XAS Opportunities for Geological and High Pressure Science

Outline

- High pressure studies
 - Diamond anvil cell
 - Ex. Fe in the deep Earth
- What can XAS at high pressure tell us?
 - XAS in DAC
 - Ex. Fe in the deep Earth
 - Other examples enabled by NSLS-II

How do we study materials at high pressure?

- Diamond Anvil Cell (DAC)
 - Pressure: ambient to 500 GPa (1 GPa= 10,000 bar)
 - Temp: mK to 5000 K
 - Sample size: < 0.001 mm³
 - Transparent to large range of E-M radiation

How do we study materials at high pressure?

- Diamond Anvil Cell (DAC)
 - Pressure: ambient to 500 GPa (1 GPa= 10,000 bar)
 - Temp: mK to 5000 K
 - Sample size: < 0.001 mm³
 - Transparent to large range of E-M radiation

Understanding the Earth's interior

"The interior of the Earth is a problem at once fascinating and baffling, as one may easily judge from the vast literature, and the few established facts, concerning it."

- Francis Birch (1952)

Fe in the deep Earth

- Fe is the most abundant element by wt, most important transition element
- Complex speciation
 - Oxidation state (Fe⁰, Fe²⁺, Fe³⁺)
 - Coordination (4, 5, 6, 8)
- Fe distribution and speciation between melt and among different crystalline phases (ol, px, wad, ringwoodite, pv, ppv, mw, etc.) throughout the mantle is a central solid-Earth question
 - controls the evolution of the Earth, coremantle differentiation, and the geodynamics of the mantle.
 - Different P-T-x for different regions and geologic time

Ringwood, *Composition and Petrology of the Earth's Mantle* (1975) Bina, *Ultrahigh Pressure Mineralogy* (1998)

Fe in the deep Earth

- Our knowledge of Fe distribution relies on understanding the drastic changes in the physical and chemical properties of Fe species at extreme *P-T* conditions:
 - Fe/Mg partitioning
 - Fe/Mg diffusion
 - Fe speciation in solid and liquid
 - Fe redox
 - Electronic spin state (high-intermediate-low)

Fe-Mg partitioning

- Measurements on *P-T* quenched samples
- In-situ chemical probe

Fe-Mg diffusion

- Very sluggish Fe-Mg interdiffusion?
 - Chemical heterogeneities could persist several cycles of mantle convection (100 Ma)

Fe coordination in solid and liquid

- 1 bar, HT experiment on fayalite (Fe₂SiO₄)
- $^{VI}Fe^{2+}_{(solid)} \rightarrow ^{IV}Fe^{2+}_{(liq)}$

Jackson et al, Science 2005

McCammon, Science 2005

- Very high $Fe^{3+}/\Sigma Fe$ in LM?
 - 50% of Fe in pv (70 wt% of LM)
 - Inconsistent with whole-mantle convection (which would lead to similar oxygen content in UM and LM)
 - Oxygen could come from disproportionation of Fe²⁺ in LM, 3Fe²⁺ (3FeO) → Fe⁰ + 2Fe³⁺ (Fe₂O₃)
 - LVP ~25 GPa, EELS and MS of quenched run product

Frost et al, Nature 2004

Electronic spin transitions

 Observations of high spin-low spin transitions in Fe using X-ray Emission Spectroscopy (XES)

RXES

W. A. Caliebe,* C.-C. Kao, and J. B. Hastings National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York, 11973

M. Taguchi[†] and A. Kotani Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan

T. Uozumi College of Engineering, University of Osaka Prefecture, Gakuen-cho, Sakai 593, Japan

F. M. F. de Groot Solid State Physics Laboratory, University of Groningen, Nijenborgh 4 9747 AG Groningen, The Netherlands (Received 18 March 1998)

- Similar information to L_{2,3} absorption
- The pre-edge doublet due to crystal-field splitting

Fe in the deep Earth

- Our knowledge of Fe distribution relies on understanding the drastic changes in the physical and chemical properties of Fe species at extreme *P-T* conditions:
 - Fe/Mg partitioning
 - Fe/Mg diffusion
 - Fe speciation in solid and liquid
 - Mantle redox (ferric/ferrous)
 - Electronic spin state (high-intermediate-low)
- Progress in these areas have been dictated by advances in diagnostic high *P-T* probes (e.g. optical, Mössbauer, XRD, XES, and XAS)
- Extend these measurements to *in-situ* mantle *P-T*

- XAS has potential as a tool capable of answering all these questions, but has been hardly applied to high-P Fe studies due to the x-ray absorption of diamond anvils.
- Transmission of 7.1 keV x-ray at the Fe K-edge through a typical pair of diamond anvils (5 mm total thickness) is only 10⁻⁵.

