caAERS

Test Plan v. 1.04

caAERS Application Development
Test Plan

Submitted By: SemanticBits, LLC

Date: April 5, 2007
Document Version: 1.03
Document Change history

	Version Number
	Date
	Description

	Draft - 1
	12/18/2006
	Ram – template draft

	1.01
	2/9/2007
	Updated to incorporate Reviewer feedback.

	1.02
	3/5/2007
	Updated to incorporate 508 Compliance Testing

	1.03
	4/5/2007
	1. Updated to incorporate feedback (added Kim L and Zhiqiang C. as DE’s and Functional Testers)
2. Added sample 508 Compliance Testing Scripts.

	1.04
	5/8/2007
	Updated to include HIPAA references. Section 2.2.5.

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

TABLE OF CONTENTS

iiDocument Change history

1.
Introduction
1
1.1
Scope
1
1.1.1
Identification
1
1.1.2
Document Overview
1
1.2
Resources
2
1.3
Referenced documents
2
2.
Software Test Strategy
4
2.1
Objectives
4
2.2
APPROACH
4
2.2.1
Unit Testing
5
2.2.2
Integration Testing
6
2.2.3
User Acceptance Testing (UAT)
6
2.2.4
Section 508 Compliance Testing
7
2.2.5
HIPAA Compliance Testing
8
2.3
Description of Functionality
11
2.4
Specific Exclusions
11
2.5
Dependencies & Assumptions
11
2.6
General Criteria for Success
11
2.6.1
Readiness Criteria
12
2.6.2
Pass/Fail Criteria
12
2.6.3
Completion Criteria
12
2.6.4
Acceptance Criteria
12
3.
Software Test environment
14
3.1
SemanticBits
14
3.1.1
Software Items
14
3.1.2
Hardware and Firmware Items
14
3.1.3
Other Materials
15
3.1.4
Participating Organizations
15
4.
Test Schedules
16
4.1
Time Frames for Testing
16
5.
Risks
17
Appendix A – Acronym List
18
Appendix B – Test report
19
Appendix C – Sample Section 508 Compliance Script
20

1. Introduction

This Test Plan prescribes the scope, approach, resources, and schedule of the testing activities. It identifies the items being tested, features to be tested, testing tasks to be performed, personnel responsible for each task, and risks associated with this plan.

1.1 Scope

This document provides instruction and strategy for incorporating Software Testing practices and procedures into the Cancer Adverse Event Reporting System (caAERS) project. This document demonstrates the application of testing on this software. The purpose of this project is to develop and to deploy an adverse event reporting system that is nationally scalable with a robust architecture to meet the needs of the caBIG™ Community. The caAERS requirements, data model, and use cases developed during Release 1 will be the foundation for this effort. The Developer Team will execute Elaboration, Construction and Transition Phase activities for this project. The project will be carried out using the Agile Unified Process Framework, emphasizing continuous integration, testing, and risk management. Two Adopters, Wake Forest and The Mayo Clinic have been assigned and funded by caBIG™ and their input and collaboration throughout this project is critical to the timely release of functional software. The Developer Team will work closely with these Adopters, any additional adopters identified by NCICB, and the Adverse Events Special Interest Group to ensure the deliverables of this project will meet the needs of the caBIG™ Community.

The scope of testing on the project is limited to the requirements identified in the project’s Software Requirements Specification (SRS). The project has been broken up into three phases (Elaboration, Construction, and Transition) with one month iterations in each. Requirements for separate functional areas are determined at the start of each iteration. The impact of this on the Test Plan is that the specifics of the test plan and the test data will be determined as requirements are included in the SRS.

See the caAERS 1.0 Vision and Scope Document for more detailed information on project scope.

1.1.1 Identification

caAERS 1.0
1.1.2 Document Overview

This Test Plan defines the strategies necessary to accomplish the testing activities associated with caAERS. We expect that it will be further developed as the development project proceeds. Testing procedural instructions are included in the Standard Operating Procedures (SOPs).

The remaining Test Plan sections are organized as follows:

· Section 3: Software Test Strategy: Describes the overall approach and techniques to be used during testing.

· Section 4. Software Test Environment: Describes the intended testing environment.

