Étude du signal $H^0/A^0 \rightarrow \tau \mu$ aux collisionneurs hadroniques et intercalibration du calorimètre de DØ au Run II du Tevatron

Pierre-Antoine Delsart

IPNL

- Problematique. Rappel sur le modèle standard
- L'expérience DØ, l'intercalibration du calorimètre
- III Les modèles à deux doublets de Higgs et la désintegration $A^0/H^0 \rightarrow \tau \mu$

Les particules élémentaires

Le modèle standard et ses symétries

Le modèle standard : une théorie de champs quantiques Structure gouvernée par ses symétries

- La symétrie de l'espace-temps est celle de Poincaré (rotations, translations, transfo. de Lorentz)
 - Ies particules élémentaires sont cractérisées par 3 nombres la masse, le spin et la parité.
- Le lagrangien du modèle standard possède une "symétrie jauge" : il est invariant sous

 $\psi \to U\psi$ avec $U \in SU(3) \times SU(2) \times U(1)$

Cette symétrie est locale \implies elle décrit les interactions en termes de Particules.

Le modèle standard et ses symétries

Le modèle standard : une théorie de champs quantiques Structure gouvernée par ses symétries

- La symétrie de l'espace-temps est celle de Poincaré (rotations, translations, transfo. de Lorentz)
 - Ies particules élémentaires sont cractérisées par 3 nombres la masse, le spin et la parité.
- Le lagrangien du modèle standard possède une "symétrie jauge" : il est invariant sous

 $\psi \to U\psi$ avec $U \in SU(3) \times SU(2) \times U(1)$

Cette symétrie est locale \implies elle décrit les interactions en termes de Particules.

<u>Problème</u> : la symétrie $SU(2) \times U(1)$ est incompatible avec la description de particule massive

Le mécanisme de Higgs

Introduction d'un doublet sous $SU(2) \times U(1)$ de champs scalaires Φ :

$$-\mathcal{L} = (D_{\mu}\Phi)^{+}D^{\mu}\Phi - V(\Phi) \quad \Phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix}$$

V est tel que l'état fondamental n'est pas symétrique : on dévellope la théorie autour de cet état fondamental.

termes de masses pour quarks, leptons, W[±] et Z⁰
 Il reste 1 champ scalaire : celui du boson de Higgs

Succès du modèle standard

- Théorie cohérente et renormalisable.
- Tres nombreux succès expérimentaux : prédiction et découvertes
 - des bosons W et Z
 - du lepton τ
 - du quark top

Winter 2003								
	Measurement	Pull	(O ^{meas} –O ^{fit})/σ ^{meas} -3 -2 -1 0 1 2 3					
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	-0.16	•					
n _z [GeV]	91.1875 ± 0.0021	0.02						
r _z [GeV]	2.4952 ± 0.0023	-0.36	-					
5 ⁰ [nb]	41.540 ± 0.037	1.67						
۲ _۱	20.767 ± 0.025	1.01						
A ^{0,I} fb	0.01714 ± 0.00095	0.79	-					
Α _I (Ρ _τ)	0.1465 ± 0.0032	-0.42	•					
۲ _b	0.21644 ± 0.00065	0.99						
۲ _۵	0.1718 ± 0.0031	-0.15	•					
∖ ^{0,b}	0.0995 ± 0.0017	-2.43						
A ^{0,c} fb	0.0713 ± 0.0036	-0.78	-					
А _b	0.922 ± 0.020	-0.64	-					
A _c	0.670 ± 0.026	0.07	I					
A _I (SLD)	0.1513 ± 0.0021	1.67						
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.82	-					
n _w [GeV]	80.426 ± 0.034	1.17						
∏ _w [GeV]	$\textbf{2.139} \pm \textbf{0.069}$	0.67	-					
n _t [GeV]	174.3 ± 5.1	0.05						
sin ² θ _w (νN)	0.2277 ± 0.0016	2.94						
Q _w (Cs)	$\textbf{-72.83} \pm 0.49$	0.12	•					
			· · · · · · · · · · · · · · · · · · ·					

