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Abstract

Photon radiation transport is described by the Boltzmann equation.
Because this equation is difficult to solve, many different approximate
forms have been implemented in computer codes. Several of the most
common approximations are reviewed, and test problems illustrate the
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1 The Transport Equation

The Boltzmann transport equation describes how a variety of different types of
particles travel through a material. It is generally considered the most accurate
description of the statistical average density of particles in a system, as long as the
particles do not interact with themselves.1 A very general form of the Boltzmann
transport equation is

1

v

∂f

∂t
+ Ω · ∇f = C(f), (1)

where f(x,Ω, ε, t) is a phase space density with units of “things” per volume per
energy per steradian, ε is the energy of the particles, Ω is the direction of the par-
ticle travel, t is time, and C is a collision operator that represents all interactions
with the material. The distribution function, f , is seven dimensional: three space,
two angle, one energy, and one time dimension. The first term of Eq. 1 is the rate
of change in f with respect to time; all the other terms tally what processes cause
the distribution f to change. The second term is called the streaming term; it de-
scribes the rate of change in f at a point because the particles are moving. All of
the physics that describes how particles, such as photons or neutrons, interaction
with the material is contained in the collision operator.

Eq. 1 is difficult to solve directly, and approximation is nearly always made
before solving it. This paper reviews several of the most popular approximations
used in the radiation transport community.

1.1 Radiation Transport

The Boltzmann equation, Eq. 1, is very general, and every discipline has a different
way to write it that fits their needs best. In radiation transport, the photon den-
sity is not as important as the energy density of the photons. Instead of solving
for f , the radiation community solves for I(r,Ω, ε, t) = hνf , where ν is the pho-
ton frequency with energy ε = hν, h is Planck’s constant, I is called the intensity2

and roughly describes the radiation energy density flowing in a particular direc-
tion. Multiplying Eq. 1 by hν and expanding the collision operator C gives us an
equation for the intensity, namely

1

c

∂I

∂t
+ Ω · ∇I = −σtI +

σs

4π

∫

4π

I dΩ′ + σaB(Tm, ε) + S (2)

In addition to Eq. 2, which describes the energy density of the photons, there is
another equation that describes the energy content of the material. This equation
is

∂um

∂t
= −

∫ ∞

0

∫

4π

cσa(B(Tm, ε) − I) dΩ dε, +Qm (3)

1It will not work to describe the gas in a balloon, for example.
2The intensity is often defined as I = chνf , which describes the power flowing through partic-

ular surface in a particular direction.
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where c is the speed of light, Ω is the unit angle vector, um is the material energy
density, Tm(um) is the material temperature and is a function of the material energy,
σt = σs + σa are the total, scattering, and absorption opacities with units of inverse
length and are also functions of the material energy, S is an external source of pho-
ton energy, Qm is an external source of material heating, and B(Tm, ε) is Planck’s
function.

Eq. 2 assumes local thermal equilibrium and that that the scattering is isotropic
and elastic; there are many instances where these are not valid assumptions, and
more complicated scattering terms must be used. The left hand side of Eq. 3
describe the imbalance between the radiation intensity and the material energy.
The primary difficulties in numerically solving all forms of radiation transport are
caused by this term; the intensity I and Planck’s function generally have extremely
large values, but their difference is quite small.

The intensity I contains much more detailed information than is frequently
needed to solve a particular problem. In fact, the coupling with the material in
Eq. 3 is only through the integral of I over all energies and angles. Integrating I
over all angles yields

E =

∫

4π

I dΩ , (4)

where E is the monochromatic, or energy dependent, radiation energy density3

The radiation energy density is one of the primitive variables in a several of the
approximations to Eq. 2.

When the radiation field is in equilibrium with the material, the Planck (or
black body) function describes the intensity I as a function of energy; this function
is

B(Tm, ε) =
2

h3c3

ε3

( eε/kTm − 1)
, (5)

where k is the Boltzmann constant and is the proportionality constant between
temperature and energy. The maximum in the Planck function is at a photon en-
ergy of

εmax = (2.8214393721220788934...)kT. (6)

When the material and radiation are not in equilibrium, the material emits radi-
ation with a power density of cσaB and the photons are absorbed with a power
density of cσaI . Integrating the Planck function B over all energies and angles as
in Eq. 3 yields

BE(Tm) =
8π5k4

15h3c3
T 4

m = aT 4

m, (7)

where a is the black body constant. Just as the material at a given temperature has a
known radiation field, the radiation can be characterized in terms of a temperature

3Within the radiation transport community, there are several groups, each of which used their
own notation. Astrophysicists tend to use the mean intensity J = cE/4π, while others use E. E
will be used here.
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using

Tr =

(

1

a

∫ ∞

0

E dε

)
1

4

. (8)

Equations 2 and 3 form a nonlinear system, even if the material properties are
constant. They can be quite difficult to solve, even when Eq. 2 is approximated.
Many people have looked at how to deal with the nonlinearity [8, 9, 26, 18]. There
are also some excellent general references on radiation transport [33, 39, 29, 16,
2].

2 The Approximations

There are several main approximations to Eq. 2 that most people use. They are:

1. Diffusion [15, 12, 14, 11, 9, 43, 25, 38, 6, 5, 31, 35, 44, 46, 27, 37, 1, 42, 41, 28]

(a) Flux Limited Diffusion

(b) Variable Eddington Factors

2. Discrete Ordinates (SN ) [4, 32, 2, 40, 34, 39, 2, 47]

3. Spherical Harmonics (PN ) [7, 10, 40, 13]

4. Implicit Monte Carlo (IMC) [17, 22]

The diffusion equation is very easy to solve but is inaccurate in optically thin
regions and where the gradient of the energy density is large. Flux limited diffu-
sion is an improvement to fix these deficiencies at the cost of making the equations
nonlinear. Diffusion and P1 are very closely related; variable Eddington factor ap-
proximations are a nonlinear improvement upon the P1 approximation, much in
the same way that flux limited diffusion improves upon regular diffusion.

The equations that arise in the discrete ordinates (SN ) approximation are also
very easy to solve, especially in serial calculations. Recent work has gone into
making SN work on unstructured meshes in parallel. The most severe problem
that SN has is the inclusion of artifacts in the solution called ray effects.

