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Abstract

Recognition has been growing that radiation epidemiology studies need to assess the de-

gree of measurement error in their radiation doses and a small number of attempts have been

made to adjust radiation dose-response risk estimates for measurement error. However, the

statistical assumptions and methods to correct for measurement error have had weaknesses

that need to be addressed, and our work is a contribution to that end.

Radiation exposure measurement error from differential sources will be classified into two

groups: unsystematic error and systematic error. Different models have be developed for

these two types of measurement errors. A special type of systematic error caused by expo-

sures below the minimum detection limit of dosimeters will be addressed separately from

the other systematic errors. Occupational radiation exposure is often coded as zero when

the exposure dose is below the minimum detection level. This leads to an underestimation

of the doses received by individuals and can lead to overestimates of risk in occupational

epidemiologic studies. The extent of the dose underestimation is increased with the magni-

tude of the minimum detection level (MDL) and the frequency of monitoring. We propose a

Bayesian approach to estimate the actual dose and the dose distribution parameter when the

observed dose is subject to censoring due to MDL. A Gibbs sampling algorithm is developed

to implement the method. Simulation studies are used to evaluate the performance of the

estimators.

We have developed a method to obtain an unbiased estimate of dose response relationship

based on doses subject to minimum detection level. Our method has two steps: first we

propose to a multiple imputation method to impute for missed doses and then to estimate

the relative risk associated with exposure based on the average of the imputed missed doses.

We develop a Gibbs Sampling method to impute for missed doses under two situations: (1)

the radiation exposure is monitored annually and the observed annual dose is available; (2)

the radiation exposure is monitored weekly but only the recorded annual dose obtained by

the summation of all the observed weekly doses is available. The second situation arises

in our example of the ORNL cohort data. It is more complicated because the number of

weeks with BMDL doses is unknown. Then the average of the multiple imputed exposure

realizations for each individual is used to obtain an unbiased estimate of the relative risk

associated with exposure. Simulation studies are used to evaluate the performance of the

estimators.
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Given the absence of existing statistical methods to correct several type of measurement

errors associated with occupational radiation exposure, this paper aims at assessing the

impact of several type of measurement errors on dose response relationship so that an upper

and lower bound of the true relative risk associated with exposure can be obtained. We

consider random errors as well as doses subject to MDL. Simulation studies are used to

examine the impact of these two types of measurement error on relative risk associated with

radiation exposure. Several assumptions regarding the nature and magnitude of the errors

in measuring true doses are made. The assumptions are hypothetical, but are chosen to

approximate a range of possibilities likely to be encountered in actual occupational radiation

studies. We apply the result from the simulation studies to a subset of the Oak Ridge

National Laboratory (ORNL) (CEDR, 1999) data set in examining the range of true relative

risk associate with radiation exposure.

Significant Findings

We propose Bayesian Monte-Carlo methods to adjust for the missed doses in two situ-

ations: (1) the radiation exposure is monitored annually and the observed annual dose is

available; (2) the radiation exposure is monitored, say, weekly but only the recorded an-

nual dose obtained by the summation of all the observed weekly doses is available. The

second situation is more complicated because the number of weeks with below-MDL doses

is unknown. We have shown that in the first case our method works well in estimating the

dose distribution even when the censoring proportion is very high. In the second case our

method works well in estimating individuals’ doses when the censoring proportion is up to

60%. Furthermore, if we can obtain additional information for the dose distribution from

an additional data set, then we are able to estimate individuals’ dose well for up to 80%

censoring. This suggests to us that when we design a study where the doses might be heav-

ily censored, it is helpful to identify a small subgroup whose doses can be measured more

precisely. Based on our method, the dose estimates can be viewed as the true dose measured

with Berkson error. Therefore, our relative risk estimator is unbiased.

Usefulness of Findings

We apply our method to a subset of ORNL study population. The Oak Ridge National

Laboratory (ORNL) is one of several facilities included in a large follow-up study of the

health and mortality of workers at DOE facilities. We considered white males hired at

ORNL between the opening of the facility in January, 1943 and the end of 1972 with follow

up through 1984 and had worked for at least 3 years, which consist of 3,960 workers. We have

found that the relative risks associated with radiation exposure were slightly overestimated
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with the observed doses: the relative risk associated per 10 mSv increase in radiation doses

changed from 1.018 to 1.017 when adjusting for missed doses due to doses below the minimum

detection level. In another words, direct application of the observed doses gives fairly good

estimates, perhaps because there is no dose effect with respect to all-cause mortality. A study

having a strong exposure-mortality association would probably give a clearer assessment of

the impact of below minimum detection level exposure correction.