· Section 5. Test Schedules: Contains or references the schedules for conducting testing.

· Section 6. Risks: Identifies the risks associated with the Test Plan.

· Appendix A. Acronym List: Defines the acronyms used on the project.

1.2 Resources

· Ram Chilukuri: Technical Manager
· Edmond Mulaire: Project Manager
· Vinay Kumar: Architect
· Joshua Phillips: Lead Developer
· Sujith Thayillthodi: Developer

· Kulasekaran Sethumadhavan: Developer
· Sean Whitaker: Analyst

· Rhett Sutphin: Co-Lead Developer
· Cal Collins: Functional Lead

· Krikor Krumlian: Domain Expert
· Sharon Elcombe: Lead Elaborator
· Bob Morrell: Lead Elaborator

· Renee Webb: Domain Expert

· David Patton: Domain Expert

· Natasha Ganzenko: Domain Expert
· Kim Livengood: Domain Expert

· Zhiqiang Cheng: Analyst

See the caAERS 1.0 Communication Plan for more details on stakeholders and their roles.

1.3 Referenced documents

For additional project specific information, refer to the following documents:

· Vision and scope document

http://gforge.nci.nih.gov/plugins/scmsvn/viewcvs.php/docs/Management/caAERS%20Vision%20and%20Scope.doc?root=caaersappdev&view=log
· Communication Plan

https://gforge.nci.nih.gov/plugins/scmsvn/viewcvs.php/docs/Management/Communications_Plan-caAERS.doc?root=caaersappdev&view=log
· Test reports
https://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/caAERSv2/documentation/testing/reports/?cvsroot=caAERSv2

· Use case document
https://gforge.nci.nih.gov/plugins/scmsvn/viewcvs.php/docs/Use%20Cases/caAERS_draft_Use_Case.doc?root=caaersappdev&view=log
· SRS
https://gforge.nci.nih.gov/plugins/scmsvn/viewcvs.php/docs/SRS/caAERS_draft_SRS.doc?root=caaersappdev&view=log
· Project plan

https://gforge.nci.nih.gov/plugins/scmsvn/viewcvs.php/docs/Management/caAERS%20Application%20Development%20PMP.doc?root=caaersappdev&view=log
· Risk Matrix

https://gforge.nci.nih.gov/plugins/scmsvn/viewcvs.php/docs/Management/Risk%20Matrix/?root=caaersappdev
· Risk management plan
https://gforge.nci.nih.gov/plugins/scmsvn/viewcvs.php/docs/Management/RiskMgmtPlan_caAERS.doc?root=caaersappdev&view=log
2. Software Test Strategy

2.1 Objectives

caAERS 1.0 will result in a production system that is fully functional with respect to the requirements listed in section 2.3. The overall object of this test plan is to provide unit, integration, and quality assurance testing for the whole of the caAERS delivered software. Unit testing is done during code development to verify correct function of source code modules, and to perform regression tests when code is refactored. Integration tests verify that the modules function together when combined in the production system. User acceptance testing verifies that software requirements and business value have been achieved.
2.2 APPROACH

The testing approach is to convert the use cases described in the caAERS 1.0 use case document into a number of automated unit and integration tests to ensure the software conforms to the requirements. The following proposes the approach for testing caAERS 1.0:

· Create a clear, complete set of test cases from the use case documents and review it with all stakeholders.

· Throughout the project, maintain the Requirements Traceability Matrix so that any stakeholders or tester has a concise record of what tests are run for each requirement.

· All test cases will be command line accessible to take advantage of continuous integration testing thru the use of ANT for all testing phases.