-3 -2 -1 0 1 2 3

Faiblesses du modèle standard

Le modèle standard pose quelques problèmes genants:

- D'un point de vue théoriques
 - nombre de familles, nombres de paramètres
 - problème de hierarchie et de naturalité
 - pas de description de la gravitation
- D'un point de vue expérimental
 - Le boson de Higgs n'a pas encore été observé (limite dans le modèle standard $m_h > 113.3$ GeV)
 - problème cosmologique
 - Moment magnétique anormal du muon

Au-delà du modèle standard

- De nombreuses théories sont dévellopées pour étendre le modèle standard.
- Beaucoup de tentatives d'extensions des symétries du modèle :
 - Grande Unification : extension du groupe des symétries internes (SU(5), SO(10), ...)
 - Dimensions supplémentaires : extension des symétries de l'espace-temps.
 - La SuperSymmétrie : symmétrie bosons-fermions

Autre tentative

- La technicouleur : Le boson de Higgs n'est pas élémentaire mais un condensat d'autres particules, les "techni-fermions"
- Une extension très simple : les modèles à 2 doublets de Higgs

L'expérience DØ l'intercalibration du calorimètre.

Le site du Fermilab

Complexe d'accélérateur comprenant le collisionneur proton-antiproton Tevatron

Deux détecteurs

CDF : CollisionsDetector at Fermilab

DØ

Deux périodes de fonctionnement

- 1992-1996 : le Run I. Découverte du quark top à DØet CDF
- à partir de 2001 : le Run IIa jusque 2005, puis le Run IIb

Caractéristiques du Tevatron

Énergie dans le CM 1.96**TeV**

nombre paquets $p \times \bar{p}$

 36×36

temps entre 2 paquets 396 ns

luminosité instantannée $0.4(0.86) \times 10^{32} \text{cm}^2 \text{s}^{-1}$

Luminosité intégrée initialement prévue pour le Run IIa : $2fb^{-1}$

Le détecteur DØ

Le détecteur de traces central

Nouveau système pour le Run II:

- Détecteur de vertex au silicium. Précision sur les vertex (plan transverse):
 - primaire : 15-30 μm
 - secondaire : 40 μ m
- Détecteur de traces à fi bres scintillantes
 - précision 100 μm

L'ensemble contenu dans un solénoide (champs magnétique 2T)

Le calorimètre

Même calorimètre à argon liquide et uranium qu'au Run I. 3 qualités essentielles :

- Fine granularité (0.1×0.1)
- bonne compensation
- bonne couverture angulaire
- Nouvautés pour le Run II :
 - électonique de lecture
 - détecteurs de pieds de gerbes

 $(\frac{\sigma_E}{E})^2 = C^2 + (\frac{S}{\sqrt{E}})^2 + (\frac{N}{E})^2 \qquad S = 0.157 \text{ GeV}^{1/2} \qquad S = 0.41 \text{ GeV}^{1/2}$ $N = 0.140 \text{ GeV} \qquad N = 0.128 \text{ GeV}$

Le calorimètre : structure

La brique élémentaire du calorimètre : la cellule. Les cellules sont réparties en couches concentriques et en tours pseudo projectives.

Détecteur de muon

Composé de 3 couches de chambres à dérive (A, B, C) associées à des scintillateurs et un aimant toroidale

Le système d'acquisition

Niveau 1 : 2.5MHz \rightarrow 10 kHz

Nouveau système d'acquisition :

Niveau 2 : $10kHz \rightarrow 1 kHz$

Niveau 3 : $1 \text{kHz} \rightarrow 50 \text{ Hz}$

La calibration du calorimètre

Nouvelle électronique de lecture

et pas de test en faisceaux : gros efforts de calibration

- calibrations électroniques (non-linéarité, gains, en temps)
- calibrations "intermédiaires" (intercalibration, facteurs d'échelle)
- calibrations sur les objets EM (géométrique, sur la masse du Z)
- calibration des jets de particules

Principes de l'intercalibration en phi

La physique est symétrique en ϕ et le calorimètre est symétrique en ϕ

→ Les grandeurs mesurée dans des parties symétriques en ϕ (anneaux de cellules) doivent être uniformes en moyenne.

