 

pressure osmometer. Thermal analyses  were conducted using a DuPont 

951/990 Thermal Analyzer system. The mass spectrometric analyses  

were performed using a CEC Model 21-620 m a s s  spectrometer and a DuPont 

spectrometer 21-491B coupled to a data acquisition and processing system. 

The latter instrument w a s  employed both in GC-MS and batch modes. 

4.1 MODEL COMPOUND SYNTHESIS 

Preparation of 3-perfluoroalkylether-5-perfluoro-n-heptyl-l,2,4- 

oxad iaz  ole , C F [C F (C Fs ) C F 01 C F (C F3& ,E2 01 - n- C 7xl 
Under nitrogen by-pass to a stirred solution of hydroxylamine 

hydrochloride (0.59 g ,  8.49 mmol) in  dry methanol (10 ml) was  added 

a t  22-2SoC sodium methoxide (8.26 mmol in 5 m l  methanol), Into this 

solution w a s  then introduced C3F70[CF(CF3)CF2012CF(CF3)CN (5.02 g ,  

7.81 mmol) , again at 22-25 C. After stirring for 2 hr at room temperature, 0 

methanol w a s  taken off under reduced pressure and the resulting mixture 
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(white solid suspended in a clear liquid) w a s  taken up in Freon 113, 

filtered and evaporated under reduced pressure. The remaining involatile, 

clear liquid, C3F70[CF(CF3)CF2OI2CF(CF3)C(NH2)=NOH, 4.32 g (81.8% 

yield) w a s  employed without further purification in the next step. 

Under nitrogen by-pass to a stirred solution of the amidoxime 

(4.07 g ,  6.02 mmol) in  tetrahydrofuran (20 ml) w a s  added slowly at 

O°C perfluoro-n-octanoyl chloride (2.61 g , 6.03 mmol) in tetrahydrofuran 

(7 ml) .  After completing the addition, the reaction mixture w a s  stirred 

for 1 hr at 0 C, then 2 hr at room temperature. Subsequently, tetrahydro- 

furan w a s  removed under reduced pressure leaving a viscous liquid 

(5.82 g , 90.2% yield); this material exhibited an  infrared spectrum 

containing bands characteristic for the expected structural arrangement, 

C3F70[CF (CF3)CF20l2CF (CF3)C (NHZ)=N-O-C (0)-n-C7F15. 

0 

A mixture of this O-perfluoroalkylether-perfluoro-n-octanoyl- 

amidoxime (5.82 g ,  5.43 mmol) and phosphorus pentoxide (7.10 g ,  

50.0 mmol) w a s  heated under nitrogen by-pass for 10.3 hr at 23OoC. 

Subsequently, the oxadiazole was  distilled from the reaction mixture 

under reduced pressure. Redistillation gave the pure product (4.99 g,  

64% overall yield) bp 84-88OC /1 mm Hg. 

Anal. Calcd. for: C F 0 N C ,  22.79; F ,  68.48; N ,  2.66; 0, 6.07; 

MW, 1054.17. 

Found: C ,  22.97; F, 67.85; N ,  2.72; MW, 1070. 

The m a s s  spectral  breakdown pattern given in  Table XI  is in agreement 

with the assigned structure. 

20 38 4 2: 

Preparation of 3,s-bis-perfluoroalkylether-l , 2 ,4-oxadiazole , 
C F OECF (CF3)CF201 2CF (CF3)&,N20lCF (CF2)OCF2CF (CFs)OC3E7 - 3-7 

Under nitrogen by-pass to a stirred solution of the amidoxime, 

C3F70[CF(CF,)CF,012CF(CF3)C(NH2)=NOH, (9.20 g ,  13.61 mmol) in 
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tetrahydrofuran (25 ml) w a s  added slowly at O°C C F OCF(CF )CF OCF- 

(CF3)COC1 (7.01 g , 13.62 mmol) in  tetrahydrofuran (8 ml) . After completing 

the addition, the reaction mixture w a s  stirred for 1 hr at 0 C ,  then 2 hr 

at room temperature. Subsequently, tetrahydrofuran was  removed under 

reduced pre s sure giving the 0- perf luoroalkyle the r- pe rfluoroalk yle ther- 

acyl-amidoxime, C3F7O[CF(CF3)CF20l2CF(CF3)C (NH2)=N-O-C (0)CF (CF3)- 

OCF2CF(CF3)0C3F7, as a viscous liquid (14.32 g ,  91.2% yield). 