Some of the practices that the SemanticBits team will adopt are:

· Derive test cases/unit tests from updated functional specifications of all relevant use cases. Unit tests and testing scenarios will be constructed in parallel with core development efforts, while validating the specifications against the relevant use cases. The use of diagrammatic representations of use cases in the form of task-based flow-charts, state diagrams, or UML sequence diagrams may facilitate creation of test cases and monitoring outcomes.
· Teaming testers with developers to provide close coordination, feedback, and understanding of specific modules for testing purposes.
· Ongoing peer-review of design and code as a team based form of software inspection. Each developer will review and run code written by another developer on a regular basis (acting as QA inspectors in turns), along with joint code review to gain consensus on best practices and common problems.
· Automated test execution using Ant and unit testing to support rapid testing, capturing issues earlier in the development lifecycle, and providing detailed logs of frequent test results (through nightly builds). The automated test environment will be carefully setup to ensure accurate and consistent testing outcomes.
· Regression testing ensures that the changes made in the current software do not affect the functionality of the existing software. Regression testing can be performed either by hand or by an automated process. The regression testing will be achieved by using a nightly build.
· Continuous Testing uses excess cycles on a developer’s workstation to continuously run regression tests in the background, providing rapid feedback about test failures as source code is edited. It reduces the time and energy required to keep code well-tested, and prevents regression errors from persisting uncaught for long periods of time
· Integration and System testing tests multiple software components that have each received prior and separate unit testing. Both the communication between components and APIs, as well as overall system-wide performance testing should be conducted.
· Usability Testing to ensure that the overall user experience is intuitive, while all interfaces and features both appear consistent and function as expected. Comprehensive usability testing will be conducted with potential users (non-developers) with realistic scenarios and the results will be documented for all developers to review.
· Bug-tracking and resolution will be managed by regularly posting all bugs and performance reports encountered in gForge, with follow-up resolution and pending issues clearly indicated for all developers and QA testing personnel to review.

2.2.1 Unit Testing

During system development, each developer performs unit testing of his or her code before it is finished. Unit testing is implemented against the smallest non trivial testable element (units) of the software and involves testing the internal structure, such as logic and data flow, and the unit's functional and observable behaviors. The centrepiece of the caAERS unit testing strategy will be the JUnit unit-testing framework and will be augmented by Schemamule, and DBUnit. The Spring Framework’s mock library and EasyMock will be used to create mock objects to assist in separating unit tests. Examples of unit testing for caAERS 1.0 software are as follows:
· Design and develop the interface for a non-trivial Java class.
· Write test case using JUnit testing all methods in the interface.
· As the class is developed the test case is run to ensure the class is working properly

Complex test cases will be implemented with the Haste unit-testing framework. This will allow the gluing of test cases into a “story” that represents the overall unit being tested.

CruiseControl will run unit tests each time the repository is revised and will archive test reports. Developers will be able to run unit tests as needed to verify correct function of their code, the results of these ad-hoc unit tests will not be saved.
2.2.2 Integration Testing

Integration testing is a form of “white-box testing” where this testing method makes sure that the correct outputs are produced when a set of inputs are introduced to the software. In this case, the software internals are visible and closely examined by the tester. The business logic of the system, including grid services, will be tested. The set of unit tests will be implemented with Ant, JUnit, Haste, and performance profiling tools. The following sections describe how each of the components will be tested.

2.2.2.1 Grid Services
Grid Services will be tested using the caGrid system testing infrastructure, which provides facilities to dynamically build, deploy, invoke, and tear down grid services. Business logic will be tested by providing contrived inputs to the services and comparing the outputs to known values.
2.2.2.2 ESB

The Enterprise Service Bus will be tested using the Haste framework. Messages will be sent to the ESB and appropriate routing and construction of output messages will be validated.
2.2.3 User Acceptance Testing (UAT)
Acceptance Level Testing represents the final test action prior to deploying any version of caAERS. Adopters will perform Acceptance Level testing using one or more releases of caAERS to verify its readiness and usability as defined in the use-case(s) and supporting documents.
Subject matter experts will test the end-user application (web interface) and determine its acceptability from a usability standpoint. Each use case and requirement will be translated into at least one test case. The focus of these test cases will be on final verification of the required business function and flow of the system, emulating real-world usage of the system. To facilitate the UAT, we plan to engage the subject matter experts throughout the software development lifecycle, especially during the use case collection and prototyping sessions. We also plan to provide access to the interim builds of the system to the subject matter experts so that they can gain familiarity and provide valuable feedback for increasing the usability of the system. The development team will closely work with subject matter experts during the UAT.
User acceptance testing will be performed by the following individuals:

· Renee Webb: domain expert
· David Patton: domain expert
· Natasha Ganzenko: domain expert

· Sharon Elcombe: lead elaborator
· Bob Morrell: lead elaborator
· Zhiqiang Cheng: analyst

· Kim Livengood: domain expert

2.2.4 Section 508 Compliance Testing
Testing will be conducted to ensure that the caAERS application is in compliance with the following Section 508 accessibility requirements:
(a)
A text equivalent for every non-text element shall be provided (e.g., via "alt", "longdesc", or in element content).

