Noise Reduction Potential of Large, Over-the-Wing Mounted,

Advanced Turbofan Engines

XIV ISABE

Jeffrey J. Berton

National Aeronautics and Space Administration Propulsion Systems Analysis Office Glenn Research Center Cleveland, Ohio

September 10, 1999

Introduction

Two Future Aircraft Design Issues:
Increasingly stringent civilian aviation noise regulations will require the design of extremely quiet commercial aircraft.

• The large fan diameters of modern, increasingly higher bypass ratio engines pose a significant packaging and aircraft installation challenge.

One design approach that addresses both of these challenges is to mount the engines above the wing.

Advantages:

- Noise insertion loss
- Fan diameter
- Landing Gear
- Coanda effect

Disadvantages:

- Maintenance
- Cabin noise
- Stability & Control
- Unconventional

NASA Aeronautics Noise Goal: Reduce the perceived noise levels of future aircraft by a factor of two (10 EPNdB) from today's subsonic aircraft within 10 years, and by a factor of 4 (20 EPNdB) within 25 years.

Introduction (2)

Over-the-Wing Engine Mounting: Why Now?

Then:

• Earlier efforts were applied to older, lower bypass engines, and limited benefits were shown.

- \Rightarrow High jet noise (distributed source)
- \Rightarrow High fan inlet radiated noise
- Wing chord insufficiently large to effectively shield both ends of the engine.

Now:

• Modern high overall pressure and bypass ratios result in much lower jet noise.

 Noise of modern, highly loaded, wide chord fan blades dominated by discharge noise.

Expectation is that wing barrier noise shielding will be much more effective for ultra high bypass engines.

Method of Analysis

Source Noise Modeling:

Fan: Pratt & Whitney/NASA
Advanced Ducted Propulsor (Low Noise
Fan #1) experimental data

- \Rightarrow 1/6 scale model tunnel data
- \Rightarrow Design tip speed: 850 ft/s
- \Rightarrow Design pressure ratio: 1.28
- \Rightarrow 2 degree of freedom acoustic liner
- Jet: Modified, semiempirical Stone method after P&W ultrahigh bypass data
- Core: Matta method
- Airframe: Fink method

Noise Propagation Modeling:

 Noise insertion loss: Classic Maekawa diffraction theory; applied to fan and core noise only

- Atmospheric and other effects:
 - \Rightarrow Atmospheric attenuation
 - \Rightarrow Ground attenuation/reflections
 - \Rightarrow Convective amplification
 - \Rightarrow Spherical spreading

Method of Analysis (2)

Engine Cycle Modeling:

- One dimensional thermodynamic cycle analysis
- ♦ 55,000 pound thrust class
- Very high bypass ratio (13.5)
- Low speed, low noise, Advanced Ducted Propulsor geared fan

Aircraft Modeling:

- Long haul, heavy, quad jet aircraft
 - \Rightarrow Long chord lengths
 - \Rightarrow Regulation compliance difficulty
 - \Rightarrow Entry into service circa 2020

P&W Low Noise Fan #1 in NASA Glenn 9x15 Low Speed Wind Tunnel

, eronautics

P&W Low Noise Fan #1 in NASA Glenn 9x15 Low Speed Wind Tunnel

ronautics

Experimental Fan Noise Data Reduction

Static Fan Noise Comparison

National Aeronautics and

Space Administration Glenn Research Center

ronautics

Experimental Fan Data at Certification Power Settings

eronautics

High Bypass Jet Noise Modeling

National Aeronautics and Space Administration

Barrier Diffraction Analysis

National Aeronautics and Space Administration Glenn Research Center

Aeronautics

General Arrangement of circa 2020 Conceptual Quad Aircraft

ronautics

Inlet Barrier Attenuation

Discharge Barrier Attenuation

Space Administration Glenn Research Center Aeronautics

Noise Level Variation in Pitch Angle; with and without Wing Barrier Calculations

Reference Trajectory and Observer Locations

Community Observer Noise Histories; with and without Wing Barrier Calculations

Observer Time Relative to Point of Closest Approach (s)

ronautics

Sideline EPNLs

eronautics

Community EPNLs

National Aeronautics and Space Administration

eronautics

Approach EPNLs

eronautics

National Aeronautics and Space Administration

Cumulative EPNLs

National Aeronautics and Space Administration

EPNL Contours

Distance from Brake Release (ft)

ronautics

Summary

Noise of advanced turbofan engines is effectively shielded by wing insertion loss:

- \Rightarrow Dominance of fan discharge noise
- \Rightarrow Low levels of distributed jet noise

• Over-the-wing engine mounting will result in additional noise reduction not considered in this study:

- \Rightarrow Low frequency boundary layer entrainment noise between wing and nacelle
- \Rightarrow Underwing high frequency noise reflection
- Relative dominance of airframe noise, especially with wing insertion loss