En faisant l'hypothèse

$$E_{\rm mesurée} = \alpha E_{\rm déposée} + \beta$$

non-uniformité \implies calcul de corrections aux constantes α et β .

Source des non-uniformité :

- Imperfections de la calibration électronique
- Différences cellules à cellules
- Matériaux morts devant le calorimètre

Méthodes d'intercalibration

On compare des grandeurs mesurée dans des parties symétriques (cellules) par rapport à celle dans un ensemble de référence (anneau de cellules)

On ne compare que les grandeurs d'événement d'énergie suffi sante : seuils E_i , E

 $S_i(E_i), S(E),$ flux d'énergies $N_i(E_i), N(E),$ nombre d'occurences

Plusieurs algorithmes ont été envisagés

Cas simple $E_i = \alpha_i E$ ($\beta_i = 0$, α_i constante relative)

 $S_i(E_i) = \alpha_i S(E) \implies E_i = \alpha_i E$

alors $\alpha_i = E_i/E$ quand $E_i/E = S_i(E_i)/S(E)$

Méthodes d'intercalibration

• Cas $\beta \neq 0$

$$N_i(E_i) = N(E) \Longrightarrow \begin{cases} E_i = \alpha_i E + \beta_i \\ S_i(E_i) = \alpha_i S(E) + N(E)\beta_i \end{cases}$$

alors

$$\alpha_i = \frac{E_i N_i(E_i) - S_i(E_i)}{EN(E) - S(E)} \quad \beta_i = E_i - \alpha_i E_i$$

Après le test d'une dizaine d'algorithmes, 2 ont été sélectionnés :

- Optimization de la reconstruction
- Calibration à haute énergie (\geq 1 GeV par cellule)
- Moins sensible aux biais de déclanchement.

Méthodes d'intercalibration, illustrations

Estimation des effets de la décalibration

Effets de la décalibration et de l'intercalibration sur la résolution en énergie des électrons : influence sur le terme constant. Hypothèse : constantes α répartie avec un écart-type σ_{α}

 $C_{\text{decal}} \sim \sigma_{\alpha}$

après intercalibration

 $C_{
m corrigé}\sim\sigma_{lpha}/8+\sigma_{IC}$

Vérification avec évènements $Z \rightarrow ee$ simulés

- On simule une décalibration dans chaque cellule σ_{α}
- On simule une correction avec une precision donnée σ_{IC}
- On compare les largeurs du pic de masse

Simulation de la décalibration

Simulation de la décalibration

On en déduit la précision nécéssaire pour apporter une amélioration à la résolution :

Acquisition des données

- Calibration statistique : 3.8 millions d'évènements, 48000 cellules potentiellements touchées nécéssité de structure informatiques particulières
- Qualité des données. Cellules peuvent être chaudes, mortes ou bruyantes d'un "run" à l'autre.

Acquisition des données

Système de déclanchement. Le niveau 1 n'est pas uniforme en \u03c6 (tours défectueuses ou éteintes).

Nous avons appliqué une sélection

→ Dans le lot de données fi nal le taux de déclanchement niveau 1 est uniforme en φ

Estimation de la décalibration

Écart-type du flux d'énergie dans les cellules d'un anneaux. Comparaison avec des "anneaux virtuels" décalibrés avec des constantes connues.

À partir des constantes reconstruites : leur écart-type par anneau mesure la décalibration.

Estimation de la décalibration

Précision de reconstruction

Tests des méthodes sur des anneaux virtuels décalibrés selon l'estimation précédente.

Effets de l'intercalibration

Premier test : sur l'uniformité en phi des flux d'énergie.

Noir : avant intercalibration

Gris et bleu : après correction par 1ère et 2ème méthode.