It was noticed that in another major study of radiation exposure on health effects, the

Hanford Study, the censoring due to below minimum may be severe in early years when the

film badge was exchanged frequently. Our method can therefore be applied to this study.

Our method is not limited to occupational radiation exposure problems but can be applied

to a wide variety of environmental exposure-response data.

Scientific Report

1 Background

Estimates of external radiation dose, obtained from personal dosimeters, are used in epidemi-

ologic studies of nuclear workers. A major objective of these studies is to provide a direct

assessment of the carcinogenic risk of exposure to ionizing radiation at low doses and dose

rates. In order to obtain an accurate and precise estimate of the risk of exposure, an accu-

rate estimate of exposure is needed. However, the measurement of radiation exposure using

personal dosimeters are subject to measurement errors. The sources of error identified by

the National Research Council (NRC) Committee on File Badge Dosimetry in Atmospheric

Tests are the following (Gilbert, Fix and Baumgartner, 1996). The first source of error is lab-

oratory error including all errors introduced in film calibration, chemical processing, reading

of optical densities, etc. A second source was identified as radiological error. Components

of radiological error includes the energy spectrum (the failure of the dosimeter to respond

accurately to all radiation energies to which personnel were exposed), wearing the dosimeter

(the failure of a dosimeter worn on the torso to respond accurately to exposure coming from

all directions), and backscatter associated errors (the overestimation that occurs when cal-

ibration is conducted in air rather than on phantom). The third source was environmental

error including all error associated with the consequence of light, moisture, high tempera-

ture, etc., associated with the field environment. A fourth source of error was that resulting

from converting recorded measurements to estimates of deep doses. Another source of error

related to the fourth error is the error resulting from conversion of deep dose to organ doses.

Modern dosimetry programs are usually designed to estimate “deep dose” rather than the
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organ doses needed for epidemiologic purposes. Although it is possible to estimate factors

for converting deep dose to organ doses (Gilbert, et al, 1996), these factors depends on the

energy of the radiation and geometry. Among these four errors, the laboratory error and

the environmental error are more likely due to random variation, can thus be modeled as

random errors. The errors caused by the last two sources tend to be more systematic, thus

may result in biased dose estimates.

Measurement error in dose estimates often biases estimated regression coefficients and

may also result in underestimation of uncertainty and in distortion of the shape of the dose-

response function. Methods for accounting for random error have been discussed by many

investigators including Cochran (1968), Prentice (1982), Armstrong (1990), Clayton (1992)

and Thomas et al. (1993). However, these methods require the magnitude (i.e., the distri-

bution and the variation) of the measurement error to be known or estimable for validation

studies. For occupational radiation exposure studies, in which this paper focuses on, these

information is not available. Further, measurement error particularly random measurement

error comes from uncertainty in single dosimeter readings. Occupation radiation exposure

includes a series of exposure over time. Uncertainties in the estimates of the total exposure

for individual workers, which are based on the sum of several dosimeter readings, vary by

workers since workers can have different length of employment. The existing measurement

error models mentioned above assume the magnitude of measurement error is the same across

all the workers and therefore are not applicable here.

In addition to the sources of measurement errors described above, there is another special

type of measurement error that is common in environmental studies, which is the occurrence

of values below the minimum detection level (BMDL). The MDL is the lowest dose that a

dosimeter can measure. The MDL of a dosimeter depends on how sensitive the dosimeter

is and how experienced the dosimeter reader is.Uncertainty about the actual values below

the minimum detection level (MDL) can bias or preclude subsequent statistical analysis.

Consequently, the use of such data (type I left censored) for defining conditions and detecting

trends or relationships can be compromised. A common practice in radiation studies is to

record a zero for BMDL doses, which leads to an underestimate of the true dose. Conversely,

if the MDL dose is recorded for BMDL doses, it will lead to an overestimate of the true dose.

Either way will lead to a biased estimate of the dose-response relationship. Xue and Shore

(2003, 2004) have developed methods to estimate the true dose and the true dose-response

relationship when they are BMDL doses. However, their methods do not consider other

sources of measurement error.