3 7  3 2  

0 

A mixture of the thus obtained O-perfluoroalkylether-perfluoro- 

alkylether-acyl-amidoxime (14.32 g ,  12.41 mmol) and phosphorus pentoxide 

(16.0 g ,  112.7 mmol) w a s  heated under nitrogen by-pass for 12 hr a t  

210-216OC. Subsequently, the oxadiazole w a s  disti l led from the reaction 

mixture under reduced pressure. Redistillation gave the pure product 

(6.13 g , 40% overall yield),  bp 120-122°C/7.2 mm Hg. 

Anal. Calcd. for C21F4006N2: ' C ,  22.20; F, 66.89; N ,  2.47; 0, 8.45; 

MW, 1136.18. 

Found: C ,  22.59; F, 66.98; N ,  2.90; M W ,  1200. 

The mass spectral  breakdown pattern given in Table X I  is in agreement 

with the assigned structure. 

Preparation of perfluoro-n-octanoyl chloride 

A mixture of 100.05 g (241.6 mmol) of perfluoro-n-octanoic acid 

and 58.96 g (290.4 mmol) of isophthaloyl chloride w a s  heated under 

nitrogen by-pass at 85-96OC for 3 hr; this  w a s  followed by distillation 

at - c a  60 mm Hg which gave 52.3 g (50% yield) of crude perfluoro-n-octanoyl 

chloride. Redistillation afforded the pure product, 45.52 g (43.6% yield),  

bp 75-77OC/llO mm Hg. 
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Preparation of perfluoroalkylether acid chloride , 

C F OCF(CF2)CFzOCF(CF3)COC1 -3-7 

A mixture of perfluoroalkylether acid,  C F OCF(CF )CF OCF(CF )- 3 7  3 2  3 
CO H , (12.98 g , 26.16 mmol,  obtained by water hydrolysis of the corre- 2 
sponding acid fluoride) and 11.73 g (54.67 mmol) of isopthaloyl chloride 

w a s  heated under nitrogen by-pass at 110-120°C for 8 hr. Distillation 

under reduced pressure gave 11.39 g (84.6% yield) of a water clear 

dis t i l la te ,  bp 82-84OC1129 mm Hg. 

Preparation of perfluoro- n- heptylte trazole 

A mixture of perfluoro-n-octanonitrile (24.94 g , 63.93 mmol) , 

dimethylformamide (35 ml) , ammonium chloride (3.76 g , 70.28 mmol) , 

and sodium azide (4.53 g , 69.68 mmol) was  heated under nitrogen by-pass 

at 100-103°C for 14 hr. The initially present two layers became a slightly 

orange single phase with solid at the bottom of the flask.  

formamide w a s  then removed in vacuo to yield a pasty residue which w a s  

only partially soluble in  water (75 ml) , but dissolved on addition of 

20% HC1 (75 ml) . I  The organic material w a s  extracted with ether ,  washed 

with 20% HC1 and water and dried over anhydrous MgS04. Evaporation 

of ether yielded 30.10 g (98.3% yield) of crude n-perfluoroheptyltetrazole. 

This material w a s  crystallized from chloroform affording 15 63 g (51% yield) 

of product , mp 88-89 C. On evaporation of the mother liquor an  additional 

9.45 g of the tetrazole w a s  obtained bringing the total yield to 81.9%. 

Dimethyl- 

0 

Preparation of 2 , 5-bis (perf1uoro-n-heptyl)-lI3, 4-oxadiazole 

A mixture of perfluoro-n-heptyltetrazole (10.01 g , 22.85 mmol) 

and perfluoro-n-octanoyl chloride (11.04 g ,  25 52 mmol) w a s  heated 

under a nitrogen by-pass at 89-93OC for 4.7 hr; at 104-112°C for 38.6 

hr and finally at 121-12SoC for 24 hr. The product w a s  purified by 

dissolving it in ether followed by washing with sodium carbonate solution 
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and water. The residue left on removal of ether w a s  crystallized from 

ether-ethanol giving 16.55 g (89.9% yield) of 2 , s -b is  (perfluoro-n-hepty1)- 

1,3,4-oxadiazole, mp 33-34 C. 