- XAS has potential as a tool capable of answering all these questions, but has been hardly applied to high-P Fe studies due to the x-ray absorption of diamond anvils.
- Transmission of 7.1 keV x-ray at the Fe K-edge through a typical pair of diamond anvils (5 mm total thickness) is only 10⁻⁵.

Axial C Density=3.5154 Thickness=5000. microns 2 x 2.5 mm diamonds 0^{-4} 10^{-5} Iransmission မှ 앜 10^{-7} Supporting seats 10^{-8} 6000 6500 7000 7500 8000 Photon Energy (eV)

- XAS has potential as a tool capable of answering all these questions, but has been hardly applied to high-P Fe studies due to the x-ray absorption of diamond anvils.
- Transmission of 7.1 keV x-ray at the Fe K-edge through a typical pair of diamond anvils (5 mm total thickness) is only 10⁻⁵.

This problem has been overcome by:

- Reducing the diamond thickness in the path down to 1 mm and transmission to a tolerable 0.1 by using holes in diamonds (Bassett et al., 2000; Dadashev et al., 2001)
- Supporting diamonds with holes (Silvera, 1999)
- Be gasket with inclined x-ray incident angle

This problem has been overcome by:

- Reducing the diamond thickness in the path down to 1 mm and transmission to a tolerable 0.1 by using holes in diamonds (Bassett et al., 2000; Dadashev et al., 2001)
- Supporting diamonds with holes (Silvera, 1999)
- Be gasket with inclined x-ray incident angle

This problem has been overcome by:

- Reducing the diamond thickness in the path down to 1 mm and transmission to a tolerable 0.1 by using holes in diamonds (Bassett et al., 2000; Dadashev et al., 2001)
- Supporting diamonds with holes (Silvera, 1999)
- Be gasket with inclined x-ray incident angle

Be Density=1.848 Thickness=5000. microns

XAS of Fe

- Pre-edge position and intensity Fe oxidation state, coordination #, redox Fe³⁺/ Σ Fe
- Edge height: quantitative mapping of Fe
- CFSE of pre-edge 7113-7115 eV: t_{2g}-e_g
- XMCD: magnetism
- EXAFS: Fe coordination

1 H																1 H	2 He
з Li	4 Be											⁵ В	6 С	7 N	0	9 F	¹⁰ Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
37 Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	56 Ba	⁵⁷ La	72 Hf	73 Ta	74 W	⁷⁵ Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	85 At	⁸⁶ Rn
⁸⁷ Fr	88 Ra	89 Ac	¹⁰⁴ Ru	105 На	106 Unh	107 Uns	¹⁰⁸ Uno	109 Une									

58	⁵⁹	⁶⁰	Pm	⁶²	63	64	⁶⁵	66	⁶⁷	68	⁶⁹	70	71
Ce	Pr	Nd		Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
⁹⁰	91	92	93	94	95	96	97	98	99	100	¹⁰¹	¹⁰²	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

XAS of Fe

- Pre-edge position and intensity Fe oxidation state, coordination #, redox Fe³⁺/ΣFe
- Edge height: quantitative mapping of Fe
- CFSE of pre-edge 7113-7115 eV: t_{2g}-e_g
- XMCD: magnetism
- EXAFS: Fe coordination

1 H																1 H	2 He
3 Li	4 Be											⁵ В	6 С	7 N	8 0	9 F	¹⁰ Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	¹⁸ Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
37 Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	⁵⁴ Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	85 At	⁸⁶ Rn
⁸⁷ Fr	88 Ra	89 Ac	¹⁰⁴ Ru	105 На	106 Unh	¹⁰⁷ Uns	¹⁰⁸ Uno	¹⁰⁹ Une									