The spherical harmonics approximation (PN ) has been around for a long time,
but has not gotten much use in large codes. While SN suffers from ray effects, PN

suffers from wave effects in time dependent problems
Monte Carlo is not an approximation of the transport equation. While the trans-

port equation describes the statistical average of the particles in the system, Monte
Carlo methods try to build up an average by simulating many individual particles.
Because it is infeasible to simulate as many particles as there are in the physical sys-
tem, the accuracy of the solution is usually limited by computer time and memory.

Only the Boltzmann equation, Eq. 2, is being approximated in all these meth-
ods; the material energy equation, Eq. 3, is unchanged.
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2.1 Diffusion

Because the various forms of diffusion are so common, it is important to under-
stand how it is derived from the transport equation (Eq. 2). The derivation will also
show how diffusion, flux limited diffusion, and variable Eddington factor methods
are related.

For many problems, only the energy density E is important. In fact, it is this
quantity that shows up in Eq. 3. Instead of solving for I directly and then inte-
grating over angle to compute E indirectly, we can manipulate Eq. 2 to yield an
equation for E instead of I . The first step is to integrate Eq. 2 over angle to yield

1

c

∂E

∂t
+ ∇ · F = σa(4πB(Tm) − E) + SE, (9)

where

F =

∫

4π

ΩI dΩ , (10)

is the radiative flux and is the first angular moment of I4, SE is a source of radiation
energy density, and we have used the fact that σa = σt−σs

5 Unfortunately, we now
have a new unknown, F. To get an equation for F as well, we can “easily” take the
first moment of Eq. 2 yielding

1

c

∂F

∂t
+ ∇ · χE = −σtF, (11)

where it has been assumed that all sources of particles (the external source, B(Tm),
and scattering) are isotropic, and χ is the Eddington tensor,

χ =
1

E

∫

4π

(Ω ⊗ Ω) I dΩ , (12)

where the symbol “⊗” signifies an outer product.6 The Eddington factor χ is the
normalized radiation pressure.

This first moment equation is coupled to the second moment. We could keep
taking higher and higher moments of Eq. 2, but each equation is always coupled
to the next higher moment. In fact the PN approximation essentially comes from
this procedure. (See Section 2.3.) All diffusion-like approximations make some
approximation for χ in order to close the equations.

4Again, a different normalization is commonly used for the flux such that F̂ = cF which has
units of power per area.

5σt = σs + σa is only valid for the energy dependent equations; once the energy is discretized
and averages created for each of these quantities, this relation might not be true.

6An outer product operates on two vectors to yield a tensor. This is “opposite” of an inner
product that computes a scalar from two vectors.
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2.1.1 The P1 and Diffusion Approximations

The most common approximation is to assume that the radiation intensity, I , varies
linearly with angle,

I(r,Ω, t) =
1

4π
E +

3

4π
Ω · F. (13)

The approximation that the distribution is nearly isotropic is good in systems that
are optically thick. With this approximation, Eq. 12 becomes simply

χ =
1

3
I, (14)

where I is the identity tensor. With this, Eq. 9 and Eq. 11 become the system of
equations

1

c

∂E

∂t
+ ∇ · F = σa(4πB(Tm) − E) + SE (15)

1

c

∂F

∂t
+

1

3
∇E = −σtF (16)

This is the P1 approximation. One further approximation can be made, namely
that the flux F varies slowly with time in comparison to the spatial gradient,

1

c

∂F

∂t
� 1

3
∇E (17)

This implies Fick’s law F = −1/3σt∇E and leads to the diffusion approximation.
This has the advantage of only one equation to solve for the energy density E. The
diffusion equation and the material equation are

1

c

∂E

∂t
−∇ · D∇E = σa (4πB(Tm) − E) + SE. (18)

∂um

∂t
=

∫ ∞

0

cσa (E − 4πB(Tm)) dε + Qm, (19)

where D = 1/3σt is the diffusion coefficient.
There has been a fundamental change in the form of the equations; the trans-

port equation (Eq. 2) is hyperbolic, implying that particles (and energy) travels
at finite speeds. Ignoring the time derivative in Eq. 16 makes the resulting time
dependent diffusion equation parabolic, allowing the particles to travel at infinite
speed; a small change in one part of the problem immediately affects every other
part of the problem.

2.1.2 Flux Limited Diffusion and Variable Eddington Factors

A large source of problems with both the P1 and diffusion approximations comes
from the fact that they allow |η| > 1, where

η ≡ F

Er
. (20)
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This is completely unphysical; it implies that more energy can be moving than
exists at a point to begin with, or, in other words, the flux F is not limited by
the energy density. To correct this problem, other approximations of the intensity
I instead of the one in Eq. 13 are made where the flux F is limited; hence the
name “Flux Limited Diffusion”. The variable Eddington factor equations are the
P1 equations, Eq. 9 and Eq. 11, namely

1

c

∂E

∂t
+ ∇ · F = σa(4πB(Tm) − E) + SE (21)

1

c

∂F

∂t
+ ∇χE = −σtF, (22)

where the Eddington tensor χ is a nonlinear function of E. There are many differ-
ent closures for χ that have been proposed [38, 35, 31, 44, 25, 30].

The flux limited diffusion equations are arrived at by further assuming that
Eddington factor χ is “isotropic” (χ = χI), that χ varies slowly with space, and
that the approximation in Eq. 17 holds. Using these approximations we can write
down the flux limited diffusion equation as

1

c

∂E

∂t
−∇ · χ

σt
∇E = σa(4πB(Tm) − E) + SE. (23)

The material energy equation is still Eq. 19.
One commonly used flux limiter is the simplified Levermore-Pomraning flux

limiter [31]. It sets

χ =
1

R

[

coth R − 1

R

]

, where R =
∇E

σtE
(24)

This is derived from an exact solution of the transport equation for a particular
problem, and does remarkably well on a wide variety of problems. Other flux lim-
ited diffusion schemes are used [31, 44, 25], and they also do very well in practice.
One approach uses a a higher order approximation such as SN , PN , or IMC every
few steps which is then used to calculate a χ for use in the variable Eddington
factor and flux limited diffusion approximations.

Flux limited diffusion is nearly as cheap as regular diffusion to compute, and
much, much cheaper than any of the higher order approximations. This accounts
for its extraordinary popularity and usefulness for the foreseeable future.