Given the absence of existing statistical methods to correct several type of measurement

errors associated with occupational radiation exposure, this paper aims at assessing the

impact of several type of measurement errors on dose response relationship so that an upper
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and lower bound of the true relative risk associated with exposure can be obtained. We

consider random errors as well as doses subject to MDL. Simulation studies are used to

examine the impact of these two types of measurement error on relative risk associated with

radiation exposure.

We apply our measurement error correcting method to the ORNL study. Checkoway

et al. (1985) studied mortality of white males hired at ORNL between the opening of the

facility in January, 1943 and the end of 1972 with follow up through 1977. The men all

worked for at least thirty days, and there was no record indicating they had been employed

at any other department at the facility. In this study, we extend the follow-up till 1984

and consider only workers who entered the laboratory after 1945 and had worked for at

least 3 years, which consist of 3,960 workers. An individual’s radiation dose of record at

ORNL is based on pocket meters from 1943 to July 1944, film badges from then to 1975 and

thermoluminescent dosimeters since 1975. The pocket meters were used in the early days

of plant operations, particularly to obtain interim values between film badge readings, and

continue to be used even today when high exposure potential is suspected (Parrish, 1982).

The pocket meters were evaluated daily with a very low MDL (0.02 mSv), and the film

badges were evaluated weekly from July 1944 to July 1956, when quarterly monitoring was

initiated. The minimum detection level of the most sensitive film used at ORNL ranged from

0.10 to 0.30mSv (Kerr, 1994). A minimum detection level of 0.10 mSv was possible only if

an experienced technician evaluated the exposed films with special care. During film badge

exchange, when hundreds to thousands of films were read in large batches by technicians

with widely varying level of experience, a minimum detection level of about 0.30 mSv is

about as good as could be expected (Morgan, 1962). Annual monitoring was initiated

in 1975 using thermoluminescent dosimeters (MDL=0.20 mSv). One complication of the

ORNL dosimetry data is that only the annual doses are available in a computerized format.

The annual dose before 1975 was obtained through the summation of the putative weekly

or quarterly doses, which recorded zeroes for BMDL dose quantities. Most of the missing

dose due to BMDL occurred from July 1944 till July 1956 when weekly measurements were

made. With weekly measurements, the annual doses could be underestimated by as much

as 15 mSv (0.30mSv/week X 50 weeks), although the chance that someone who has as high

as 15mSv annual dose has all 50 weekly doses below MDL is very small. Both quarterly and

annual monitoring have a much longer period to accumulate exposure compared to weekly

monitoring, so there is a greater likelihood the accumulated dose will be above the MDL

which makes the missed dose a less serious problem.

Several statistical methods were developed for adjusting the BMDL doses. Early works

include Altshuler and Pasternack (1963) and Currie (1968) and more recent works include

Newman et al. (1989), Taylor (1991), Mitchell et al. (1997) and ISO (2000). However,

most of these methods are not applicable for the period 1944-1975 because the number
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and identity of weeks or quarters with BMDL doses was generally unknown. Watkins et al.

(1997) developed a method to compensate for likely zeroed BMDL doses in the ORNL annual

recorded doses by a dose adjustment procedure, which involves a mathematical formula

between observed doses and expected missed doses built from a small sample of daily pocket

meter readings (where pocket meters have a high sensitivity to small doses). This approach

ignored the sampling variation among doses and also depended heavily on the adequacy of the

fitted model, which was built from the small sample of the data set that was computerized.

Not all the observed zero doses are BMDL doses. Some are legitimate zero doses since

office workers tend to have no external exposure from radiation. Therefore, the observed

zero doses are considered as the true zeroes if this person had more than 3 years of zero

exposure or he had all zero doses and more than 75% workers of his department had zero

exposure. For details, see Watkins et al. (1997). Except for legitimate zero doses and other

special cases (for example, for workers whose film badges were not available, a plant median

was used), the dose estimation method is applied to all the exposed years in order to obtain

a cumulative dose of radiation for each subject. It is estimated that about 75% of the annual

doses were censored due to BMDL and about 98% of the weekly doses were BMDL doses

(Xue and Shore, 2003).

2 Specific Aims

2.1 Specific Aim 1: Distribution of the True Dose

Let Yij be the true dose for the ith subject at the jth year where i = 1, · · · , N and j =

1, · · · , ni. We assume Yij follows a gamma or a lognormal distribution since the exposure

data tends to be right skewed.