Anal. Calcd. for C16F30NZO: C,  23.84; F, 70.70; N ,  3.48. 

Found: C ,  23.98; F, 70.98; N,  2.82. 

The m a s s  spectral  breakdown pattern given in Table XI1 is in agreement 

with the assigned structure. 

0 

Preparation of perfluoroalkyletherte trazole , 
C F OICF(CFs)CF~OIzCF(CFs) (CN H) - 3-7 4- 

A mixture of perfluoroalkylether nitrile, C F O[CF(CF3)CFzO)z 3 7  
CF(CF3)CN, (4.99 g ,  7.77 mmol) , ammonium chloride (0.57 g ,  10.65 

mmol) , sodium azide (0 67 g , 10.31 mmol) and dimethylformamide 

(10 ml) w a s  heated under nitrogen by-pass for 18 hr at 99-llO°C. The 

initially present two layers gradually became a single phase within 

- ca 90 min. The dimethylformamide w a s  subsequently removed in vacuo. 

The viscous residue w a s  treated with 20% HC1 (20 ml) and the resulting 

mixture extracted with ether (4 x 25 ml).  The combined extracts were 

washed with 20% HC1 (2 x 15 ml), water (3 x 15 ml) and dried over 

anhydrous magnesium sulfate. The viscous oil, which remained after 

solvent removal w a s  disti l led to give a viscous liquid (4.44 g ,  83.4% 

yield),  bp 102-104°C/0. 01 rnm Hg; its infrared spectra w a s  consistent with 

the assigned structure. 

Attempted preparation of '2,s-bis (perfluoroalky1ether)-1,3,4- 

oxadiazole,  C3E70[CF(CF )CF 01 CF(CF )[C N OlCF(CF3)- 

E F  2- CF(CF&C3z7 , 

A mixture of perfluoroalkylether tetrazole , C F O[CF(CF3)CF20l2- 

3-2-2- 3-2-2 

3 7  
CF(CF3)[CN HI , (3.46 g , 5.04 mmol) and perfluoroalkylether acid fluoride, 4 
C3F70CF(CF3)CF20CF(CF3)COF, (3.23 g ,  6.49 mmol) together with 
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approximately 0.1 g of glass beads (Perkin-Elmer 45/80 mesh) w a s  

heated under nitrogen by-pass at 90,S-9S.5°C for 2.4 hr and at 78.5-83OC 

for 43.2 hr. The resulting dark colored liquid was subsequently disti l led 

at < 0.01 mm Hg. Three fractions: bp 34-44OC, 44-68OC. and 68-83OC 

were obtained. Based on the infrared spectral analyses  these consisted 

respectively of perfluoroalkylether acid, a mixture of the acid and starting 

tetrazole and the tetrazole. N o  oxadiazole appeared to have been formed. 

Attempted preparation of 2 - perfluoro- n- heptyl- 5 - perfluoro- 

alkylether-l,3, 4-0xadiazole~ n-C7~15[C,N201CF(CF3)- 

(OCF2.E!DF3l2.E3E7 

A mixture of perfluoroalkylether tetrazole (1.09 g , 1.59 mmol) and 

perfluoro-n-octanoyl chloride (1.07 g ,  2.47 mmol) was  heated under 

nitrogen by-pass for 67.2 hr at 84.5-90.5OC and for 68 hr at 96-106OC. 

Distillation of the product gave three fractions: bp 34-4goC/44-39 mm Hg 

(trace): 45-5l0C/39-33 mm Hg (0.2 g) ,  and 77-83Od3-1 mm Hg (0.68 g) 

were obtained. Approximately half of the liquid still remained in the 

distillation flask (0.94 9). Absence of bands at 6.35, 6 . 4 2 ~  in the 

infrared spectrum indicated that no oxadiazole w a s  formed. Based on 

m a s s  spectral  analysis:  fraction No.  2 w a s  composed largely of 

n-C F COCl, fraction No.  3 w a s  a mixture of the acid chloride with the 

d e  sired oxadiazole , whereas the residue contained the oxadiazole mixed 

with what appeared to be a dichloro-compound or compounds. 