2.2 Discrete Ordinates

The discrete ordinates approximation assumes that particles can only travel along
a few particular directions, instead of the infinite number of directions allowed in
Eq. 2. These directions are generally chosen to be symmetric for any ninety degree
rotation of the coordinate system. Mathematically, this approximation assumes

14



Quadrature Order
Dimensions 2 4 8 16 N

One 2 4 8 16 N
Two 4 12 40 144 1

2
N2 + N

Three 8 24 80 288 N 2 + 2N

Table 1: The number unknowns versus quadrature order for the discrete ordinates,
or SN , approximation.

that the intensity is a sum of delta functions,

I(r,Ω, ε, t) =
M

∑

n=1

In(r, ε, t)δ(Ω− Ωn). (25)

If we insert this into Eq. 2, we find that we have N different equations, one for each
direction (or ordinate) Ωn,

1

c

∂In

∂t
+ Ωn · ∇In = −σtIn +

σs

4π

M
∑

m=1

wmIm + σaB(Tm) + Sn, (26)

where wm is an integration weight. Each direction n is coupled to all the others
through the scattering term and the material equation. Eq. 26 can be differenced
in an upwinded manner, leading to a very efficient algorithm called transport
sweeps. On unstructured grids, it is possible to get cycles of dependency,7 and
the sweep algorithm fails. These cycles can be detected and broken, allowing the
sweeps to continue.

The discrete ordinates approximation in more than one spatial dimension has
a well-known defect called ray effects [32, 34, 7]. Due to the discrete nature of
the angular approximation, particles do not reach regions where they otherwise
would, sometimes producing large spatial oscillations in the energy density E.
There have been some attempts to eliminate ray effects by introducing extra terms
into the equations that act like extra scattering [4, 40, 24].

The N in the abbreviation SN comes from the quadrature order. In one dimen-
sion, the quadrature order is equal to the number of directions in Eq. 25. In two and
three dimensions, the number of directions is much more. Table 1 lists the number
of unknowns (or ordinates) for a few quadrature orders as well as expressions for
arbitrary N .

2.3 Spherical Harmonics

The derivation of spherical harmonics approximation is very similar to the deriva-
tion of the diffusion approximation. In the diffusion approximation, we only took

7Imagine a ring of cells. Where is the beginning?
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Expansion Order
Dimensions 1 3 7 15 N

One 2 4 8 16 N + 1
Two 3 10 36 136 1

2
N2 + 3

2
N + 1

Three 6 20 72 272 N 2 + 3N + 2

Table 2: The number unknowns versus expansion order for the spherical harmon-
ics, or PN , approximation.

the first two angular moments of the transport equation. In the spherical har-
monics approximation, we can take as many moments as we need for an accurate
solution. The intensity, I , is expanded with a set of orthonormal functions called
the spherical harmonic functions,

I(r,Ω, ε, t) =
1√
4π

∞
∑

l=0

l
∑

m=−l

Em
l (r, ε, t)Y m

l (Ω) (27)

Em
l (r, ε, t) =

√
4π

∫

4π

Y
m

l (Ω)I(r,Ω, ε, t) dΩ , (28)

where Em
l is the moment of I with respect to the spherical harmonic function Y m

l .
The lowest order spherical harmonic Y 0

0
= 1/

√
4π, so the multiply and divide

by
√

4π in Eq. 27 and Eq. 28 is so that E0

0
= E is the energy density. The PN

approximation8 arises when it is then assumed that if l ≥ N , then moments Em
l =

0.
If we multiply Eq. 2 by each Y

m

l
9 and integrate over angle, we get a series of

equations for the moments of the intensity I . Each moment Em
l is only coupled to

the moments Em′

l′ , where l′ = l ± 1 and m′ = m + {−1, 0, 1}, for a total of six other
moments. This system of equations can be written in vector form as

1

c

∂E

∂t
+ Ax

∂E

∂x
+ Ay

∂E

∂y
+ Az

∂E

∂z
= −σtE + S, (29)

where Ai are the Jacobians with respect to the i
th direction describing the details

of how the moments are coupled, E is a vector of the moments Em
l , and S is the

source vector and contains the scattering and material emission terms. The Jaco-
bians Ai are constant in space and share a remarkable property—the eigenvalues
of each matrix are identical. Particles travel in waves through the system at a finite
number of speeds determined by these eigenvalues. The more moments, the more
eigenvalues, the more different speeds, and the more accurate the solution can be.
Table 2 lists the number of unknowns in E for a few expansion orders. Comparing

8The symbol P is used because it is the symbol for the Legendre polynomials. In one dimension,
the spherical harmonic functions reduce to the Legendre polynomials.

9The complex conjugate of Y m

l
.

16



the figures in Table 1 and Table 2 shows that an SN approximation has roughly the
same degrees of freedom as a PN−1 approximation.

The spherical harmonics approximation has a not-so-well-known defect called
wave effects in the time dependent case. In a vacuum, the system of equations is
a wave equation, and it is possible to get negative energy densities E = E0

0
. This

is clearly unphysical. Not only is this important for vacuum regions, but on short
time scales, interactions with the material become unimportant, and the equations
again look like they are in a vacuum. Even in time dependent problems without
voids, it is possible to get a negative solution for the energy density E. The energy
density in steady state problems is always nonnegative.

2.4 Monte Carlo

The Boltzmann transport equation (Eq. 2) and approximations based on it solve
for the statistical average of energy densities. It treats the radiation as a continuous
field; particles do not really exist.

Monte Carlo, on the other hand, embraces the particle as its fundamental fea-
ture. Individual photons are simulated from birth to death, modifying the mate-
rial energy as they travel. When a simulated photon is emitted from the material,
it slightly decreases the material energy. This photon travels through the model,
occasionally interacting with the material through scattering or absorption events.
When the photon is absorbed, the material energy is incremented a little bit.

All of the photon’s interactions, including its birth, have certain probabilities
of occurring that we can estimate. A pseudo random number generator is used in
conjunction with these probabilities to calculate when, where, and what kind of
event occurred. Once many particles have been simulated, a reasonable average
for the energy density is estimated.

Implicit Monte Carlo, or IMC, is a particular way to handle the time depen-
dence for radiation transport problems. In IMC, as the photons heat or cool the
material during the time step, the probability that photons are emitted from the
material change. Despite the name of the method, the material properties such as
opacity and density are fully explicit; only the emission rate from the material is
treated implicitly. At the end of each time step, the photon population is counted,
and the material properties incremented.