(b)
Equivalent alternatives for any multimedia presentation shall be synchronized with the presentation.

(c)
Web pages shall be designed so that all information conveyed with color is also available without color, for example from context or markup.

(d)
Documents shall be organized so they are readable without requiring an associated style sheet.

(e)
Redundant text links shall be provided for each active region of a server-side image map.

(f)
Client-side image maps shall be provided instead of server-side image maps except where the regions cannot be defined with an available geometric shape.

(g)
Row and column headers shall be identified for data tables.

(h)
Markup shall be used to associate data cells and header cells for data tables that have two or more logical levels of row or column headers.

(i)
Frames shall be titled with text that facilitates frame identification and navigation.

(j)
Pages shall be designed to avoid causing the screen to flicker with a frequency greater than 2 Hz and lower than 55 Hz.

(k)
A text-only page, with equivalent information or functionality, shall be provided to make a web site comply with the provisions of this part, when compliance cannot be accomplished in any other way. The content of the text-only page shall be updated whenever the primary page changes.

(l)
When pages utilize scripting languages to display content, or to create interface elements, the information provided by the script shall be identified with functional text that can be read by assistive technology.

(m)
When a web page requires that an applet, plug-in or other application be present on the client system to interpret page content, the page must provide a link to a plug-in or applet that complies with §1194.21(a) through (l).

(n)
When electronic forms are designed to be completed on-line, the form shall allow people using assistive technology to access the information, field elements, and functionality required for completion and submission of the form, including all directions and cues.

(o)
A method shall be provided that permits users to skip repetitive navigation links.

(p)
When a timed response is required, the user shall be alerted and given sufficient time to indicate more time is required.

Where possible, the caAERS application will be tested using automated 508 Compliance testing software, such as the Cynthia Says test for Section 508 compliance.

In addition, the functional test scripts that are created for UAT testing will include, where appropriate, steps to verify and test the accessibility features of the caAERS application.
A report will be created to show the results of the caAERS 508 compliance testing.
2.2.5 HIPAA Compliance Testing

HIPAA, the Health Insurance Portability and Accountability Act, requires healthcare organizations to take added precautions to ensure the security of their networks and the privacy of patient data. As stated in the SRS document, caAERS is required to conform to applicable HIPAA specifications.

There are three broad classes of HIPAA requirements:

HIPAA Privacy Rule
The HIPPA Privacy Rule mandates the protection and privacy of all health information. This rule specifically defines the authorized uses and disclosures of "individually-identifiable" health information.

HIPAA Transactions and Code Set Rule
The HIPPA Transaction and Code Set Standard addresses the use of predefined transaction standards and code sets for communications and transactions in the health-care industry.

HIPAA Security Rule
The HIPAA Security Rule mandates the security of electronic medical records. Unlike the Privacy Rule, which provides broader protection for all formats that health information make take, such as print or electronic information, the Security Rule addresses the technical aspects of protecting electronic health information. More specifically, the HIPPA Security standards addresses these aspects of security:

- Administrative security – assignment of security responsibility to an individual.

- Physical security - required to protect electronic systems, equipment and data.

- Technical security - authentication & encryption used to control access to data.

While the caAERS application will be designed to support all the applicable HIPAA requirements, the burden for ensuring that the use of caAERS is in compliance resides with the adopting institution. That is, it is the responsibility of the institution to ensure that the necessary business, technical, and security policies and procedures are put into effect and enforced and that the necessary physical security safeguards are in place.

Our testing will be designed to ensure that the technical security requirements are satisfied by the caAERS application. Test scripts will be designed to test each of the HIPAA Security Rule items marked for testing in the table below.

	Description. R=Required. A=Addressable
	Testing Strategy

	Access Control (R)– Include mechanism to allow access only to those persons or software programs that are authorized.
	To be tested.