Effet sur le pic de masse du Z

On applique les constantes à une sélection de données "di-électon"

- Constantes reconstruites sur des données complètement indépendantes (version p11.11) du lot "di-électron" (p13.05)
- Application de quelques coupures (coupures EM offi cielles, traces associés, $P_T > 20$ GeV)
- Ajustement par convolution Breit-Wigner et gaussienne.
- Comparaison de la largeur pour différents jeux de corrections

Effet sur le pic de masse du Z

Effet sur le pic de masse du Z

- Structures et méthodes opérationnelles.
- Procédures d'évaluation de la décalibration du calorimètre et de la précision de reconstruction.
- On s'attend à une amélioration de 400 MeV de largeur du Pic Z. Pourquoi est-ce non observé ?

- Structures et méthodes opérationnelles.
- Procédures d'évaluation de la décalibration du calorimètre et de la précision de reconstruction.
- On s'attend à une amélioration de 400 MeV de largeur du Pic Z. Pourquoi est-ce non observé ?
 - Procédure de sélection trigger
 - Effets sytématiques en amont de l'intercalibration
 - Il reste une différence données-simulation : effets dominants ?

- Structures et méthodes opérationnelles.
- Procédures d'évaluation de la décalibration du calorimètre et de la précision de reconstruction.
- On s'attend à une amélioration de 400 MeV de largeur du Pic Z. Pourquoi est-ce non observé ?
 - Procédure de sélection trigger
 - Effets sytématiques en amont de l'intercalibration
 - Il reste une différence données-simulation : effets dominants ?

La compréhension du calorimètre progresse continuellement, plus de statistique, meilleure sélection des événements

Incertitudes sur l'uniformité et l'intercalibrations peuvent être levées Modèles à 2 Doublets de Higgs Désintégration $H^0/A^0 \rightarrow \tau \mu$

Introduction

Les 2HDM (2 Higgs Doublet Model) : Modèle standard + un doublet de Higgs supplémentaire. Motivations

- plus simple extension du modèle standard
- inclus en supersymétrie
- permet d'expliquer une non découverte au LEP pour faible m_H

Conséquences phénoménologiques :

- potentiel scalaire élargi
- couplages de Yukawa supplémentaires

Différents types de 2HDM :

2HDM-I et 2HDM-II

symétries imposées dans $\mathcal{L} \Longrightarrow$ pas de couplages non-diagonaux.

2HDM-III

pas de symétries supplémentaires \implies couplages non-diagonaux, violation de la saveur leptonique

Paramètres supplémentaires :

 λ_{ij} lpha aneta m_{h^0} m_{H^0} m_{A^0} m_{H^\pm}

Parametrisation

couplages supplémentaires paramètrisés par une matrice respectant la hierarchie

$$\lambda_{ij} \frac{\sqrt{m_i m_j}}{v}$$

- 2HDM-III : potentiel de Higgs étendu \implies on peut choisir $tan\beta = 0$
- Hypothèse simplifi catrice : tous les couplages diagonaux supplémentaires λ_{ii} égaux
- on se restreint aux masses de Higgs < 160 GeV</p>
- paramètres restants :

 $\lambda_{ au\mu} \,\, lpha \,\, \lambda_{ii} \,\,$ masses des Higgs

Moment magnétique anormal du muon

 $\lambda_{\tau\mu}$ contribue au calcul de a_{μ}

À partir de :

dernière mesure, Brookhaven (E821)

calcul de toutes les contributions du modèle standard

intervale de confi ance pour une compatibilité à 90% du 2hDM-III

 $8 \times 10^{-10} < \Delta a_{\mu} < 44 \times 10^{10}$

 \implies contraintes sur $\lambda_{\tau\mu}$ dépendantes de α et des masses des Higgs (pas de dépendance en λ_{ii})