The biggest disadvantage of IMC is that it is both processor time and memory
intensive; otherwise, it generally yields very accurate results, once enough parti-
cles have been simulated. Until a photon dies in an IMC simulation, it remains
in memory. For a three dimensional problem, energy dependent calculation, one
million particles would use about 45 MB of memory.10

10This is an absolute minimum and assumes one double precision variable for each of the three
position, two angle, and one energy variables. Other information such as the random number
generator state, particle time, etc. can increase this number significantly.
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The estimated error in the IMC calculation is

Error = α
1√
N

, (30)

where α is some proportionality constant and N is the number of particles simu-
lated. This equation implies that in order to achieve a factor of 10 decrease in the
estimated error, 100 times more particles need to be simulated! There are many
variance reduction techniques that can be used to dramatically reduce the pro-
portionality constant α, but the general scaling of error with the number particles
simulated shown in Eq. 30 still applies.

In very rare instances, the simulation can produce a completely wrong result,
especially if something important happens where there are not very many pho-
tons.11 While deterministic approximations (diffusion, SN , PN ) have a uniform er-
ror throughout the system, the Monte Carlo simulation has the largest error where
there are the fewest particles. It has been argued that this is actually a good thing
because Monte Carlo spends its time getting a good answer where it matters, if that
is defined as the highest particle density. (This can be a reasonable assumption.)
The deterministic approximations get equally good (or bad) results everywhere.

3 Multigroup Methods

The transport equation, Eq. 2, depends on photon energy. In order to form a prob-
lem that we can solve numerically, Eq. 2 (or any approximation based on it) is
usually discretized in energy by integrating it over energy range to yield

∫ εg
max

εg

min

[

1

c

∂I

∂t
+ Ω · ∇I = −σtI +

σs

4π

∫

4π

I dΩ′ + σaB(Tm) + S

]

dε (31)

This leads to a series of equations for each energy range called the group equations:

1

c

∂Ig

∂t
+ Ω · ∇Ig = −σg

t Ig +
1

4π

∫

4π

σg
sIg dΩ′ + σg

aBg(Tm) + Sg, (32)

where Ig =
∫ εg

max

εg

min
I dε and similarly for Sg and Bg. Some of the terms in Eq. 32 are

more complicated; however, careful averages can be performed to ensure that the
terms are equal to the terms in Eq. 31. Inspecting the emission term first, we define
an averaged opacity such that

σg
a =

∫ εg
max

εg

min
σa(Tm, ε)B(Tm, ε) dε
∫ εg

max

εg

min
B(Tm, ε) dε

, (33)

11Consider the case of a supercritical nuclear reactor behind a very thick neutron shield. Since
pure uranium is not an emitter of neutrons, there is nothing to initiate run-away chain reaction
in the reactor, except for the source of neutrons on the other side of the shield. A Monte Carlo
simulation might not ever transport a neutron to the reactor, giving you a false sense of security.
In the real world, there would be so many neutrons, the probability that at least one will reach the
reactor is very great.
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where σg
a is called the Planck weighted average. The emission term in Eq. 31 can

be expressed exactly as σg
aBg, where Bg =

∫ εg
max

εg

min
B dε is the group integrated Planck

function. Ideally we would want to average the total removal and scattering terms
in a similar fashion, using

σ =

∫ εg
max

εg

min
σ(Tm, ε)I(ε) dε

∫ εg
max

εg

min
I(ε) dε

(34)

to calculate the average. However we do not (and do not want to) know what
the detailed energy density I(ε). We are making the group approximation so that
we don’t have solve for this in the first place. If we assume that the simulation
is nearly in equilibrium, then I ≈ B, and we can just use a Planck average as in
Eq. 33.

The diffusion equation Eq. 18 in Section 2.1.1 has an opacity that shows up in
a slightly different form in the diffusion term. Integrating the diffusion term in
Eq. 18 over a group yields

∫ εg
max

εg

min

∇ · 1

3σt
∇E dε = ∇ · 1

3

∫ εg
max

εg

min

1

σt
∇E dε. (35)

This equation suggests a different average that looks like a harmonic mean. Again,
since we do not know the energy density E, we can make the assumption that it
is approximately equal to B. This gives us the Rosseland mean opacity, which is
defined as

1

σg
R

=

∫ εg
max

εg

min

1

σt
∇B dε

∫ εg
max

εg

min
∇B dε

=

∫ εg
max

εg

min

1

σt

∂B
∂Tm

∇Tm dε
∫ εg

max

εg

min

∂B
∂Tm

∇Tm dε
=

∫ εg
max

εg

min

1

σt

∂B
∂Tm

dε
∫ εg

max

εg

min

∂B
∂Tm

dε
(36)

When the radiation community uses the term “Rosseland mean opacity”, they
are referring to precisely Eq. 36, which is the weighted harmonic mean of the total
opacity. Also when the term “Planck mean opacity” is used, they are referring
to the arithmetic weighted average of the absorption opacity in Eq. 33. Note that
when using the Rosseland mean, σg

t 6= σg
s + σg

a.
One could use either the Plank or Rosseland mean averages for any opacity that

appears in the equations, and frequently a Rosseland mean is used on all opacities
that arise. Figure 1 shows a detailed total opacity for aluminum at 40 eV and an
ion density of 1019 cm−3 calculated with a program written by Ping Wang [45].
Also shown on the figure is the one and five group average opacities calculated
as a Planck mean and a Rosseland mean. The Rosseland mean, because is is es-
sentially a harmonic mean, weights the lower opacities more. To see why using
the Rosseland mean makes physical sense, imagine a slab of 40 eV aluminum with
a source of radiation shining on it. A few mean free paths into the slab, most of
the photons will have been absorbed, except for the ones with energies around
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Figure 1: The detailed aluminum opacity at 40 eV and an ion density of 1019 cm−3

is shown with one and five group Planck and Rosseland means. Note how the
Rosseland mean is weighted toward the lower opacities.

100 eV (the minimum in the detailed opacity). If we were then to use the ideal
averaging method in Eq. 34 to calculate an average opacity, it would be heavily
weighted toward this minimum because the distribution of I(ε) is peaked in that
energy range. The harmonic mean qualities of the Rosseland mean automatically
does this without needing the detailed distribution of I(ε).

