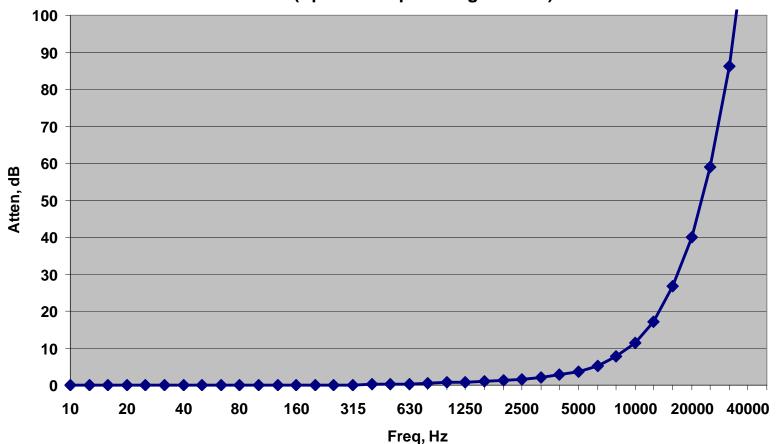
Controlling Machinery Induced Underwater Noise

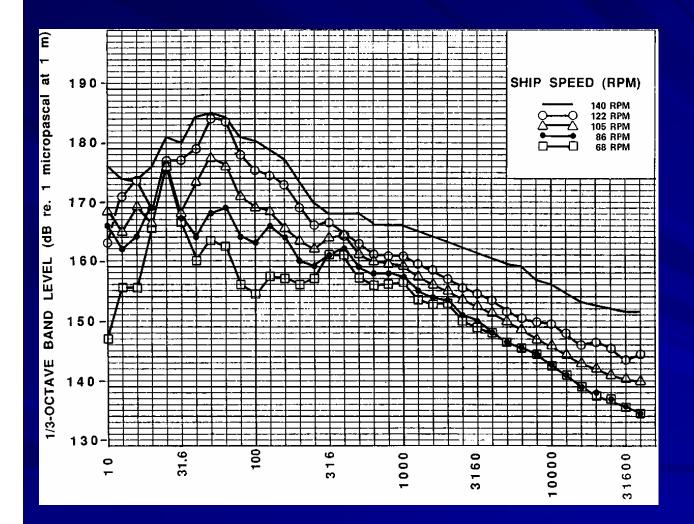
Raymond Fischer, Noise Control Engineering, Inc. NOAA Vessel Quieting Technology

09/11/2004

Approach

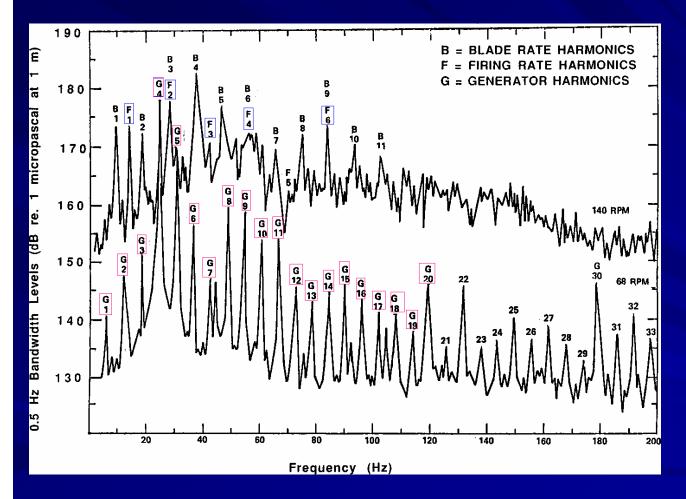

How much U/W noise reduction is required? Critical sources - Machinery Propulsor (covered by others) Critical paths - Airborne and structureborne Noise/Vibration control approaches Use NOAA Fisheries R/V as illustration

Range to achieve 120 dB Level


	Source Level, dB re 1µPa @1m	range, km Spherical spreading	range, km 1.5 power spreading	range, km Cylindrical spreading
5-m Zodiac	156	0.06	0.25	4
Tug & Barge	171	0.35	2.5	125
Supply Ship	181	1	11.7	1260
Large Tanker	190	3	46.4	10000
Drill ship, rigs, platforms				
Drill Ship	175	0.6	4.6	320
Conical Drilling Unit	185	1.8	21.5	3200
DREDGING				
Ship 1	172	0.4	2.9	160
Ship 2	185	1.8	21.5	3200