Moment magnétique anormal du muon

Quelques valeurs de Δa_{μ}

Maximum et minimum de $\lambda_{ au\mu}$

Maximum pour mas=200 mas=110

Maximum

Minimum

Minimum pour ma=200 mm=110

250 200

150 100

179 8580 1555945 1493530

 $m_A = 150 \text{ GeV}$

$m_A = 120$ GeV

La désintégration $H^0/A^0 \rightarrow \tau \mu$

Simulation signal et fond dans la chaine complète de D0

Processus	m_H (GeV)	Sections effi caces en pb
$pp \to t\bar{t} \to \mu^{\pm} \nu_{\mu} b e^{\pm} \nu_{e} \bar{b}$		0.128
$pp \to t\bar{t} \to \mu^{\pm} \nu_{\mu} b \tau^{\pm} \nu_{\tau} \bar{b}$		0.128
$pp \to W^+W^- \to \mu^+ \nu_\mu \tau^- \bar{\nu}_\tau$		0.225
$pp \to W^+W^- \to \mu^+ \nu_\mu e^- \bar{\nu}_e$		0.225
$pp \to W^{\pm} Z^0 \to \mu^{\pm} \nu_{\mu} \tau^+ \tau^-$		0.019
$pp ightarrow Z^0(\gamma^*) ightarrow au^+ au^-$ (130 - 250 GeV)		1.71
$pp ightarrow Z^0(\gamma^*) ightarrow au^+ au^-$ (60 - 130 GeV spécial)		0.054

section effi caces et désintégration signal & fond calculées au NLO
 restreint aux désintegrations *τ* en électrons

Coupures

- 1 1 muon au trigger niveau 1
- 2 1 muon « loose» et 1 électron certifi é
- **3** véto sur les jets P_T muon > P_T électron

- 4 Le muon et le tau sont dos-à-dos et le tau très énergétique : électron et muon sont dos-à-dos
- 5 Tau très énergétique : électron et neutrinos colinéaires

- 6 Énergie manquante dans la direction de l'électron
- 7 On reconstruit l'impulsion du tau : P_T tau > 50 GeV
- 8 Coupures sur masse reconstruite du Higgs

Effi cacités

 \blacktriangleright ~ 12 % pour le signal

au plus 0.4 % pour les bruits de fonds

	Bruit de fond					
	$WW\! ightarrow\!\mu au$	$WW \! ightarrow \! \mu e$	$WZ\! ightarrow\!\mu au$	Z 130	Z spécial	Total
(7)	1.7	6.2	0.38	2.5	7.0	18
(8)	0.4-0.7	1.2-1.7	0.03-0.12	0.7-1.2	0.3-2.3	3.0-6.2

(dominée par incertitudes statistiques)

Masse reconstruite

Exemple de masse reconstruite. Distributions normalisées pour 2 fb $^{-1}$

$$\lambda_{\tau\mu} = 20 \ \alpha = 1 \ \lambda_{ii} = 1$$

limites pour A^0

Résultats pour 2 fb⁻¹ de luminosité : limites dans le plan $(\lambda_{\tau\mu}, \lambda_{ii})$

limites pour H^0

Limites de découvertes et d'exclusion dans le plan $(\overline{\lambda}_{\tau\mu},\alpha)$, $\lambda_{ii}=0.5$

limites pour H^0

Limites de découvertes et d'exclusion dans le plan $(\overline{\lambda}_{\tau\mu}, \alpha)$, $\lambda_{ii} = 1$

Combinaison des résultats

On prend en compte :

contraintes venant du moment magnétique du muon

• limites $H^0/A^0 \rightarrow \tau \mu$

▶ prise en compte de h^0 par $\alpha \to \pi/2 - \alpha$

Combinaison des résultats

Combinaison des résultats

Dans les 2HDM-III la compatibilité avec les mesures du moment magnétique anormal du muon imposent un couplage fort

 $\lambda_{\tau\mu} > 20$

Cela favorise le signal $H^0/A^0 \rightarrow \tau \mu$ et la simulation à DØ montre une possibilité de découverte ou exclusion du modèle pour un large espace des paramètres

avec une luminosité de 2fb $^{-1}$