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BACKGROUNDBACKGROUND
99Tc is a long-lived (t1/2 = 2.13 x 105 y) fission product unique to nuclear 
production and/or reprocessing sites.  It exists as an important subsurface 
contaminant at numerous U.S. DOE sites.

ORNL/FRC
Hanford, Paducah, and others

99Tc migrates rapidly with vadose zone water and groundwater as the mobile 
Tc(VII)O4

- anion.  It is weakly sorbed under most geochemical conditions. 
The electrode potential (Eo) if the Tc(IV)-Tc(VII couple ranges between 
0.246-0.262 V depending on the crystallinity and hydration (n) of the Tc(IV) 
oxide:

1/3Tc(VII)O4
-
(aq) + e- + 4/3H+ + (n-2)/3H2O  = 1/3Tc(IV)O2•nH2O(s)

While the half-cell potential of the Fe(II)/Fe(III) reaction at circumneutral pH 
is favorable for Tc(VII) reduction over a broad concentration range of 
reactants, the homogeneous reduction kinetics appear quite slow.

At DOE’s Hanford site, four large 99Tc groundwater plumes exist and new 
ones are forming as 99Tc released to cribs and leaked from single-shell high-
level waste tanks migrates through the vadose zone.  Over 40 Ci of 
Tc(VII)O4

- are forecast to discharge to the Columbia River in future years, 
making it one of the sites major risk driving contaminants.

Remedial strategies are critically sought to prevent 99Tc migration into 
sensitive receiving waters such as the Columbia River at Hanford. Techniques 
under consideration include getters or highly selective sorbents, or the 
placement of reductive barriers allowing capture and removal of mobile 
Tc(VII) from groundwater. 

OBJECTIVESOBJECTIVES

Tc(VII) REDUCTIONTc(VII) REDUCTION

METHODSMETHODS

PRISTINE FRC SEDIMENTPRISTINE FRC SEDIMENT

To rigorously characterize the distribution of Fe(II) and Fe(III) in FRC 
sediment.

To identify changes to Fe(II)/Fe(III) distribution and concentration 
resulting from DIRB activity.

To determine the dependence of Tc(VII) reduction rate on biogenic Fe(II) 
and it’s forms. 

To establish tendency of Tc(IV) and biogenic Fe(II) to oxidize and their 
effects on Tc immobilization. 

The mineralogic and chemical properties of the pristine, bioreduced, and 
chemically extracted FRC sediments were characterized by X-ray 
fluorescence (XRF), X-ray diffraction (XRD), X-ray microscopy (XRM, 
at the PNC-CAT beamline at APS), Mössbauer spectroscopy, and 
scanning and transmission electron microscopy with lattice fringe 
imaging. Chemical extraction included dithionite-citrate-bicarbonate 
(DCB), acid ammonium oxalate (AAO), and hydroxylamine 
hydrochloride (HAH).

The FRC sediment was incubated under anoxic conditions with the 
facultative dissimilatory metal-reducing bacterium Shewanella 
putrefaciens, strain CN32 in defined aqueous solutions/media with 
bicarbonate and PIPES buffers for time periods exceeding 75 d.  Lactate 
was used as the electron donor.  Aqueous and sorbed Fe(II) (ferrozine 
assay and 0.5 N HCl extraction) and Mn(II) (ICP-MS and 10 mM CuSO4
extraction), and pH were monitored to define the reduction progress and 
extent.  The bioreduced materials were characterized using the above-
mentioned techniques. 

Bioreduced (pasteurized) sediment or chemically extracted/reduced 
sediment spiked with Fe(II) was washed with a PIPES buffer/electrolyte 
solution, and spiked with NaTc(VII)O4 to yield a concentration of 20 µM. 
The Tc(VII)-spiked samples were agitated and equilibrated at 25o C and 
sampled over time to assess the Tc(VII) reduction rate. Selected sediment 
samples containing 20 µM of reduced Tc [Tc(IV)] were subjected to 
oxidation by: 1.) successive headspace replacements of air, and 2.) open 
system equilibration with air. Removed aqueous samples were filtered (< 
2 µm) and counted to determine the Tc(VII) concentration. Thin sections 
of the bioreduced/chemically reduced Tc(VII) reacted/oxidized sediments 
were analyzed by backscattered electron microscopy and X-ray 
microspectroscopy.       

CONCLUSIONSCONCLUSIONS
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X-ray diffraction demonstrates the
presence of vermiculite, Fe-mica, and
kaolinite in the phyllosilicate fraction.
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Mn(III/IV) oxides were 
reduced to completion before 
Fe(III) reduction commenced.  
All of the biogenic Fe(II) was 
sorbed by the sediment.  
Buffer type had negligible 
effect. 
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Biogenic Fe(II) was rapidly reactive with both O2 and Cr(VI), both oxidants converted approximately 80% of the
biogenic Fe(II) to Fe(III).  The resulting Fe(III) increased the intensity of the central doublet, consistent with the
formation of ferrihydrite.