Ocean Attenuation

Attenuation at 10 km (Spherical spreading = 80 db)

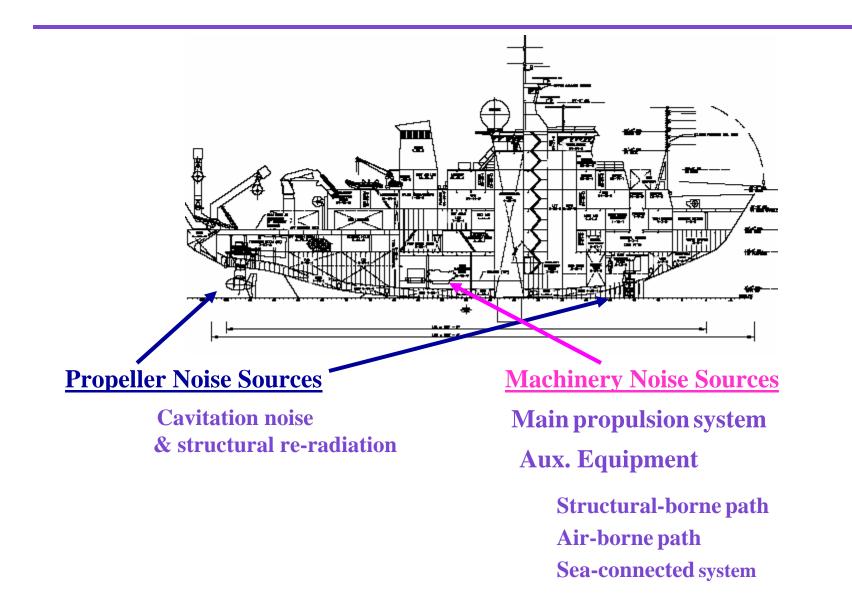

Cargo Ship Broad Band Noise

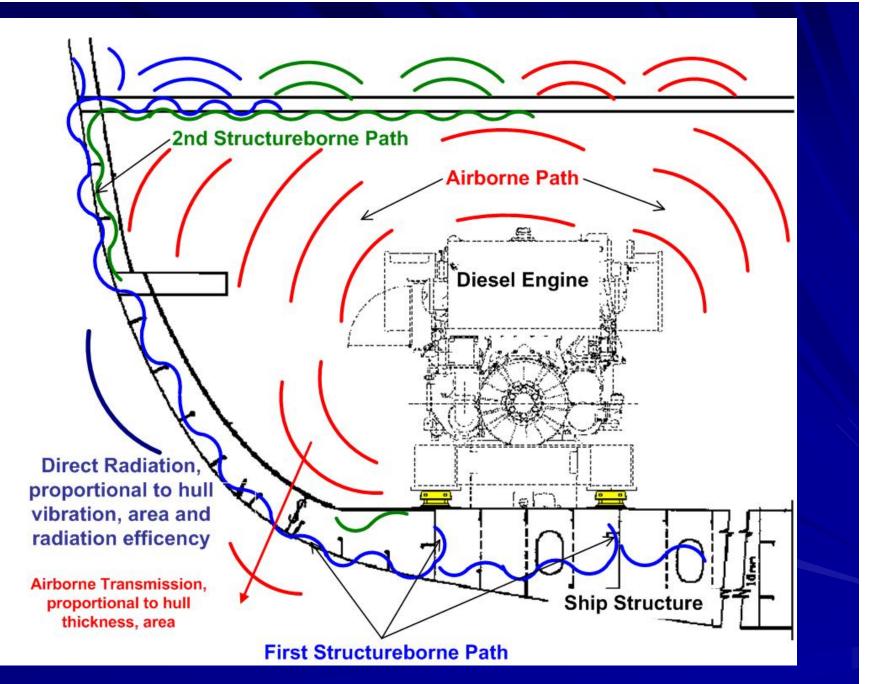
Radiated Noise Characteristics of a Modern Cargo Ship, Arverson & Vendittis, JASA 107 (1), Jan. 2000.