	Unique User Identification (R)– Assign a unique name and/or number for tracking user identity.
	To be tested.

	Emergency Access Procedure (R)– Establish procedures for obtaining necessary electronic protected health information during an emergency.
	No specific testing. Because caAERS is a web based application accessible by browser, an Administrator should be able to access the application and data from anywhere at anytime within SSL.

	Automatic Logoff (A)– Include mechanism that terminates an electronic session after a predetermined time of inactivity.
	To be tested.

	Encryption and Decryption (A)– Include mechanism to encypt and decrypt electronic protected health information.
	To be tested.

	Audit Controls (R)– Include mechanism that records and examines activity in information systems that contain or use electronically protected health information.
	To be tested.

	Integrity (R)– Implement mechanism to protect electronic protected health information from improper alteration or destruction.
	To be tested.

	Authenticate Electronic Protected Health Information (A)– Include mechanism to corroborate that electronic protected information has not been altered or destroyed in an unauthorized manner.
	To be tested.

	Person or Entity Authentication (R)– Include mechanism to verify that person or entity seeking access to electronic protected health information is the one claimed.
	To be tested.

	Transmission Security (R)– Include mechanism to guard against unauthorized access to electronic protected health information that is being transmitted over an electronic communications network.
	To be tested.

	Integrity Controls (A)– Include mechanism to ensure electronically transmitted electronic protected health information is not improperly modified without detection until disposed of.
	To be tested.

	Encryption (A)– Include mechanism to encrypt electronic protected health information whenever deemed appropriate.
	To be tested.

2.3 Description of Functionality

See the following documents.

Use Case Document:
https://gforge.nci.nih.gov/plugins/scmsvn/viewcvs.php/docs/Use%20Cases/caAERS_draft_Use_Case.doc?root=caaersappdev&view=log
SRS Document:

https://gforge.nci.nih.gov/plugins/scmsvn/viewcvs.php/docs/SRS/caAERS_draft_SRS.doc?root=caaersappdev&view=log
2.4 Specific Exclusions

NA
2.5 Dependencies & Assumptions

Java programming language

caAERS 1.0 is developed in the Java programming language. The Java 5 SDK is being used for development. Integration tests and other tools and utilities will be written in appropriate languages based on the testing environment.

Application Server

The caAERS 1.0 implementation requires a Java application server. Apache Tomcat and the Globus container will be used for development and testing.

Relational database

The backend database targets both PostgreSQL and Oracle relational databases. Unit tests will be run against both target databases.

Web browser

User acceptance testing and integration testing will target the Internet Explorer 6.x web browser.

2.6 General Criteria for Success

Criteria for overall success are 100% success of all automated unit tests and most tests are satisfactory successful of the manual tests. Focus in phase I will be on automated testing, and focus in phase II will be on manual user acceptance testing and performance testing.
2.6.1 Readiness Criteria

Tests will be ready to be written when the following criteria have been met:

· Use cases are complete

· Use cases are translated into executable tests

· APIs are available for individual modules

Tests will be ready to be run when

· Source code for individual modules is available and runnable

· The tests are written

· Dependent services are deployed
2.6.2 Pass/Fail Criteria

The follow criteria will be employed for determining the success of individual tests:
· Appropriate data returned: equality comparison of results to locally cached data
· Performance: documentation of performance in time and subjective determination that performance is acceptable for the complexity of the operation
2.6.3 Completion Criteria

The criteria for completion of the testing procedures is that the system produces the output desired by the user within expected performance requirements. Testing is considered completed when:

· The assigned test scripts have been executed.

· Defects and discrepancies are documented, resolved, verified, or designated as future changes.

2.6.4 Acceptance Criteria

For user acceptance testing, a range of bug severities will be employed such that a severity can be assigned to the success of each test case. For example, a tester could assign acceptable, acceptable with issues, unacceptable. For unit, system, and integration testing, acceptance is determined by the automated test completing successfully.

When testing is complete, the software is acceptable when the test manager and project manager determine that existing unresolved issues are documented and within subjective tolerance. Both user acceptance testing and automated system/integration/unit tests will be taken into consideration.
3. Software Test environment

This section describes the software test environment at each intended test site.