7 15 

Preparation of 2-perfluoro-n-heptyl- S-perfluoroalkylether- 

1,3,  4-0xadiazole~ n-C7~15JC2N201CF(CF3)0CF2CF(CFs)OC~F7 

A mixture of perfluoro-n-heptyltetrazole (3.03 g ,  6.92 mmol) and 

C3F70CF(CF3)CF20CF(CF3)COCl (3.69 g , 7.17 mmol) w a s  heated under 

nitrogen by-pass at 115-118'C for 100 hr. The prolonged heating w a s  

required in view of the low reactivity of the perfluoroalkylether acid 

21 



chloride. The progress of reaction w a s  monitored by cooling the reaction 

mixture and observing the crystallization of the unreacted tetrazole. 

The product mixture w a s  subsequently disti l led at 25 mm Hg; the fractions,  

bp 105-114°C and 114-126OC (2.91 g ,  47% yield), based on infrared spectral  

analysis  consisted of the desired oxadiazole. The fraction bp 105-114°C 

w a s  dissolved in  Freon 113, washed with sodium bicarbonate, water and 

dried over magnesium sulfate. Vacuum disti l lat ion yielded pure 

n-C7F15 (C2N20)CF (CF,)OCF,CF(CF,)OC,F,, bp 118-12loC a t  25 mm Hg . 
Anal. Calcd. for C17H3203N2: C ,  22.99%; F, 68.45%; 0, 5.40%; 

N ,  3.15%; Mw, 888.15. 

Found: C ,  23.29%; F, 68.36%; N ,  3.39%, M W ,  930. 

Its infrared and m a s s  spectra (see Table XII) were consistent with the 

assigned structure. 

Preparation of 2,S-bis (perfluoroalky1ether)-1,3, 4-0xadiazole~ 

C F OCF (CFs)CF20CF(CF3~2bJ201CF (CF,)OCF2CF(CF,)OC3E7 -3 7 

Under nitrogen by-pass to a stirred solution of C F OCF(CF3)- 3 7  
CF20CF(CF3)COF (7.17 g ,  14.39 mmol) in  benzene (15 ml) w a s  added 

hydrazine hydrate (0.73 g , 14.58 mmol) . After stirring for 1.5 hr the 

mixture w a s  refluxed for 4 hr with a water eliminator attached. 

Subsequently the mixture w a s  cooled and decanted; the product dissolved 

in Freon-113 and filtered. To the solid residue, remaining after Freon-113 

removal in vacuo, w a s  added phosphorus pentoxide (16.8 g , 118 mmol) . 
The solid mixture w a s  then heated under nitrogen by-pass for 2 hr at 

25OoC. The volati les,  (3.54 g ,  50.7% yield) bp 76-67OC/2.9-1 mm Hg, 

based on infrared spectral  analysis  consisted of the oxadiazole admixed 

with a carbonyl group-containing material. The product w a s  thus dissolved 

i n  Freon-113 washed with water,  5% sodium bicarbonate solution and dried 

over magnesium sulfate.  Distillation gave pure 3,S-bis (perfluoroa1kylether)- 

1,3,4-oxadiazole (2.16 g , 31% yield) bp 102-104°C/9 mm Hg. 
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Anal. Calcd. for C18F34N205: C ,  22.29; F, 66.58: N ,  2.89; 0, 8.25; 

MW, 970.16 

Found: C ,  21.98; F,  66.89; N ,  3.21%; M W ,  950. 

Its m a s s  spectrum given in  Tabla XI1 w a s  consis tent  with the assigned 

structure. 