173 m Direct Drive

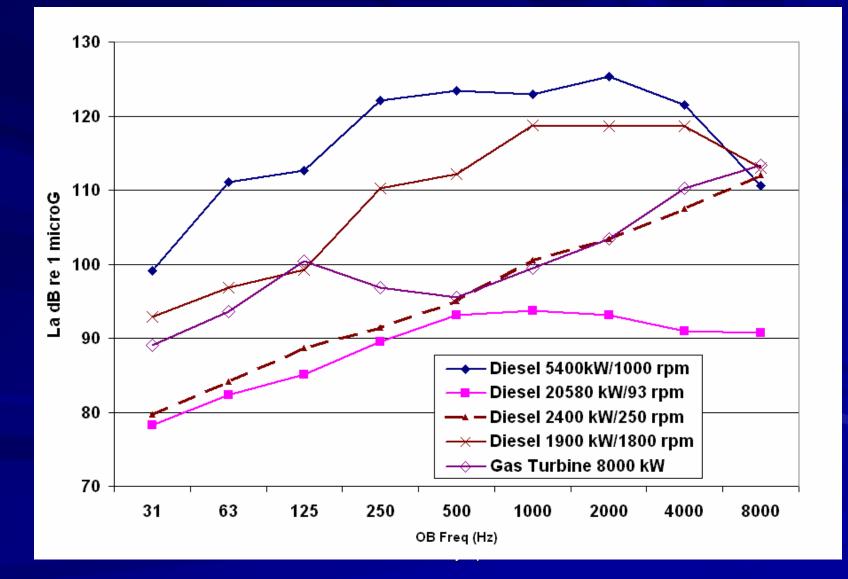
Cargo Ship Broad Band Noise

Radiated Noise Characteristics of a Modern Cargo Ship, Arverson & Vendittis, JASA 107 (1), Jan. 2000.


173 m Direct Drive


Radiated Noise – Cruise Ship

3 15 TOB Freq (Hz)


Radiated Noise - Alaska Cruise Ships

Ship Noise Sources

Various Drive Vibration Levels

Best Acoustic Design

Use inherently quiet equipment Rotating rather than reciprocating Use (dynamically) stiff foundations Place noisier equipment toward centerline Use double hulls or tanks outboard of Engine Room Diesel-Electric offers greatest opportunity - Isolation mounts for gensets, quiet motors

Vibration Isolators

Does not eliminate low frequency noise!

- Best shipboard noise control element.
- Reduces SB path.
- Isolation of Propulsion Engines requires flexible coupling and other components.
- Use only Elastomeric Marine-Grade Mounts.
- Requires dynamically stiff foundations.

Two-stage Genset Isolation System for NOAA FRV

Acoustic Insulation

- Reduces AB & SSB Transmission.
- Typically insulation's base material is either fiberglass or mineral wool.
- High Transmission Loss (or HTL) material has middle layer of limp mass (usually leaded vinyl).
- Transmission Loss or STC (Sound Transmission Class) defines performance.

Treatment Effectiveness

Treatment	AB	FSB	SSB
Vibration Isolation – passive	0	10-	0
\$20-\$400/mt		20	
Raft mount equipment	0	5	0
Steel framing			
Acoustic Insulation	5-10	0	5-10
3 to 8 pcf; \$1-\$4/ft ²			
Damping; 2-3 psf; \$8-\$12/ft ²	0	5-10	5-10
Bow Thruster Treatments	10	10	10

"Quiet Vessel" approximately 7% to 10% total cost of vessel. Quiet R/V 15% to 20% cost of vessel. *Values are approximate dB reduction of overall sound.*

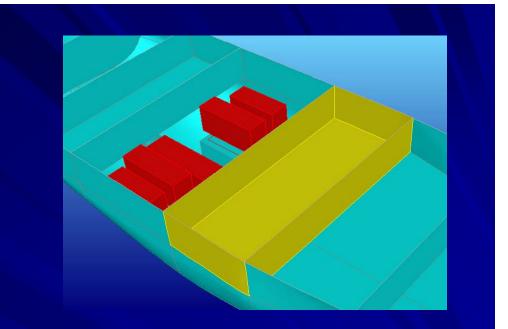
Follow Through

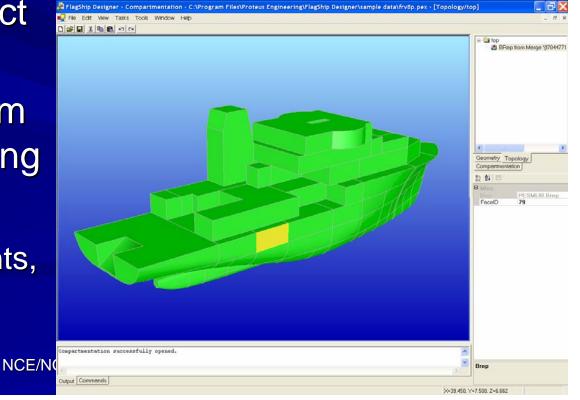
All the treatments in the world will not overcome a poor inspection/ QA and verification program!