3.1 SemanticBits
The Test Environment: The Test Environment is a stable area for independent system and integration testing by the Test Team. This area consists of objects as they are completed by Developers and meet the requirements for promotion. This environment ensures that objects are tested with the latest stable version of other objects that may also be under development. The test environment is initially populated with the latest operational application and then updated with new changed objects from the development environment.

The Acceptance Testing Environment: The acceptance-testing environment provides a near-production environment for the client acceptance testing. The release is delivered by the SCM group and managed by the client.

3.1.1 Software Items

Java 1.5.x: used to run the Java programs that make up the tests

Ant 1.6.x: used to run automated tests in batch

JUnit 3.x/.4.x: used to implemented specific stateless test cases for automated unit testing

Haste 1.0.x: used to implement specific stateful test cases for automated unit testing

Microsoft Word: used to document testing activities

CVS: used to version test results

CruiseControl 2.4.1: continuous build and testing framework
3.1.2 Hardware and Firmware Items

Continuous build machine:

cagrid1.duhs.duke.edu
Windows 2003 Server
Test deployment machine:

TBD
3.1.3 Other Materials

None
3.1.4 Participating Organizations

The testing group consists of the project's Test Manager, and the Tester(s). The groups listed below are responsible for the respective types of testing:

· Unit Testing: Development team members from SemanticBits, Northwestern University and Akaza Research will be responsible for conducting the unit tests.
· Integration Testing: Development team members from SemanticBits, Northwestern University and Akaza Research will be responsible for conducting the integration tests.
· User Acceptance Testing: The end-user representatives perform User Acceptance Testing, which includes Northwestern University, Mayo Clinic and Wake Forest SMEs.
4. Test Schedules

4.1 Time Frames for Testing

The Test Manager will coordinate with the Project Manager and add the planned testing activities to the master project schedule. Refer to the project SDP and schedule for additional information.

Unit and Integration Testing will be performed through the lifetime of the project.
5. Risks

See the caAERS 1.0 risk matrix.
Appendix A – Acronym List

	Acronym
	Description

	CCR
	Change control request

	DBA
	Database Administrator

	HSTOMP
	Health Services Team Organizational Management Portal

	MS
	Microsoft

	PAL
	Process Asses Library

	PM
	Project Manager

	RM
	Requirements Manager

	RTM
	Requirements Traceability Matrix

	SCM
	Software Configuration Management

	SDLC
	Software Development Lifecycle

	SE
	Software Engineering

	SEPG
	Software Engineering Process Group

	SM
	Software Manager

	SOP
	Standard Operating Procedure

	SPI
	Software Process Improvement

	SQA
	Software Quality Assurance

	SW
	Software

	TM
	Test Manager

	VM
	Version Manager

Appendix B – Test report

JUnitReport will be used to generate test reports from JUnit and Haste driven tests. See the caAERS test report for reports on manual testing.
Appendix C – Sample Section 508 Compliance Script
	Source/Standard
	Optionality
	Pass
	Fail

	Section 508, §1194.22
	Mandatory
	 Every image, Java applet, Flash file, video file, audio file, plug-in, etc. has an alt description.
	 A non-text element has no alt description.

	(a) A text equivalent for every non-text element shall be provided (e.g., via "alt," "longdesc," or in element content).
	
	
	

	This standard maps to WCAG v1.0 Ckpt 1.1
	Mandatory
	 Complex graphics (graphs, charts, etc.) are accompanied by detailed text descriptions.
	 Complex graphics have no alternative text, or the alternative does not fully convey the meaning of the graphic.

	
	Mandatory
	 The alt descriptions succinctly describe the purpose of the objects, without being too verbose (for simple objects) or too vague (for complex objects).
	 Alt descriptions are verbose, vague, misleading, inaccurate, or redundant to the context (e.g. the alt text is the same as the text immediately preceding or following it in the document).

	
	
	
	

	
	Mandatory
	 Alt descriptions for images used as links are descriptive of the link destination.
	 Alt descriptions for images used as links are not descriptive of the link destination.

	
	
	
	

	
	Mandatory
	 Decorative graphics with no other function have empty alt descriptions (alt= ""), but they never have missing alt descriptions.
	 Purely decorative graphics have alt descriptions that say “spacer, “decorative graphic,” or other titles that only increase the time that it takes to listen to a page when using a screen reader.