4.2 DEGI?ADATION STUDIES 

The degradation investigations were performed in  sealed ampoules 

of - ca 50 m l  volume, unless  otherwise specified,  over a period of 48 hr 

a t  235 and 325 C. The media studied were nitrogen or argon, air, 

nitrogen or a rgodwate r ,  and Jet A-fuel. The quantit ies of material 

employed were between 0.5-1.0 g ,  whereas the gas pressures used were 

_. ca 350 mm Hg at room temperature. In the experiments involving water 

and Jet-A fuel these materials were weighed into the ampoules At the 

conclusion of an  experiment the ampoules were cooled in liquid nitrogen 

and were opened into the vacuum system. The liquid nitrogen noncon- 

densibles were measured and determined by m a s s  spectrometry. The 

liquid nitrogen condensibles , which were volatile at room temperature, 

were fractionated from a warming trap through -23, -78 C into a liquid 

nitrogen cooled trap. Each fraction w a s  measured, weighed and analyzed 

by infrared spectroscopy and m a s s  spectrometry. The residue itself 

w a s  weighed and subjected to gas chromatography, infrared spectral  

0 

0 

analyses ,  and differential thermal analysis.  
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TABLE I1 

GAS CHROMATOGRAPHIC ANALYSES OF JET-A FUEL SUBJECTED 

TO 235OC IN AIR FOR 48 HRa 

Invol 
b 

r.t. - 

4.9 

5.4 

6.6 

6.9 

7.6 

8.5 

8.7 

9.6 

9.8 

10.4 

10.8 

11.4 

11.9 

12.2 

12.9 

13.2 

13.7 

14.2 

14.7 

15.1 

15.6 

16.0 

16.2 

16.6 

17.1 

17.7 

iles 

AreaC 

Td 
0.1 

0 *2 

0.2 

0.4 

0.1 

1 .o 
0.9 

0.8 

1.0 

4.3 

0.6 

8.9 

0.2 

13.1 

5.6 

8.9 

20.3 

0.5 

7.7 

0.8 

0.3 

0.8 

9.1 

0.3 

76.8 

-23OC 
FI 

b -  r.t. 

4.9 

5.5 

5.7 

6.1 

6.6 

6.9 

7.5 

8.5 

8.7 

9.6 

9.8 

10.4 

10.8 

11.5 

1 2  .o 
12.3 

12.9 

13.3 

13.7 

14.3 

14.7 

15.1 

15.6 

15.9 

16.2 

16.6 

17.0 

17.7 

.. ., 
keaC 

T 

0.1 

T 

T 

0.9 

1.2 

4.8' 

1 .o 
10.5 

17.3 

11.9 

14.3 

54.4 

5.9 

49.9 

17.1 

69.9 

2.7 

26.7 

102.4 

3.2 

29.9 

12.8 

2.1 

1.1 

3.7 

1.1 

86.4 

I 

-78OC 
Fri 

b r.t. 

2.5 

2 . 6 .  

2.8 

3.2 

3.8 

4.0 

4.2 

4.4 

4.9 

5 .1  

5.5 

5.8 

6.1 

6.6 

7.5 

8.1 

8.3 

8.7 

9.0 

9.6 

9.9 

10.1 

10.6 

11.2 

11.5 

11.9 

12.1 

12.8 

13.0 

13.5 

13.9 

AreaC 

0.2 

0.2 

1 .o 
1.1 

6.8 

8.2 

6.8 

21 .o 
37.0 

0.3 

1.2 

43.4 

39.0 

75.1 

90.8 

89.0 

1.8 

34.9 

66.9 

9.9 

30.8 

9.3 

32.0 

8.2 

13.1 

1.8 

0.9 

0.9 

0.9 

0.3 

0.5 

Peak 
Identification 

'6H14 

'6H14 
n-C H 6 14 

6 1 2  2-C H 

Z7H16, benzene 

c-C7H14, C7H16 

C7H16 

n-C7H16 

c-c 7H14 

'gH18 

8 16 
n-C 8 H 18 

'gH20 

C-C H 

C9H20 

'gH20 

'gH20 

'gH20 
n-C 9 H 20 

C10H22 

C10H22 

C10H22 

C10H22 

n-C10H22 

C -benzene 3 

C -benzene 

'11H24 
C -benzene 

4 

4 

'1 lH24 

'1 lH24 
C4- benzene 

"-'llH24 
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TABLE I1 - Cont'd. 

Invola 
b 

r.t. 