Advanced Treatments

Air layer (belt forward of engine room) - Effective mid- to high-frequency (10+ dB) Amplifies low freq (-5 dB over 50 Hz bw) - Holes can clog if not maintained Hull coating Effectiveness depends on material 'compliance' and thickness (>10 dB) Adherence and damage issues

Advanced Treatments

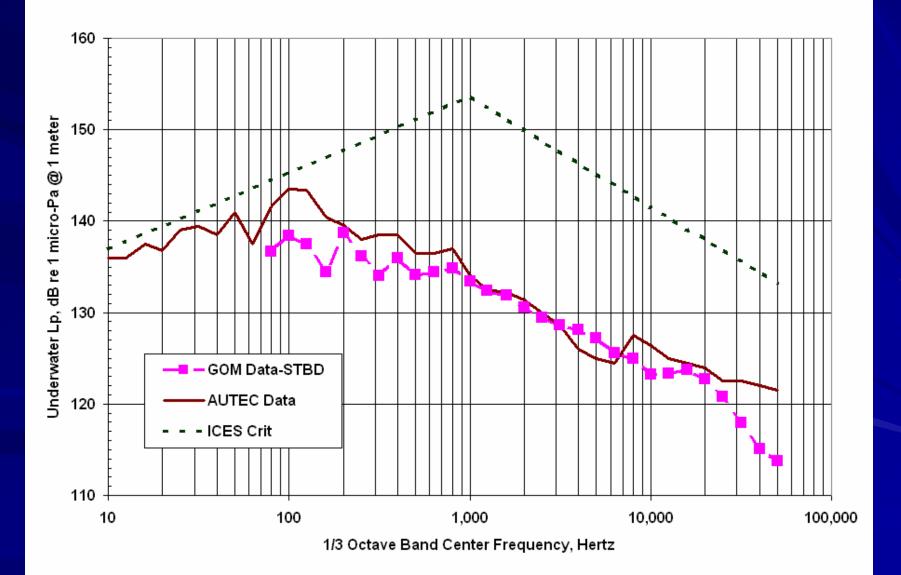

Active mount system


 Improved low frequency performance
 Cancels tones and multiples

Keep machinery inside hull (Azipods currently radiate significant mechanical noise)

Designer NOISE

- Program for shipboard noise prediction
- Created under US NAVY SBIR Project
- Part of Flagship Designer suite from Proteus Engineering
- Ship specific
 - Modeling, constants, etc.



FRV-40 Noise Control Treatments


Low Noise Equipment	Propulsion Motor Specially Designed
Double Stage Vibration Isolation	Diesel Gens & Reciprocating Equipment 3512 system – 18,113 kg; 3508 system – 14,770 kg
Single Stage Isolation	Auxiliary Equipment & HVAC
Acoustic Insulation	Perimeter of Engine Room and other noisy spaces
Damping Tiles	Applied to hull and bulkheads (16 tons)
Hull & Propeller	Specially designed by U.S. Navy (NSWC) NCE/NOAA Symposium

FRV Radiated Noise – 11 kts

Prediction Tools

DIFFERENCE BETWEEN MEASURED AND PREDICTED RADIATED NOISE - AOE-6

Range to 120 dB Level

	Source Level, dB re 1 µPa @1m	range, km Spherical spreading	range, km 1.5 power spreading	range, km Cylindrical spreading
FRV-40	150	.03	.1	1
5-m Zodiac	156	0.06	0.25	4
Tug & Barge @	171	0.4	2.5	130
Supply Ship	181-20=161	1.1->.11	12->.54	1260->12.6
Large Tanker	190-20=170	3.2->.32	46->2.1	10000->100
Drill ship, rigs, platforms				
Drill Ship	175-20=155	0.6->.06	4.6->.2	320->3.2
Conical Drilling Unit	185-20=165	1.8->.02	22->1	3200->32
DREDGING				
Ship 1	172-20=152	0.4->.04	3->.1	160->1.6
Ship 2	185-20=165	1.8->.02	22->1	3200->32