58	59	⁶⁰	⁶¹	⁶²	63	64	⁶⁵	66	⁶⁷	68	⁶⁹	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	¹⁰¹	¹⁰²	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Pre-edge position and intensity

•Redox and crystallographic site

Wilke et al, Amer. Min. 2001

XAS of Fe

- Pre-edge position and intensity Fe oxidation state, coordination #, redox Fe³⁺/ Σ Fe
- Edge height: quantitative mapping of Fe
- CFSE of pre-edge 7113-7115 eV: t_{2g}-e_g
- XMCD: magnetism
- EXAFS: Fe coordination

1 H																1 H	2 He
3 Li	4 Be											5 B	6 С	7 N	°0	9 F	¹⁰ Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	²⁵ Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
37 Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	⁷⁵ Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg	81 TI	82 Pb	83 Bi	⁸⁴ Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Ru	105 На	106 Unh	107 Uns	108 Uno	109 Une									

58	⁵⁹	⁶⁰	⁶¹	⁶²	63	⁶⁴	⁶⁵	66	⁶⁷	68	⁶⁹	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	¹⁰¹	¹⁰²	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Chemical mapping using micro-XAS

- **ED-XAS**
- Maps of:
 - Fe content
 - Redox
 - Crystallographic site

XAS of Fe

- Pre-edge position and intensity Fe oxidation state, coordination #, redox Fe³⁺/ Σ Fe
- Edge height: quantitative mapping of Fe
- CFSE of pre-edge 7113-7115 eV: t_{2g}-e_g
- XMCD: magnetism
- EXAFS: Fe coordination

1 H																1 H	2 He
3 Li	4 Be											5 B	6 С	7 N	°0	9 F	¹⁰ Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	33 As	³⁴ Se	35 Br	³⁶ Kr
37 Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	⁷⁵ Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg	81 TI	82 Pb	83 Bi	⁸⁴ Po	85 At	86 Rn
⁸⁷ Fr	88 Ra	89 Ac	¹⁰⁴ Ru	105 На	106 Unh	107 Uns	108 Uno	109 Une									

58	⁵⁹	⁶⁰	⁶¹	⁶²	63	64	⁶⁵	66	67	68	⁶⁹	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	¹⁰¹	¹⁰²	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

High-spin to low-spin transition in hematite

VOLUME 89, NUMBER 20 PHYSICAL REVIEW LETTERS

11 NOVEMBER 2002

Nature of the High-Pressure Transition in Fe₂O₃ Hematite

XAS of Fe

- Pre-edge position and intensity Fe oxidation state, coordination #, redox Fe³⁺/ Σ Fe
- Edge height: quantitative mapping of Fe
- CFSE of pre-edge 7113-7115 eV: t_{2g}-e_g
- XMCD: magnetism
- EXAFS: Fe coordination

1 H																1 H	2 He
3 Li	4 Be											5 B	6 С	7 N	°0	9 F	¹⁰ Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
37 Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	56 Ba	⁵⁷ La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg	81 TI	82 Pb	83 Bi	⁸⁴ Po	85 At	86 Rn
⁸⁷ Fr	88 Ra	89 Ac	¹⁰⁴ Ru	105 На	106 Unh	107 Uns	¹⁰⁸ Uno	109 Une									

58	e Pr	⁶⁰	⁶¹	⁶²	63	⁶⁴	⁶⁵	66	⁶⁷	⁶⁸	⁶⁹	70	71
Ce		Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	¹⁰¹	¹⁰²	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

X-ray magnetic circular dichroism (XMCD) at HP

bcc \rightarrow hcp transition in pure Fe

Mathon et al, PRL 2004

Magnetic transition precedes (drives) structural

XMCD of Fe₃O₄ at HP

Y. Ding et al, *PRL* in press

Intermediate spin in Fe²⁺

XAS of Fe

- Pre-edge position and intensity Fe oxidation state, coordination #, redox Fe³⁺/ Σ Fe
- Edge height: quantitative mapping of Fe
- CFSE of pre-edge 7113-7115 eV: t_{2g}-e_g
- XMCD of near edge: magnetism
- EXAFS: Fe coordination