For many calculations a single energy group is detailed enough for an accurate
answer. In this case, the integration in Eq. 32 is carried out over all energies. This
one-group approximation is sometimes called the gray approximation.

4 A Few Test Problems

The problems in this section are designed to give some insight as to how the vari-
ous approximation perform relative to each other. Some of the problems are a test
of neutral particle transport; they are not coupled to the material energy at all. All
of the calculations are single-group in energy.
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4.1 A Line Source in Two Dimensions

The most basic of all time dependent problems is a Green’s function problem. In
two dimensions this is a pulse of particles is emitted from a line source. In a linear
system such as ours without the material equation, solutions to all other time de-
pendent problems are just superpositions of solutions of different Green’s function
problems. Only a vacuum is considered here; there is no coupling with the mate-
rial. This test problem is designed to show the fundamental differences in each of
the approximations. The defects in each of the approximations that are exposed by
this problem will also be seen in all of the other test problems considered in later
sections.

The energy density can be solved for analytically for most approximations.
Solving the transport equation, Eq. 2, for the intensity I , then integrating over
angle to get the energy density E yields

Etransport =
E0

2π

h(ct − r)

ct
√

c2t2 − r2
, (37)

where E0 is the strength of the initial radiation pulse along the line and h(x) is the
unit step function. The general PN solution is

EPN =
E0

π

∑

λi≥0

rili

[

δ(r − λit)
√

λ2

i t
2 − r2

− λit h(λit − r)

(λ2

i t
2 − r2)3/2

]

, (38)

Note that there are regions where the solution for EPN is negative. This is an essen-
tial defect of the PN equations, not a problem with the numerical implementation.
The general SN solution is

ESN = E0
∑

i

wiδ(‖x − ctΩi‖), (39)

where the sum over i denotes a sum over all angles. In contrast to the transport
and PN solutions, the SN solution is a function of both x and y instead of a func-
tion of r only. This rotational dependence of the discrete ordinates equations is a
factor in the problem called ray effects. In the diffusion case, there is no solution.
Eq. 18 is not well defined in a vacuum. The nonlinear (and therefor much harder to
solve analytically) flux limited diffusion is defined in a vacuum, and the numeric
solution is shown in Figure 2(e).

Figure 2 shows various numerical solutions for the line source problem. All
simulations are on a grid two centimeters square with a mesh spacing of about
dx = 0.01 cm. The Monte Carlo simulation in Figure 2(b) is very similar to the
transport solution in Figure 2(a), with the exception statistical noise in the solu-
tion. This simulation used one hundred thousand particles. It is fairly easy to
reduce this noise by simply increasing the number of particles in the simulation12.

12But keep in mind Eq. 30 states that to reduce the error by a factor of ten, one hundred times the
computer resources must be used.
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(a) Analytic (b) Monte Carlo

(c) P1 (d) P5

(e) Flux Limited Diffusion (f) S6

Figure 2: Solutions to the pulsed line source problem. The color scale is linear, and
the color at each of the corners equals zero for all approximations except diffusion
which uses the same scale as S6. Colors more blue than the corners are negative.
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Figure 2(c) and Figure 2(d) show the P1 and P5 solutions, respectively. The P1

approximation has one wave speed at which particles can travel, whereas P5 has
three wave speeds. This can be seen in the rings moving away from the center. Just
behind each ring, there is a negative region in the energy density. Figure 2(e) is not
a mistake. The distribution spread out so fast13 that the distribution is essentially
flat and has a very small and nearly uniform value everywhere. A discrete ordi-
nates S6 calculation is shown in Figure 2(f). Note that the particles are all moving
in delta functions away from the center.

The full transport equation is hyperbolic in nature, which means that particles
and information can only travel at finite speeds. All of the approximations except
diffusion respect this; all of the approximation in Figure 2 have semi-reasonable14

answers except the diffusion. The key difference between spherical harmonics
(PN ) and discrete ordinates (SN ) is that SN moves particles around along particu-
lar beams, giving rise to ray-effects; while PN moves particles only with particular
speeds, giving rise to wave-effects. The Monte Carlo simulation looks the best, but
if the problem would have been sensitive to instabilities, the noise in the simula-
tion could be problematic.

Ganapol [19, 20, 21] has analytically solved the transport equation for several
other problems in infinite media.

4.2 A Lattice Problem

This problem is a checkerboard of highly scattering and highly absorbing regions
loosely based on a small part of a nuclear reactor core. This is only a test of the
transport approximations; there is no material energy equation. When an absorp-
tion occurs, the particles are simply removed from the system and do not heat it
up.

The system for this problem, shown in Figure 3, is seven centimeters wide. The
bulk of the lattice is composed of a scattering material with σt = σs = 1 cm−1. There
are eleven absorbing regions where σt = σa = 10 cm−1. At time zero, a source of
strength one is turned on in the central region of the system. All particles travel
at a speed c = 1 cm/s, and the problem is surrounded on all sides by vacuum
boundaries.

Figures 4 and 5 show the energy density E 3.2 seconds after the source is turned
on and at steady state (approximately twenty seconds after the source is turned
on). In each of the figures, there are results from the diffusion, flux limited diffu-
sion, P1, P7, S6, and implicit Monte Carlo approximations. The diffusion and the
discrete ordinates calculations were done with ALEGRA [16]. The implicit Monte
Carlo calculation was done using the Kull IMC package [22] and used thirty six
million particles in half the problem domain, with a reflective boundary on the
center line. The PN calculations were done with a research code of my own [10, 13].

13The diffusion length is, after all, infinite.
14A “semi-reasonable” answer is one that converges to the correct solution as the order of the

method is increased; the results shown in Figures 2(c)-2(f) are by no means truly reasonable.
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Figure 3: The lattice system. The blue and white regions are pure scattering re-
gions where σs = 1 cm−1. Additionally, the white region contains a source of par-
ticles. The red regions are pure absorbers with σa = 10 cm−1. The particles are
simply removed from the system by the absorbers; there is no material equation.