20 µM of Tc(VII) was reduced to Tc(IV) by 
reaction with biogenic Fe(II) in 75 d 
bioreduced sediment.  Approximately 30% 
was reoxidized after 2 headspace 
replacements with air.

20 µM of Tc(IV) oxidizes slowly in a 75 d 
bioreduced sediment that is bathed in 
oxygenated electrolyte.  Fe(II) is oxidized 
at a rate that is more than 10x higher.

Tc(VII) Reduction in 75 d 
Bioreduced FRC Sediment XMP Image

Tc(VII) reduction rate correlates 
with biogenic Fe(II) 

concentration.

Precipitated Tc(IV) (green) is
disseminated in fine-grained
saprolite aggregates
where biogenic Fe(II) resides.

Spiked Fe(II) formed surface 
complexes on residual Fe(III) 
oxide (goethite) and exchange 
complexes on high Fe(III) 
vermiculite.  This was the 
weakest reductant.

The dominant Fe forms in pristine FRC sediment are phyllosilicate Fe(II) (10%) and Fe(III) (51%), and 
crystalline Fe(III) oxide (Al-goethite, 36%).

DIRB reduce approximately 15-20% of the Fe(III); 4% of this is silicate Fe(III) and the remainder is 
primarily crystalline Fe(III) oxide.

Biogenic Fe(II) resulting from Fe(III) oxide reduction is strongly sorbed as a hydroxide-like precipitate.

The sorbed Fe(II) phase, and not silicate Fe(II), is a moderate-strong reductant of Tc(VII). Reduction rate 
qualitatively correlates with Fe(II).

Tc(IV) reacts with O2, albeit at much slower rates than the Tc(VII)-Fe(II) reaction.

Mössbauer Spectra

Mössbauer spectra measured on chemically 
extracted sediments indicated the presence of three 
Fe phases: small particle size Fe(III) oxide, and 
silicate Fe(II) and Fe(III). 
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Fe(II) was Spiked into Chemically Treated FRC Sediment in PIPES Buffer to Study the 
Reactivity of Different Fe(II) Forms
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Spiked Fe(II) was augmented 
with residual sorbed Fe(II) from 
the DCB extraction.  The residual 
Fe(II) from the DCB extraction 
existed as an unidentified 
precipitate that was the strongest 
reductant.

Spiked Fe(II) formed exchange 
complexes on Fe(III)/Fe(II) 
vermiculite.  This was a moderate 
reductant. Phyllosilicate Fe(II) 
was unreactive with Tc(VII) .

DCB Treatment to Remove Mn 
and Fe Oxides 

DCB/HCl Treatment to Remove Mn 
and Fe Oxides and Sorbed Fe(II)
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EDS pattern

Fe(III) oxides exist in the FRC background sediment as 200-
300 nm aggregates of small acicular crystallites (left).
Analyses of many individual goethite crystallites showed 
limited Al substitution (right).
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The 77o K Mössbauer spectrum was modeled with a 
component additivity approach using the RECOIL program.
Most of the Fe was associated with phyllosilicates (61%, 
vermiculite/illite), and 36% of the Fe was associated with the 
low-Al goethite shown above.
The hyperfine field distribution for the goethite (right) 
indicated that it exhibited a range in particle size and/or 
crystallinity; possibly indicating the presence of two sediment 
sources.
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More crystalline

Bioreduction enhanced the Fe(II)-silicate signal and decreased that associated with crystalline Fe(III) oxide.  The 
spectral contribution of the Fe(III) oxides was decreased by 11% and Fe(III) silicate by 7% (b).  Ammonium oxalate 
Fe(III) was also removed.
Rapid, weak acid extraction removed 50% of the Fe(II) signal indicating that it was not a silicate (c).  This phase was 
not extractable in CaCl2.  The identification of this Fe(II) phase has proven difficult. Obvious choices have been 
discounted.
Mössbauer spectra of the acid extracted residue (c) indicated bacterial reduction of some phyllosilicate Fe(III) [~3% 
of FeTOT].  This Fe(II) was not weak-acid soluble.

Weak acid extraction (0.5 N HCl, 2 h) is often used to determine biogenic Fe(II).
We have observed that Fe(II) release from reduced FRC sediment is a complex function of time.
Three intervals of Fe(II) release can be identified: I.) exchangeable and surface precipitated biogenic Fe(II) 
extracted in 2 h, II.) biogenic, phyllosilicate Fe(II) that dissolves in 2-25 h, and III.) phyllosilicate Fe(II) and Fe(III) 
that dissolves from 25-166 h.

AAO extraction
removes poorly
crystalline oxides

Weak Acid (0.5 N HCl) Extraction of Biogenic Fe(II)
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