1 H																1 H	2 He
3 Li	4 Be											5 B	⁶ С	7 N	8 0	9 F	¹⁰ Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	33 As	³⁴ Se	³⁵ Br	36 Kr
37 Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	⁷⁵ Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg	81 TI	82 Pb	83 Bi	⁸⁴ Po	85 At	86 Rn
⁸⁷ Fr	88 Ra	89 Ac	¹⁰⁴ Ru	¹⁰⁵ На	106 Unh	107 Uns	108 Uno	109 Une									

58	e Pr	⁶⁰	⁶¹	⁶²	63	64	⁶⁵	66	67	68	⁶⁹	70	71
Ce		Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	n Pa	92	93	94	95	96	97	98	99	100	¹⁰¹	102	103
Th		U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Other topics to study

- Fe is just one example that shows the potential of highpressure XAS in solving a wide range of scientific problems.
- These applications of high-pressure XAS can certainly be generalized to other elements including K-edge of TE and beyond and L-edge of REE and beyond, and have major impact in numerous other branches of high-pressure science.
- Its potential has been barely explored.
 - Absorption edge height Quantitative mapping
 - Pre-edge and near edge features oxidation states, electronic excitations
 - XMCD magnetism
 - EXAFS element specific structure of crystalline and amorphous materials

Absorption edge height

- Coupled with nanobeam capability, absorption edge height provides composition mapping and element specific tomography capability currently lacking in DAC experiments
- *In-situ* high pressure and temperature maps

Pre-edge and near edge

- Pressure has dramatic effects on charge transfer, mixed valence state, and oxidation state of *d* and *f* electron elements and compounds
- XAS can help to resolve various electronic states which are tuned by pressure

- HP behavior of X-ray near-edge structure at the rhenium L₃ edge in TIReO₄.
- No evidence for proposed e⁻ transfer from TI to Re

Ablett et al, HPR 2003

XMCD

PRL 97, 176405 (2006)

F

PHYSICAL REVIEW LETTERS

- Magnetism, MR (GMR and CMR), and spin character of lanthanides, manganites, cobaltites, etc.
- Pressure can readily tune these properties and change materials among many different magnetic and electronic states, providing opportunities for discovery and study of novel materials

Spin State Transition in LaCoO3 Studied Using Soft X-ray Absorption Spectrose and Magnetic Circular Dichroism	сору
M. W. Haverkort, ¹ Z. Hu, ¹ J. C. Cezar, ² T. Bumus, ¹ H. Hartmann, ¹ M. Reuther, ¹ C. Zobel, ¹ T. Lorenz, ¹ A. N. B. Brookes, ² H. H. Hsieh, ^{4,5} HJ. Lin, ⁵ C. T. Chen, ⁵ and L. H. Tjeng ¹	. Tanaka, ³
RL 98, 197203 (2007) PHYSICAL REVIEW LETTERS	week ending 11 MAY 2007
Magnetism in Geometrically Frustrated YMnO3 under Hydrostatic Pressure Static with Muon Spin Relaxation	udied
T. Lancaster, ^{1,*} S. J. Blundell, ¹ D. Andreica, ^{2,†} M. Janoschek, ^{3,4} B. Roessli, ⁴ S. N. Gvasaliya, ⁴ K. Co E. Pomjakushina, ^{4,5} M. L. Brooks, ¹ P. J. Baker, ¹ D. Prabhakaran, ¹ W. Hayes, ¹ and F. L. Pratt ⁶	onder, ⁵
PRL 98, 137203 (2007) PHYSICAL REVIEW LETTERS	week ending 30 MARCH 2007
Understanding the Insulating Phase in Colossal Magnetoresistance Manganites: of the Jahn-Teller Long-Bond across the Phase Diagram of La _{1-x} Ca _x Mr	Shortening 1O3
E. S. Božin, ¹ M. Schmidt, ² A. J. DeConinck, ¹ G. Paglia, ¹ J. F. Mitchell, ³ T. Chatterji, ⁴ P. G. Ra Th. Proffen, ⁵ and S. J. L. Billinge ¹	daelli, ²