At the early time shown in Figure 4, particles should have had just enough time
to reach the boundaries but not enough to reach the corners. The diffusion calcu-
lation shown in Figure 4(a) is much too diffuse; the particles have reached all parts
of the system. Also, the central region does not have enough particles. The flux
limited diffusion result in Figure 4(b) is a vast improvement upon the diffusion
calculation and captures the wave front well, but there are no beams of particles
leaking between the absorbers as seen in the Monte Carlo and P7 calculations. The
energy density computed using P1, seen in Figure 4(c), has an artificial wave front
of particles traveling at speed v = 1/

√
3 cm/s. This is due to the fact that in P1, the

particle waves travel only at this speed. In the P7 calculation, the particle waves
can travel at more speeds, nearly eliminating these nonphysical wave fronts. Some
wave-effects can also be seen in the P7 calculation. Well defined beams of particles
leaking between the corners of the absorbing regions in both Figure 4(d) and Fig-
ure 4(f), the P7 and Monte Carlo simulations. Generally P7 and Monte Carlo agree
very well, especially for energy densities above 10−4. The S6 calculation shown in
Figure 4(e) has about the same number of degrees of freedom as the P7 calculation,
but the ray-effects are very dominant.

At steady state, the Monte Carlo and P7 again agree extremely well. Both
Figure 5(d) and Figure 5(f) show distinct shadows in the corners behind the ab-
sorbers, as well as prominent beam-like features leaking from between the ab-
sorbers. Again these beams cannot be seen in the flux limited diffusion result in
Figure 5(b). The P1 and diffusion results in Figure 5(c) and Figure 5(a) should
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(f) Implicit Monte Carlo

Figure 4: The calculated energy density in the lattice problem 3.2 seconds after
the source was turned on. The color-map is proportional to log

10
E and limited to

seven orders of magnitude.
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(b) Flux limited diffusion
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(f) Implicit Monte Carlo

Figure 5: The calculated energy density in the lattice problem at steady state. The
color-map is proportional to log

10
E.

26



Figure 6: The hohlraum. The blue regions are pure absorbers regions where σa =
100 cm−1 and ρCv = 5.0 × 105 J/m3 K. the white region is a vacuum.

match, but they do not here because the P1 code uses a higher order method which
essentially gives more resolution on the same grid size as the diffusion calculation.
Again, the discrete ordinates solution is dominated by the ray-effects in Figure 5(e),
even in steady state. The negative waves in the P7 solution disappear in steady
state in Figure 5(d). This will always be true; the PN wave-effects always vanish in
steady state, while the SN ray-effects can be present in both time dependent and
steady state problems.

4.3 A Hohlraum

This hohlraum problem is loosely based on a typical hohlraum for the Z-machine
at Sandia. The radiation field is coupled to the the material energy through Eq. 3.
Unlike a real hohlraum, this problem is described in Cartesian coordinates. The
system, shown in Figure 6, is thirteen millimeters square with a thin wall of ma-
terial around the outside edge. There are two two millimeter openings on ei-
ther left side of the hohlraum, and there is a rectangular block of material in the
center of the system. The material is a pure absorber with σa = 100 cm−1 and
ρCv = 5.0 × 105 J/m3 K. The rest of the problem is a vacuum. Some codes used
for this problem could not model a pure void, so the heat capacity was set ex-
tremely large, ρCv = 1.0 × 1099 J/m3 K. The opacities were all set to zero in the
void. The initial material and radiation temperatures were set to T0 = 300 K. A
source boundary condition is applied along the entire left hand side. The source
has a temperature of Tsource = 3.5 × 106 K.

Figures 7-8 show the radiation temperature, as defined by Eq. 8, at times of
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t1 = 3.93606 × 10−11 s, and t2 = 5.0 × 10−10 s. The material temperature at t2 =
5.0 × 10−10 s is shown in Figure 9. Throughout the discussion below, it is assumed
that the Implicit Monte Carlo simulation is the most accurate answer.

At the time depicted in Figure 7, photons have had nearly enough time to back
wall of the hohlraum. Most of the photons are still streaming from the openings;
the walls of the hohlraum have not started to heat up yet. Flux limited diffusion,
Figure 7(b) has incorrectly allowed photons to fill the entire system. The P1 (Fig-
ure 7(c)) and P9 (Figure 7(d)) simulations both have wave-like solutions, which
allow the photons to bend around the front wall. Notice the black regions in the P9

solution in Figure 7(d); these represent negative solutions. While too many pho-
tons are transported in the wave front around the back side of the wall, P9 “tries”
to compensate by having waves of negative energy follow the positive waves that
should not be there. The P1 and S2 solutions are nearly opposites of each other; the
P1 solution in Figure 7(c) is much too uniform while the S2 solution in Figure 7(e)
has particles traveling along distinct beams, which are no traveling in the right
direction. The S8 calculation has many more beams, but it is still suffering badly
from ray-effects. While these ray-effects persist even at long times, the wave effects
seen in P9 solution, Figure 7(d), quickly travel through the system.

Finally in Figure 8, the simulation is approaching steady state. Because P1 was
the quickest of the simulation methods used here, it was the basis of a scoping
calculation to see how long the simulation should last. Unfortunately its answer
is completely wrong; the photon energy density is much to uniform. All of the
other approximations are still changing rapidly. Flux limited diffusion is some-
what better, as can be seen in Figure 8(b), but it has still transported too much
energy through the problem. In the IMC calculation, Figure 8(a), the back wall
is just starting to heat up and re-emit photons. While the P9 and S8 simulations
are beginning to qualitatively look good, they still are suffering from wave-effects
(Figure 8(d)) and ray-effects (Figure 8(f)). In the P9 simulation, the photon energy
density has bled around the corners too much.