18.3 
18.8 

- 

19.6 

19.8 
20.6 

21.1 

21.6 
22.1 

22.4 

22.9 

23.2 

23.5 

24.3 

24.9 
25.8 

26.3 

26.7 

27.3 

28.3 

28.7 
29.2 

le s 

AreaC 

1.1 

11.7 

15.5 

3.7 

0.5 

84.8 

22.4 

2.7 

2.7 

1.1 

1.1 
33.6 

75.7 

2.1 

4.13 

7.5 

12 .o 
52.3 

0.5 

0.8 

8.8 

18.9 

2.8 

3.7 
0.5 

0.7 

-23°C 
F 

b .  r.t. 

18.2 

18.8 

19.6 

19.8 

20.6 

21.0 

21.5 

22.0 

22.3 

22.8 

23.1 

23.4 

24.2 

25.6 

26.6 
27.2 

C 

keaC 

2.1 
12.3 

9.0 

0.6 

0.7 
17.6 

4.0 
0.7 

0.4 

0.3 
0.3 
1.7 

2.7 

0.1 

0.1 
0.2 

-78OC 
FI -__. 

b r.t. 

14.4 

14.8 

keaC 

T 
0.1 

Peak 
Ide ntiflcat ion 

C -benzene 

C -benzene, 

C:OH160 
C12H26 

C12H26 
C-C H 12 24 
""1ZH26 

C13H28 

4 

C-Cl3HZ6 ? 

C13H28 
C13H28 

C14H30 

n-C 1 3H2 8 

C14H30 
C H (c-?) 14 26 

c14H308 
C14H28 (c-?) 

'1SH32 

4H30 

C16H34 

n-C 1 5h3 2 
C17H36 

n-C 1 6H3 4 

a These materials were examined under the following conditions: Column 
stainless s tee l  10' x 1/8" 4% OV-101 on Chromosorb G, detector a043% 
spli t  into F.I., He flow 38 ml/min, column temperature: 50 to  240 C 
programmed a t  4'C/min. 

b Retention t ime,  min. 

c This is a liquid fraction: area is given in square inches x attenuation per 
microliter of sample. 

2 d c 0.05 in /pi. 
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TABLE I11 

PRODUCTS FORMED ON THERMAL OXIDATIVE 

DEGRADATION OF JET-A FUEL AT 235OC 

Compound % 

co 
c02 

CH4 

s02 
cos 
C2- and C -hydrocarbons 

Acetaldehyde 

Butyraldehydes 

Acetone 

Methyl e thyl  ketone 

2-Pentanone 

3 

Methyl formate 

Ethyl formate 

Methane 

Ethane 

Ethylene 

Propane 

Propylene 

Cyclopropane 

Weight percent 
of Jet-A used 

0.028 

0.035 

T 

0.01 

T 

0.003 

0.005 

0.004 

0.015 

0.005 

0.004 

T 

T 

0.001 

T 

T 

T 

T 

T 

T = < 0.0005% by weight 
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q c n  
0 4  

4 4  
. .  

o m  
" 0  

4 0  
* .  

cn 
"* e* 
N 

4 0  
0 4  

0 0  
. .  

h m  
N u 3  

0 0  
. .  

0 
1 0  
4 

W co 
I '  

m 

m h  

m h  
m m  

. .  

4 
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hl 4 4 O R T r 4  /s".I T r " h l O T r 4  . . . . . . 
0 0 0 0 0 0  

4 
m 
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TABLE VI1 

. 
Atm. Starting Material Oxygen Products T p P  9 

C Used Recov Consumed 
b a 

mg %a m 9  % mg % 

235 Air- 1 939.9 97.9 5.4 100 30.6 3.2 

Air- 2 242.7 98.9 none 0 0.6 0.2 
Argon/H20 d 

325 Air 

~ 

Argon 

Argon/H20g 
- 

TABLE VI11 

871.6 99.3 - - 1 .5e 0.2 

834.1 99.5 - - 1 . 2  0 . 1  

1032.8 60.0 54.2 99.6 348.0 33.7 

930.5 99.8 - - 2.6e 0.3 

PRODUCTS FORMED ON THERMAL OXIDATIVE DEGRADATION 

OF 2 I 5-BIS (PERFLUORO-n-HEPmL)-l , 3,4-OXADIAZOLE IN AIR 

Product 

co 

c02 
SiF4 

COF2 

BF3 

cF4 

C7F15CN 

Unidentified 

0.05 

0.49 

0.36 

1.40 

? 