Patterning of sodium ions and the control of electrons in sodium cobaltate NATURE Vol 445 8 February 2007

M. Roger¹, D. J. P. Morris², D. A. Tennant^{3,4}, M. J. Gutmann⁵, J. P. Goff², J.-U. Hoffmann³, R. Feyerherm³, E. Dudzik³, D. Prabhakaran⁶, A. T. Boothroyd⁶, N. Shannon⁷, B. Lake^{3,4} & P. P. Deen⁸

Lanthanide contraction and magnetism in the heavyrare earth elementsNATURE|Vol 446|5 April 2007

I. D. Hughes¹, M. Däne², A. Emst³, W. Hergert², M. Lüders⁴, J. Poulter⁵, J. B. Staunton¹, A. Svane⁶, Z. Szotek⁴ & W. M. Temmerman⁴

Exploring magnetism with	in extreme magnetic fields - ESRF - Mozilla Firefox			
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ook	marks <u>T</u> ools <u>H</u> elp		0	
- 🔶 - 🎯 🕼	http://www.esrf.eu/news/spotlight/spotlight52	v 🕨 esrf	🔍 🔒 -	
Google esrf	💽 🖸 Search 🛛 🖗 🧭 🗹 🛪 🥵 🗸 🥙 🖉 🏠 Bookmarks 🔹 🚳 AutoLink 📔 A	utoFill 唐 Send to 🛛 🥖 属 esrf	🥥 Settings 🗸	
<u>ESRF</u>		European Synchrotron Radiation	Facility	
conta <u>ct phonebook</u> <u>sitemap</u> Rsearch advanced search	ESRF Science and Technology Programme 2008 - 2017	A programme to upgrade Europe's strategic centre for science and technology research		
home about us news events users and science x-ray source infrastructure industry jobs				
you are here: home $ ightarrow$ news $ ightarrow$ spotlight on science $ ightarrow$ exploring magnetism within extreme magnetic fields				
spotlight on science	Exploring magnetism within extreme magnetic fi	elds	⇒ Q	
Exploring	last modified 07-01-2008 11:00			
extreme magnetic	The feasibility of measuring X-ray magnetic circular dichroism (XMCD) within very high magnetic fields has been investigated using an energy-dispersive X-ray absorption spectrometer at the ESRF's energy-dispersive XAS beamline ID24.			
fields	By coupling a pulsed magnetic field device developed at the ESRF (Figure 1) [1] to the fast acquisition capabilities of ID24, the Re L ₂ and L ₃ XMCD signals were measured in a Ca ₂ FeReO ₆ perovskite (Figure 2) at up to 30 T and in the temperature range 10-250 K [2]. Knowledge of the field and temperature dependence of both spin and orbital magnetic moments of Re under extreme magnetic fields could help answer enigmatic questions on the magnetism of these distorted double perovskites, such as why they don't reveal saturation, whether this phenomenon is only due to anisotropy in the grain boundaries or whether it originates from the bulk.			
			ı ع	

Figure 1: Peter van der Linden setting up the pulsed magnetic field device at beamline ID24.

Considerable research effort is being made to understand properties of matter under extreme conditions. Static high pressures up to the multimegabar regime can now be reached with diamond-anvil cells, as well as temperatures from the milli-Kelvin to thousands of Kelvin using dilution refrigerators and laser heating. The exploration of ever widening P–T diagrams has lead to the discovery of a multitude of new chemical and physical phenomena – such as the discovery of the (Mg, Fe) SiO₃ postperovskite with significant geophysical implications for the earth mantle's nature and dynamics – leading to a fundamental understanding as well as technological applications.

EXAFS

- Pressure induces polyamorphism in glasses and liquid-liquid transitions in high *P-T* melts. These transitions are normally observed by XRD
- EXAFS provide element specific coordination information

Future opportunities enabled through NSLS II

- To optimize XAS capabilities would recommend design consideration of an integral system which can accommodate multiple extreme environments
 - High-pressure cells
 - Cryostat
 - Laser heating
 - Strong magnetic field