Under the assumption of Gamma distribution, we assume the weekly dose follows Gamma(α, β)

where α is the shape parameter and β is the scale parameter. We also assume the 50 weekly

doses within a year (2 weeks of vacation are excluded) are independent and identically dis-

tributed. Therefore, the annual doses represented by Y should follow Gamma(α∗, β) where

α∗ = 50α.

Under the assumption of the lognormal distribution, we allow the repeated exposure for

the same subject to be correlated. A random effect was therefore introduced to take into

account the heterogeneity across subjects’ exposures. Specifically, we assume that µi, the
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mean of the logarithm of the true dose, logYij, is a random sample from a certain distribution.

Then by conditioning on µi, the logarithm of the true dose Yij can be modeled as:

logYij|µi ∼ N(µi, σ
2), (1)

where we further assume µi ∼ N(µ, τ 2). Doses from the same subject are thus correlated

and the correlation is given by

Corr(logYij, logYij′) =
τ 2

σ2 + τ 2

for j 6= j
′
.

The distribution of a weekly dose Yijk for k = 1, · · · , 50 can then be numerically calcu-

lated, assuming (1). For simplicity, we approximate the distribution of Yijk by a lognormal

distribution:

logYijk|ηi ∼ N(ηi, r
2) (2)

where ηi and r2 are determined by matching the first two moments of Yij with
∑K

k=1 Yijk, so

that

ηi = (log
e2µi(er2

+ K−1
2

)

K3
− r2)/2 (3)

and

r2 = log(Keσ2 − K − 1

2
) (4)

with K = 50. Similarly, the distribution of a quarterly dose can also be approximated by

(2) with ηi and r2 given by (3) and (4) and K = 4.

2.2 Specific Aim 3: Measurement Error due to MDL

We assume there was a minimum detection level and that doses below the MDL were coded

as 0, as was true of the ORNL data. To estimate the true dose, we consider a simple situation

first where the radiation exposure is only subject to uncertainty due to minimum detection

level. A Gibbs sampling algorithm is developed to estimate the true dose. The Gibbs

sampling approach is described in the following: under the Gamma distribution assumption,

1. Replace the censored annual doses (coded as 0) with samples from the bounded Gamma

distribution, i.e.,Y ∼ Gamma(α∗, β)|Y < MDL;

2. Obtain the maximum likelihood estimator (MLE) of α∗ and β after the censored doses

are replaced;

7



3. Sample α∗ and β based on the asymptotic multivariate normal distribution of the MLE

of α∗ and β obtained in 2.

With a noninformative prior on α∗ and β, the posterior distribution is proportional to

the likelihood function. The likelihood function can be approximated by a bivariate normal

distribution through matching the first and the second derivatives at the mode. Therefore,

the posterior distribution can be approximated by a bivariate normal distribution with the

MLE as the mean and the inverse of the information matrix as the covariance matrix.

A simulation study has been used to evaluate the performance of the above method. In

each simulation, we sampled an annual dose from Gamma(α∗, β) for each subject where

α∗ = 1.0 and β = 0.05. These parameter values were set to approximate the shape of the

dose distribution for our example, and also for simulation convenience. We set the annual

observed doses to 0 if it is below the MDL. We let the MDL vary from 5,10,18,32 and to

46 so that the chances of missed doses were 20%, 40%, 60%, 80% and 90%, respectively.

We checked to see how the method performs in estimating the actual annual doses under

various censoring levels. The posterior sample for α and β and the actual annual dose for

each subject with a zero observed dose (i.e., the simulated “actual” dose was below the

MDL) was collected from the 5th iteration over 100 replicates. Then we obtained the mean

of the parameters (α and β) and their 95% confidence intervals. For each subject with a zero

observed dose, we used the mean of the posterior sample of annual doses for this subject

as his estimated annual dose and defined the relative difference between the actual and the

estimated doses for this subject as |estimated dose - actual dose|/actual dose∗100% (For a

subject whose annual dose is above the MDL, his observed dose is his actual annual dose and

therefore his relative difference in annual doses is simply zero). We calculated the percentages

of subjects that had a relative difference of below 10% and below 5% between their actual and

estimated doses. We evaluated the performance of the method by first comparing how close

the estimated distribution of annual dose was to the true dose distribution. This was done

by checking how close the average of the sample means of α∗ and β were to the true values