	Section 508, §1194.22
	The use of multimedia presentations is not recommended. If used, then pass criteria must be met.
	 Multimedia files have synchronized captions.
	 Multimedia files do not have captions, or captions, which are not synchronized.

	(b) Equivalent alternatives for any multimedia presentation shall be synchronized with the presentation.
	
	
	

	This standard maps to WCAG v1.0 Ckpt 1.4
	
	
	

	Section 508, §1194.22
	Mandatory
	 If color is used to convey important information, an alternative indicator is used, such as an asterisk (*) or other symbol.
	 The use of a color monitor is required.

	(c) Web pages shall be designed so that all information conveyed with color is also available without color, for example from context or markup.
	
	
	

	This standard maps to WCAG v1.0 Ckpt 2.1
	
	
	

	Section 508, §1194.22
	Mandatory
	 Style sheets may be used for color, indentation and other presentation effects, but the document is still understandable (even if less visually appealing) when the style sheet is turned off.
	 The document is confusing or information is missing when the style sheet is turned off.

	(d) Documents shall be organized so they are readable without requiring an associated style sheet.
	
	
	

	This standard maps to WCAG v1.0 Ckpt 6.1
	
	
	

	Section 508, §1194.22
	The use of image maps, particularly server-side image maps is not recommended. If used, then pass criteria must be met.
	 Separate text links are provided outside of the server-side image map to access the same content that the image map hot spot accesses.
	 The only way to access the links of a server-side image map is through the image map hot spots, which usually means that a mouse is required and that the links are unavailable to assistive technologies.

	(e) Redundant text links shall be provided for each active region of a server-side image map.
	
	
	

	This standard maps to WCAG v1.0 Ckpt 1.2
	
	
	

	Section 508, §1194.22
	The use of image maps, particularly server-side image maps is not recommended. If used, then pass criteria must be met.
	 Standard HTML client-side image maps are used, and appropriate alt descriptions are provided for the image as well as the hot spots.
	 Server-side image maps are used when a client-side image map would suffice.

	(f) Client-side image maps shall be provided instead of server-side image maps except where the regions cannot be defined with an available geometric shape.
	
	
	

	This standard maps to WCAG v1.0 Ckpt 9.1
	
	
	

	Section 508, §1194.22
	Mandatory
	 Data tables have the column and row headers appropriately identified (using the <TH> tag).
	 Data tables have no header rows or columns.

	(g) Row and column headers shall be identified for data tables.
	
	
	

	This standard maps to WCAG v1.0 Ckpt 5.1
	Mandatory
	 Tables used strictly for layout purposes do NOT have header rows or columns (i.e., the use of <TH>).
	 Tables used for layout use the header attribute when there is no true header.

	
	
	
	

	
	Mandatory for all new applications.
	 Tables used for layout purposes make sense when read in a linearized manner (i.e., left to right and top to bottom).
	 Tables used for layout purposes DO NOT make sense when read in a linearized manner (i.e., left to right and top to bottom).

	Section 508, §1194.22
	Mandatory
	 Table cells are associated with the appropriate headers (e.g. with the ID, headers, scope and/or axis HTML attributes).
	 Columns and rows are not associated with column and row headers, or they are associated incorrectly.

	(h) Markup shall be used to associate data cells and header cells for data tables that have two or more logical levels of row or column headers.
	
	
	

	This standard maps to WCAG v1.0 Ckpt 5.2
	
	
	

	Section 508, §1194.22
	The use of frames is not recommended. If used, then pass criteria must be met.
	 Each frame is given a title that helps the user understand the frame’s purpose.
	 Frames have no titles, or titles that are not descriptive of the frame’s purpose.

	(i) Frames shall be titled with text that facilitates frame identification and navigation.
	
	
	

	This standard maps to WCAG v1.0 Ckpt 12.1
	
	 Each source file, that populates the frame, has a meaningful title through the <title> tag.
	 Source file is present, without a title.