The material temperature at the final time of t = 5.0 × 10−10 s is shown in Fig-
ure 9. Even thought the photon energy density of the IMC is noisy, the calculated
material temperature in Figure 9(a) is much smoother. This is because the indi-
vidual photons of the simulation have a small effect on the material temperature.
It takes many photons to change the temperature by a significant amount. This
essentially adds an extra level of averaging in the simulation that dramatically
improves the quality of the material temperature over what is expected from the
radiation field. Notice that the back side of the capsule has a very uniform tem-
perature; the other higher order methods (S8 and P9) are both nonuniform. This
could cause problems in instability studies, although the IMC simulation still has
some noise, it is just at a much shorter wavelength and smaller amplitude. Again,
P1 and flux limited diffusion have warmed up the walls too much, especially in
the right half of the simulation.
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(a) Implicit Monte Carlo (b) Flux limited diffusion

(c) P1 (d) P9

(e) S2 (f) S8

Figure 7: The radiation temperature in the hohlraum problem at t =
3.93606 × 10−11 s after the source was turned on. The color-map is proportional
to Tr = (E/a)1/4. Black regions indicate negative energy densities.
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(a) Implicit Monte Carlo (b) Flux limited diffusion

(c) P1 (d) P9

(e) S2 (f) S8

Figure 8: The radiation temperature in the hohlraum problem at t = 5.0 × 10−10 s
after the source was turned on. The color-map is proportional to Tr = (E/a)1/4.
Black regions indicate negative energy densities.
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(a) Implicit Monte Carlo (b) Flux limited diffusion

(c) P1 (d) P9

(e) S2 (f) S8

Figure 9: The material temperature in the hohlraum problem at t = 5.0 × 10−10 s
after the source was turned on. The color-map is proportional to Tm.
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5 Conclusions

Simulating radiation transport is difficult; the equation we would really like to use,
the Boltzmann transport equation, is seven dimensional. This leads to a myriad of
different approximations to the transport equation.15

Diffusion is by far the simplest approximation and works well when there is
material for the photons to diffuse through. The many varieties of flux limited dif-
fusion all attempt to improve upon plane diffusion while remaining fairly easy to
solve. The errors with diffusion theory all stem from the fact that the fundamental
mathematical characteristic of the transport has been changed from hyperbolic to
parabolic. This change means that photons are no longer constrained to travel at
the speed of light. Some extremely fast and robust numerical methods have been
developed to numerically solve the diffusion theory equations.

The spherical harmonics approximation takes moments of the Boltzmann equa-
tion to arrive at a set of conservation laws for each of the moments. In a vacuum,
this approximation leads to the wave equations, and this causes the simulations
to suffer from wave-effects. Theoretically these effects become negligible when
enough moments are used, but in a vacuum, an infinite number of moments are
needed to eliminate the wave-effects.

The discrete ordinates approximation moves photons only along a particular
set of directions. Many people have studied this approximation, making its prob-
lems well understood. Many very efficient algorithms have been developed to
solve the discrete ordinates equations. Unfortunately, ray-effects, the most well-
known defect of discrete ordinates, can be seen in many simulations.

Implicit Monte Carlo can treat photons exactly, but a given simulation cannot
come close to simulating as many particles as there are in all physical systems.
This leads to statistical noise, which is this method’s largest weakness. In order to
reduce the amount of noise in a given simulation by a factor of ten, one hundred
times more particles must be simulated. In time-dependent problems, not only
does this increase run-time by a factor of one hundred, but memory usage also
increases by the same factor. The resulting material energy calculated in an IMC
simulation, however, is much less noisy than the radiation field, and it is usually
the material energy that is more important for simulations.

For the test problems in this paper, the Monte Carlo generally gave the best re-
sults. Flux limited diffusion gave the best results normalized by run time. Spheri-
cal harmonics and discrete ordinates both have some significant problems in opti-
cally thin materials, but spherical harmonics appears to perform slightly better in
highly heterogeneous material such as the lattice problem.

15This is lucky for PhD students, who’s advisor’s love coming up with new approximations.
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A Boundary Conditions

The most physically relevant boundary conditions for a radiation transport prob-
lem specify the radiation entering the system, known as a source boundary condi-
tion. We generally do not know how much radiation is exiting a system before the
calculation begins, so it remains unspecified. We can specify the incoming radia-
tion mathematically for use in the Boltzmann, Eq. 2, as

I(Ωin) = i(Ωin), (40)

where Ωin · n < 0, n is the outward surface normal, and i(Ωin) is the specified
incoming radiation. If the incoming radiation is zero,

I(Ωin) = 0, (41)

then this boundary condition is known as a vacuum boundary.
Another useful, but purely mathematical, boundary condition is a reflecting

boundary condition. The reflecting boundary condition allows the simulation to
exploit planes of symmetry so that only a small part of the physical system needs
to be simulated. This can save a considerable amount of computer time. At the
reflecting boundary we have

I(Ω) = I(Ω − (2Ω · n)n), (42)

where again n is the outward surface normal. An extension of the reflective bound-
ary is the albedo boundary condition where only a fraction of the outgoing radia-
tion is reflected back into the system. This can be expressed as

I(Ωin) = αI(Ωin − (2Ωin · n)n), (43)

where again Ωin · n < 0, and 0 ≤ α ≤ 1 is the albedo. When α = 0 the albedo
boundary condition is the same as the vacuum boundary condition, and if α = 1,
the reflective boundary condition is recovered.

A final class of boundary conditions is the Dirichlet boundary condition. Here,
the radiation field is completely specified along a particular boundary.

I(Ω) = i(Ω), (44)

where i(Ω) is a given function. Dirichlet boundary conditions are most useful for
comparing analytic answers with numerical solutions.

Each of the approximations to the Boltzmann equation, Eq. 2, must also ap-
proximate the natural boundary conditions described in Eqs. 40-44. In discrete
ordinates, each of the boundary conditions is averaged over an angular range and
assigned to the corresponding beam. Diffusion and spherical harmonics are a bit
harder. Various moments of the specified boundary condition must be taken to
specify the moments in the simulation. This will be explicitly done for diffusion in
the next section.
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Diffusion Boundary Conditions

Only regular diffusion will be considered here. The details for flux limited diffu-
sion can be found in a paper by Levermore and Pomraning [31].

Since the diffusion approximation is posed in terms of integral quantities of
the intensity I , the boundary conditions must also be approximated by integral
quantities. The mostly widely used boundary condition is a Marshak boundary
condition in which the incoming partial flux is specified. The incoming flux is
defined as

Fin = −
∫

Ω·n<0

n ·ΩI dΩ . (45)

Inserting the diffusion approximation of I from Eq. 13 into Eq. 45 yields

Fin =
1

4
E − 1

2
n · F. (46)

We can also define an outgoing flux by integrating Eq. 45 over Ω · n > 0,

Fout =
1

4
E +

1

2
n · F. (47)

With these two partial fluxes and recalling that F = −1/3σt∇E, we can reconstruct
all the transport boundary conditions.