and if the estimated 95% confidence interval retains its coverage probability. Second, we

evaluated the proportion of persons for whom the relative differences between the estimated

and the actual annual doses were below 10% and 5% and then average the proportions

over 100 simulations. The simulation results are summarized in Table 1. Table 1 shows

that the Monte Carlo method is able to estimate the distribution parameters well even with

very high proportions of censoring, however, with a slightly underestimated variation. The

proportion of relative differences below 10% (or 5%) hardly exceeds the percentage of whom

had complete data (Table 1), indicating that this method cannot estimate individuals’ doses

well. This is what we expected because we do not have any information about the individuals’

doses except that they are below the MDL. However, since the mean of the posterior sample

for doses were used to estimate the actual doses, our estimators are unbiased estimators for
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the actual doses while other methods such as “replacement of one half of the MDL” tend to

either overestimate or underestimate the actual dose.

Under the lognormal distribution assumption, to impute the missed doses that are below

the minimum detection level, a Gibbs Sampling method is also developed:

1. Replace the censored annual doses (coded as 0) with samples from the bounded lognor-

mal distribution, i.e., Yij ∼ [lognormal(µi, σ
2)|Y < MDL] based on current estimates

of µi and σ2;

2. Update µi by sampling from its posterior distribution, conditioning on the complete

doses and current estimates of µ, σ2 and τ 2;

3. Update µ by sampling from its posterior distribution, conditioning on the current

estimates of µi, i = 1, · · · , N and τ 2;

4. Update σ2 by sampling from its posterior distribution, conditioning on the complete

doses and current estimates of µi, i = 1, · · · , N ;

5. Update τ 2 by sampling from its posterior distribution, conditioning on the current

estimates of µi, i = 1, · · · , N and µ.

Repeat steps 1-5 until convergence. Then we obtain an imputed dataset of complete

doses. We repeat the process M times and the average of the M imputed doses is used to

estimate the true dose.

Doses in the early years were evaluated on a weekly basis at ORNL. The doses below the

MDL were coded as 0. When weekly doses are available, we know the weeks with BMDL

doses. We can then estimate the censored weekly doses using the method described above.

However, in the early years the number and identity of the weeks with censored doses are

unknown. Only the annual doses obtained by the summation of the censored weekly doses

are computerized. Every subject may have had BMDL doses for some weeks, which were

recorded as zero.

Let Yijk denote the true weekly dose for individual i at jth year and kth week and Yoijk

denote the corresponding observed dose. Then Yoijk
= Yijk if Yoijk

≥ MDL and Yoijk
= 0

otherwise. In early years, only the annual sum of Yoijk
’s is available, that is to say, only

Yoij
=

∑50
k=1 Yoijk

is available. Let Nuij
represent the number of weeks that the weekly doses

are equal to or above the MDL for individual i at jth year, Nlij = 50 − Nuij
is the number

of weeks that the doses are below the MDL. The prior distribution of Nu is binomial with
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size 50 and success rate P (Yijk > MDL). A Gibbs Sampling method to estimate the missed

doses is developed as follows:

1. Sample Nuij
from [Nuij

|observed doses, µi, σ
2], i.e., its posterior distribution, condi-

tional on the observed doses and the current estimates of µi and σ2;

2. Sample Nlij ’s weekly doses from the bounded lognormal distribution;

3. Adjust the observed dose by adding the sampled weekly doses from Step 2. to the

observed annual dose;

4. Update µ by sampling from its posterior distribution, conditioning on the current

estimates of µi, i = 1, · · · , N and τ 2;

5. Update σ2 by sampling from its posterior distribution, conditioning on the complete

doses and current estimates of µi, i = 1, · · · , N ;

6. Update τ 2 by sampling from its posterior distribution, conditioning on the current

estimates of µi, i = 1, · · · , N and µ.

Repeat steps 1-6 until convergence. Then an imputed data set of complete doses is

obtained. The process is repeated M times and the average of the M imputed doses is taken

as the estimate of the true dose.

A simulation study is also used to evaluate the performance of the method. Since it is

similar to the result presented in Table 1, it is omitted here.

2.3 Specific Aim 2: Measurement Error Model in Dose Estimates

The observed dose Zij for the ith subject at the jth year is subject to a random measurement

error. Assuming a classical measurement error model on the log scale, i.e., a multiplicative

random measurement error,

logZij = logYij + εij (5)

where εij’s are independent random measurement error which are assumed to follow N(0, σ2
ε ).