	Section 508, §1194.22
	The use of graphics that move, flash, continually refresh, rotate, or move text across a screen is not recommended. If used, then pass criteria must be met.
	 Screen does not have any elements that move, flash, rotate, etc. (e.g., animated gifs, scrolling marques, etc.).
	 Screen has elements that move, flash, rotate, etc. (e.g., animated gifs, scrolling marques, etc.).

	(j) Pages shall be designed to avoid causing the screen to flicker with a frequency greater than 2 Hz and lower than 55 Hz.
	
	
	

	This standard maps to WCAG v1.0 Ckpt 7.1
	
	
	

	Section 508, §1194.22
	The use of a text-only alternate page is not recommended. If used, then pass criteria must be met.
	 A text-only version is created only when there is no other way to make the content accessible, or when it offers significant advantages over the “main” version for certain disability types.
	 A text-only version is provided only as an excuse not to make the "main" version fully accessible.

	(k) A text-only page, with equivalent information or functionality, shall be provided to make a web site comply with the provisions of these standards, when compliance cannot be accomplished in any other way. The content of the text-only page shall be updated whenever the primary page changes.
	
	 The text-only version is up-to-date with the “main” version.
	 The text-only version is not up-to-date with the “main” version.

	This standard maps to WCAG v1.0 Ckpt 11.4
	
	 The text-only version provides the functionality equivalent to that of the “main” version.
	 The text-only version is an unequal, lesser version of the “main” version.

	
	
	 An alternative is provided for components (e.g., plug-ins, scripts) that are not directly accessible.
	 No alternative is provided for components that are not directly accessible.

	Section 508, §1194.22
	Mandatory
	 Only device-independent events have been used for important functionality. If device-dependent events have been used, then a keyboard-accessible alternative is provided.
	 Device-dependent events have been used without providing a keyboard-accessible alternative.

	(l) When pages utilize scripting languages to display content, or to create interface elements, the information provided by the script shall be identified with functional text that can be read by assistive technology.
	
	
	

	
	
	
	

	
	
	 Fields associated with LOVs, also allow direct typing of the appropriate value into the field.
	 Fields can be populated only through the use of LOVs.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	 Alternate means exist, to access functionality/information that has been provided dynamically through javascript at runtime (e.g., tree menus) for gender-specific fields to capture disease.
	 No alternate means exist, to access functionality/information that has been provided dynamically through javascript at runtime.

	
	
	
	

	Section 508, §1194.22
	The use of an applet, plug-in, or other application is not recommended. If used, then pass criteria must be met.
	 A link is provided to a disability-accessible page where the plug-in can be downloaded.
	 No link is provided to a page where the plug-in can be downloaded and/or the download page is not disability-accessible.

	(m) When a web page requires that an applet, plug-in or other application be present on the client system to interpret page content, the page must provide a link to a plug-in or applet that complies with §1194.21(a) through (l).
	
	 All Java applets, scripts and plug-ins (including Acrobat PDF files and PowerPoint files, etc.) and the content within them are accessible to assistive technologies, or else an alternative means of accessing equivalent content is provided.
	 Plug-ins, scripts and other elements are used indiscriminately, without alternatives for those who cannot access them.

	Section 508, §1194.22
	Recommended
	 All form controls have text labels adjacent to them (to indicate a visual association).
	 Form controls have no labels, or the labels are not adjacent to the controls (to indicate a visual association).

	(n) When electronic forms are designed to be completed on-line, the form shall allow people using assistive technology to access the information, field elements, and functionality required for completion and submission of the form, including all directions and cues.
	Mandatory
	 Form elements have labels associated with them in the markup (i.e., the ID and For elements).
	 There is no linking of the form element and its label is in the HTML.

	
	
	
	

	Section 508, §1194.22
	Mandatory
	 A link is provided to skip over lists of navigational menus or other lengthy lists of links.
	 There is no way to skip over lists of links.

	(o) A method shall be provided that permits users to skip repetitive navigation links.
	
	
	

	Section 508, §1194.22
	Mandatory
	 The user has control over the timing of content changes.
	 The user is required to react quickly, within limited time restraints.

	(p) When a timed response is required, the user shall be alerted and given sufficient time to indicate more time is required.
	
	
	

caAERS_Test_Plan.doc
i
May 8, 2007