The source boundary condition (Eq. 40) is simply

Fin =
1

4
E − 1

2
n · F = f (48)

where f is the specified incoming flux. Setting f = 0 is the vacuum boundary.
Usually the incoming flux is given in terms of a temperature. In this case, setting
i = B(Tsource) in Eq. 45 yields

Fin =
1

4
E − 1

2
n · F =

1

4
BE(Tsource). (49)

For an albedo boundary condition we know that Fin = αFout, where α is the
fraction of radiation that is reflected back into the system. With this, we get the
condition

−1

2

1 − α

1 + α
E + n · F = 0. (50)

We can easily recover the reflective boundary condition by setting α = 1 to get

n · F = 0. (51)

A Dirichlet boundary condition is trivial, we simply set E = E0 along the
boundary.

Inspection of the diffusion boundary conditions reveals that they can all be
written in the same form as

AE + Bn · F = C. (52)

Table 3 lists the factors A, B, and C for all the boundary conditions listed here.
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Boundary Condition A B C
Dirichlet 1 0 E0

Vacuum −1/2 1 0
Source −1/2 1 −2Fin = −BE(Tsource)/2

Reflection 0 1 0
Albedo −(1 − α)/2(1 + α) 1 0

Table 3: Coefficients for the diffusion boundary conditions.

Constant SI CGS

Speed of light, c 2.99792458 × 108 m/s 2.99792458 × 1010 cm/s
Planck, h 6.62606876 × 10−34 J s 6.62606876 × 10−27 erg s

Boltzmann, k 1.3806503 × 10−23 J/K 1.3806503 × 10−16 erg/K
1.6021764 × 10−19 J/eV 1.6021764 × 10−12 erg/eV
(1.1604506 × 104 K/eV) (8.617342 × 10−5 eV/K)

Black Body, a 7.565766 × 10−16 J/m3 K4 7.565766 × 10−15 erg/cm3 K4

1.372017 × 101 J/m3 eV4 1.372017 × 102 erg/cm3 eV4

Stefan-Boltzmann, σ 5.670400 × 10−8 W/m2 K4 5.670400 × 10−5 erg/cm2 K4 s

1.028301 × 109 W/m2 eV4 1.028301 × 1012 erg/cm2 eV4 s

Table 4: Physical constants used in radiation transport.

B Physical Constants

Various unit systems are commonly used in radiation transport. Both SI and CGS
are used, as well as modifications on each of these where the energy and tem-
perature units are replaced by electron Volts (eV). Table 4 lists the constants for
different unit systems. All constants are listed with as many significant digits as
are known. This means that any calculation can only be good to roughly the first
six decimal places. The National Institute of Standards and Technology has a very
good website tabulating all physical constants [36]. Another source for units of
most physical quantities, is the NRL Plasma Formulary [23].

The black body constant is defined as

a =
8π5k4

15h3c3
, (53)

and the Stefan-Boltzmann constant is defined as

σ =
ca

4
=

2π5k4

15h3c2
. (54)

It is standard practice to quote very high temperatures in terms of electron Volts
instead of Kelvin. The conversion to Kelvin from electron Volts is accomplished by
applying

TeV = kTK, (55)
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where TeV is the temperature in electron Volts and TK is the temperature in Kelvin.
The first forty digits [3] of π are

π = 3.141592653589793238462643383279502884197 . . . (56)

C Coordinate Systems

Throughout this paper, the details of the derivative operators in various coordinate
systems have been avoided, mostly because they are unimportant for understand-
ing the different approximations. Here, the streaming term from Eq. 1 and the
diffusion term from Eq. 18 are explicitly written for various coordinate systems for
reference [2].

The Streaming Term

In Cartesian coordinates, the streaming term from Eq. 1 is

Ω · ∇f = sin ϑ cos ϕ
∂

∂x
f + sin ϑ sin ϕ

∂

∂y
f + cos ϑ

∂

∂z
f (57)

The position is given by r = (x, y, z) and the angle in terms of ϑ and ϕ. The direc-
tion cosines are given by Ω = (sin ϑ cos ϕ, sin ϑ sin ϕ, cosϑ). This is the same for all
three coordinate systems mentioned here.

In cylindrical coordinates the conservative form of the streaming term is

Ω · ∇f =
sin ϑ cos ϕ

r

∂

∂r
rf +

sin ϑ sin ϕ

r

∂

∂θ
f + cos ϑ

∂

∂z
f − sin ϑ

r

∂

∂ϕ
sin ϕf, (58)

where r = (r, θ, z) are the spatial coordinates and (ϑ, ϕ) are the angular coordinates.
ϑ is the angle measured from the z-axis and ϕ is the angle between the r-z plane
and the r-Ω plane. This means the direction of ϕ = 0 changes with θ and leads to
the term with the derivative in ϕ.

In spherical coordinates where r = (r, θ, φ) and the angles are given by (ϑ,ϕ),
the streaming term is

Ω · ∇f =
cos ϑ

r2

∂

∂r
r2f +

sin ϑ sin ϕ

r sin θ

∂

∂φ
f +

sin ϑ cos ϕ

r sin θ

∂

∂θ
sin θf

− 1

r sin ϑ

∂

∂ϑ
sin2 ϑf − sin ϑ cot θ

r

∂

∂ϕ
sin ϕf

(59)

Here cos ϑ = Ω · r̂ and ϕ is the angle between the Ω-r and r̂-ẑ planes.
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The Diffusion Operator

The diffusion operator in Eq. 18 in Cartesian coordinates is

∇ · D∇E =
∂

∂x
D

∂

∂x
E +

∂

∂y
D

∂

∂y
E +

∂

∂z
D

∂

∂z
E. (60)

In cylindrical coordinates when integrating over all angles, the derivatives in
angle in Eq. 58 vanish and we have

∇ · D∇E =
1

r

∂

∂r
rD

∂

∂r
E +

1

r2

∂

∂θ
D

∂

∂θ
E +

∂

∂z
D

∂

∂z
E. (61)

In spherical coordinates the diffusion term is

∇ · D∇E =
1

r2

∂

∂r
r2D

∂

∂r
E +

1

r2 sin θ

∂

∂θ
sin θD

∂

∂θ
E +

1

r2 sin2 θ

∂

∂φ
sin θD

∂

∂φ
E. (62)
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