Under the measurement error model of (5), each weekly dose Yijk for k = 1, · · · , 50 is subject

to a multiplicative measurement error eεij , i.e., the observed weekly dose, denoted by Zijk is

Zijk = Yijke
εij .
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2.4 Specific Aim 4: Dose-response relationship

The primary interest is to estimate the relationship between survival and the true radiation

exposure history. Let Y (t) denote the true dose at time t, and let Y (t) denote the history up

to time t, {Y (u), u ≤ t}. We use a time dependent Cox proportional hazards model (Cox,

1972) to model this relationship, i.e.,

λ(t|Y (t), X(t)) = λ0(t)e
θ1

∑
u≤t−g

Y (u)+θ2X(t) (6)

where X(t) is the history of other covariates X(u) for u ≤ t, which are assumed to be

observed without error. Generally there is a lag time, say, g, before a disease caused by the

radiation exposure becomes manifest.

2.5 Specific Aim 5: Estimation of dose-response relationship for
radiation exposure measured with measurement error

As discussed earlier, when the radiation exposure Y (t) is measured with a certain minimum

detection level, simply using the observed doses leads to a biased estimator of θ1. To sum-

marize our estimation method, first we obtain samples from the estimated distribution of

the true dose conditioning on the observed doses; let y∗
r denote a sample of the estimated

distribution of Y |Yo, then we use z =
∑M

r=1 y∗
r/M to estimate the true dose. Provided M is

large enough,

Z ≈ E(Y |Yo)

and thus Z can be viewed as a dose measured with a Berkson error so that

Y = Z + ε

where ε has mean 0 and a constant variance. Therefore, the estimated cumulative exposure

based on our estimation method,
∑

u≤t−g z(u) is essentially a dose with a Berkson error. We

further assume ε follows a normal distribution. Then following the argument of Prentice

(1982) and Pepe et al. (1989), the estimate of θ1 based on our dose estimate is unbiased.

A simulation study is used to evaluate the performance of the relative risk estimator. In

each simulation, we first sample the mean parameter µi from a normal distribution with mean

µ = 3.5 and variance τ 2 = 0.6 for i = 1, · · · , N . Then given each µi, we sample yij for j =

1, · · · , ni from a lognormal distribution such that logyij ∼ Normal(µi, 0.4). Therefore, we

have EYij = 54.5 millirems= 0.545 mSv, V arYij = 0.8013 mSv2 and Corr(logYij, logYij′) =

0.6. For simplicity, we assume there are no other covariates except the dose. Then based on
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the true dose level and an assumption on the lag g, we generate survival times using model

(6) with the relative risk parameter θ1 = 0.02 per 10 mSv increase in dose; the baseline

hazard is set to be a constant, 0.01333 so that the probability of surviving over 10 years

without being exposed to radiation is about 87.5%. The parameters are chosen so that the

distribution of the simulated data is close to the data in the example.

With a chosen MDL, we set the annual observed doses to be 0 if it is BMDL. We let

the MDL vary from 0.10mSv, 0.18mSv, 0.30mSv, 0.50mSv, and to 0.80mSv so that the

chances of missed doses were 10%, 25%, 45%, 65% and 80% respectively. We checked to see

how the method provided in Section 2.1 performs in estimating the true relative risk under

various censoring levels. For each observed zero dose, we took the sampled doses at the 5th

iteration over 10 replicates and used the average as the estimate of the missing doses. Then

we estimated the relative risk associated with the radiation exposure based on the “complete

dose”. We repeated the simulation 300 times; Table 2 summarizes the results.

Table 2 shows that when the observed doses, which are left censored (because they are

BMDL), are directly applied, the relative risk associated with the exposure (i.e., θ1 in model

(6)) is generally underestimated. However, the underestimation becomes relatively severe

only when the proportion of BMDL annual doses is 30% or higher. The relative risk estimates

based on the imputed doses perform much better and generally give an unbiased estimator

of the true relative risk. When the proportion of censoring goes up to 80%, the model with

the imputed doses slightly underestimates the true relative risk by 3%, but the observed dose

statistic underestimates by 19%. The estimated standard error for the relative risk estimates

based on the observed doses also is generally too small; the model with imputed dose gives

a better estimator of the standard error except when the censoring is quite high (80% or

higher).