0.4 

T 

0.5 

a) Percent of starting material. 

325OC 

%a 

0.5 

9.9 

10.3 

4.4 

0.7 

3.7 

T 

10.1 

b) The data 
are for the Air-1 test listed in  Table VII. 
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TABLE JX 

Temp. 
C 0 

235 

235 

235 

325 

325 

SUMMARY OF DEGRADATION STUDIES PERFORMED ON 

Atm . Starting Material Oxygen Products 
Used Recov. Consumed 

% 
b 

m g  %a mg % mg 

Air 523.0 99.3 0.3 5.3 3.4 0.65 

0 . 9  0.18 

Air/Je t-A 635.5 97.3 5.8 100 2.0 0.31 

586.2 99.2 - - 4.3 0.73 

Air 300.9 96.1 1 . 2  20.6 11.8 3.92 

Ar/H20c 502.8 99.8 - - 

N 2  
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TABLE X I  

r 

m/e Ib IIC IIId 

69 74.8 70.0 59.1 

76 5.4 

92 37.9 

9 7  10 .6  9.7 

100 1 3 . 3  1 2 . 3  6 .9  

119  33.1 21.9 19.9 

126 36.0 4.2 

131 27.3 5.8 

142 8.6 3.0 

147  19.4 18.1 

150 11 .5  7.7 

169  24.3 100 1 0 0  

170 4.2 3.7 

181 5.6 

192 7.4 

21 9 5 . 3  

m/e Ib IIC IIP 

237 3.1 

287 14 .6  

292 3.3 

335 15.7 13.5 

45 3 7 . 2  

487 1 0 0  

488 17 .4  

5 01 3.4 3.5 

537 21 .2  

61 9 14.5 

703 5.1 

785 7.4 

78 7 27.1 

78 8 6.0 

951 4.5 
985 4.5 

1035 3.9 
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TABLE XI1 

ION FRAGMENTS AND INTENSITIES RELATIVE TO THE 

BASE PEAK OF 1,3,  4-OXADIAZOLESa 

m /e IVb VC VId 

69 
71 
76 
78 
81 
90 
92 
93 
97 

100  
109 
1 1 2  
119  
126 
128 
131 
1 4 3  
147  
150 
159 
169 
170 
181 
21 9 
231 
2 81 
335 
369 
403 

100.0 
3.3 
7.5 
5.1 
3.6 
5.1 

10 .4  
10 .7  

23.6 
36.7 

3.8 
74.6 

56.3 
3.6 

4.5 
61 .9 

15 .0  
11 .o 

6.5  
8.7 

19 .8  

97.6 

3.0 

4.0 
4.5 
6.9 

14 .3  
5.6 

37.9 
4.9 
2.0 

15.7 

16.6 
6.1 
7.2 

100.0 
5.7 
6.3 
3.4 

3.2 
22.0 
10.6 

7.4 

81 .9  

3.0 

3.0 

8.0 
12.9 
1 . 2  

34.8 
6.7 
3.5 
3.5 

13.9 
7.4 

100.0 
4.8 

27.6 

m /e Nb VC VId 

437 
459 
487 
488 
51 9 
537 
538 
569 
5 70 
61 9 
703 
709 
76 9 
785 
787 
788 
806 
81 9 
820 
851 
869 
8 70 
888 
9 01 
9 02 
951 
952 
9 70 

17 .8  
5.8 

95.2 
20.0 

4.3 

39.3 
8 .0  
3.2 

3.8 

3.0 
2 1.4 

3.2 
27.1 

4.3 

9.1 

6.0 

25.3 
5.6 

32.4 
6.2 
1.1 

3.0 

19 .7  

10.1 

7.0 

31.9 
7.0 

15.1 
3.3 
0.1 

a) Peaks having relat ive in tens i t ies  less than  3% of the  base peak and lower than 
m/e 69 are not reported. b) Compound IV is 2,S-bis (perfluoro-n-heptyl)-l13, 4- 
oxadiazole . c) Compound V is 2-perfluoro-n-heptyl-5-perfluoroalkylether-l,3,4- 
oxadiazole . d) Compound VI is 2,S-bis (perfluoroalkylether)-1,3,4-oxadiazole. 
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