Summary

Technology exists to evaluate and control ship noise & should be applied to vessels that operate in environmentally sensitive areas
Primary noise sources are the propulsion drives – low frequencies and the propulsors – mid to high frequency (can trump once cavitating)
Drives should be selected based on having low vibration source levels and/or utilizing vibration isolation

- isolation mounts
- Novel treatments show potential but need development

References

- On active vibration isolation of floating raft system, J. Niu, K. Song, & C. Lim, J. of Sound and Vibration, 285, 2005.
- Active Vibration Isolation in Ships, M. Winber, S Johansson, L Hakansson & I. Claesson, Intl. J of Ac. & Vib., 10 (4), 2005.
- Active Control of Engine Induced Noise in a Naval Application, M Winberg, S Johansson, T Lag, 8th Intl Congress on Sound & Vib, Hong Kong, 2001.
- Optimization of Vibration Isolation Mounts for Application to Shipboard Diesel Engines, A Muravyov & S Hutton, Nat. Defence R&D Branch, DREA CR/97/437, April 1997.
- Effect of Drag-Reducing Air Lubrication on Underwater Noise Radiation from Ship Hulls, K. Matveev, Trans. of the ASME, 137, Aug. 2005.
- Simplified Structural Acoustic Characterization of External Compliant Coatings on Submerged Surfaces, B. Sandman & J. Boisvert, NUWC Div. Newport Tech Digest, June 1995.
- Computational Evaluation of Damping and Decoupling Materials, Ph III, O. Foin & A. Berry, Nat. Defence R&D Branch, DREA CR/2000-016, Feb 2000.
- Introducing Decoupling Coatings in SEA Models, C. Audoly, Noise-Con 97, Penn State U., June, 1997.

NCE References

- Airborne Noise Flanking of Shipboard Vibration Isolation Systems," Sound and Vibration, Dec. 2006.
- "Underwater Radiated Noise of the NOAA Vessel OSCAR DYSON," Noise Control Engineering Journal, 54(4), Jul-Aug., 2006.
- Shipboard Noise Predictions for Naval Architects," EuroNoise 2006, Finland, May 2006.
- "Elements of a Successful Ship Noise Control Project," ASNE, Marine Environmental Engineering Technology Symposium 2006, Washington DC, Jan. 2006.
- "Factors Affecting the Underwater Noise of Commercial Vessels Operating in Environmentally Sensitive Area," (with Neal Brown) Oceans '05, MTS/IEEE Conference, Washington DC, Sept. 2005.
- "Acoustic Design, Construction and Testing of NOAA's Fisheries Research Vessel," Lloyds Conference on Ship Noise and Vibration, June 20-21, 2005.
- "Case Study: Application of SEA to Predicting Shipboard Noise," Lloyds Conference on Ship Noise and Vibration, June 20-21, 2005.
- "Verification of a Hybrid Model for Shipboard Noise Predictions," (with Won-Ho Joo, and Jong-Hyun Park), InterNoise 03, Inst. of Noise Control Engineers, Korea, Aug., 2003.
- "Shipboard Noise Prediction Program JERICHO," (with Kurt Yankaskas) NoiseCon 03, Inst. of Noise Control Engineers (INCE), Cleveland, June 23, 2003.
- "Control of Diesel Induced Shipboard Noise by the Use of Isolation Mounts," Invited paper, Inter-Noise 2001, The Hague, Aug. 27-30, 2001.
- "SEA Application to Shipboard Noise," presented at the First International AutoSEA Users Conference, July 27, 2000, San Diego, CA.
- "An Introduction to Statistical Energy Analysis", (with Courtney Burroughs and Fred Kern), 101(4), Journal of the Acoustical Society of America, April 1997.
- "Noise and Vibration Control Program for the M/V Sulfur Enterprise," Noise-Con 96, Seattle WA, Sept. 1996.
- "Case History: Excessive Noise and Vibration Induced by Cantilever Foundations on Ships," Noise Control Engineering Journal, 31 (3), November-December, 1988.