For the subset of ORNL data, a total of 10 imputed datasets of doses were generated,

adjusted for missing doses due to BMDL. Then the average of the imputed doses for each

worker was taken as the estimated dose in order to calculate the relative risk associated with

the cumulative radiation exposure. We evaluated the association of radiation exposure with

all-cause mortality using a time-dependent Cox proportional hazards model. The Cox model

controlled for sociodemographic factors as well, although data on smoking, chemical expo-

sures, medical exposures to ionizing radiation, and cancer mortality were not available. We

used the sociodemographic variables such as age, birth year, pay code (monthly/nonmonthly)

and active/inactive worker status. Pay code was used as an indicator of socioeconomic status

with monthly paid workers to be on a higher socioeconomic level. Active worker status was

considered because workers who continued employment, and consequently exposure, tend to

be healthier. A lag of 10 years was used.
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Table 3 presents the estimates of the relative risk associated with exposure and other

covariates when the observed doses and the imputed doses were used. Table 3 shows that

the relative risks associated with radiation exposure were slightly overestimated with the

observed doses: the relative risk associated per 10 mSv increase in radiation doses changed

from 1.018 to 1.017 when the imputed doses were used. Similarly, very close results were

obtained for other covariates as well, indicating that in this study, direct application of

the observed doses gives fairly good estimates, perhaps because there is no dose effect with

respect to all-cause mortality. A study having a strong exposure-mortality association would

probably give a clearer assessment of the impact of BMDL exposure correction.

When the radiation exposure is both subject to random error and minimum detection

level, it is complicated to use an analytical approach to obtain an unbiased estimator of the

relative risk association with radiation exposure. A simulation study is then proposed to

evaluate the magnitude of bias and loss of efficiency. The development of this simulation

study is undergoing and is expected to be finished by the end of May.

13



Table 1. The estimation of dose distribution parameters and individuals’s true dose when

the exposure is monitored annually with a MDL: results based on 100 simulations where

the annual dose is assumed to be Gamma distributed with α∗ = 1.0 and β = .05.

% α∗ β Relative diff.
of in annual dose3

below1 average of coverage average of coverage average of average of
MDL sample prob.(%) sample prob.(%) % < 10% % < 5%
doses mean2 of the 95% CI mean of the 95% CI
20% 1.128 98.0 .056 92.0 80.1 80.0
40% 1.143 99.0 .057 90.0 64.5 62.6
60% 1.138 100.0 .053 94.0 45.6 42.9
80% 1.102 100.0 .043 98.0 26.5 23.2
90% 1.191 100.0 .056 89.0 17.3 13.7

Note: 1. The MDL is chosen such that the proportion of doses below that level is from

20% to 90%. 2. In each simulation, we obtain a sample of 100 points of (α∗, β). The

sample mean is then taken as the estimate of the parameters. We also constructed the 95%

confidence interval based on the normal assumption of the sample mean. 3. For each subject

with a below MDL dose, we obtain a sample of 100 points for his doses. We then use the

mean of the sample to estimate his actual annual dose. The relative difference in annual

doses is calculated as |estimated dose-actual dose|/actual dose∗100%. For subjects whose

annual doses are above the MDL, their relative differences in annual doses are zero. Then

the average across subjects of the relative difference is calculated.

Table 2. The estimation of the relative risk based on the observed dose and the adjusted

dose when the exposure is monitored annually and a fraction of exposures are BMDL:

results based on 300 simulations (θ1 = 0.02)

% of below Based on Observed doses Based on Imputed doses

MDL doses average1 of θ̂1 average of ŝe(θ̂1) average of θ̂1 average of ŝe(θ̂1) Sample se
10% .0196 .00131 .0200 .00133 .00133
30% .0188 .00125 .0202 .00134 .00138
45% .0174 .00117 .0199 .00133 .00135
65% .0166 .00113 .0198 .00136 .00142
80% .0162 .00117 .0193 .00143 .00238

Note: 1. The average is taken over 300 simulations.
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Table 3. Comparison of parameter estimates in the Cox model (6) for the association

between radiation exposure and all cause mortality using observed radiation doses and

imputed radiation doses for a subsample of ORNL study

Variables observed doses imputed doses

θ̂1 ŝe(θ̂1) p-value θ̂1 ŝe(θ̂1) p-value
radiation dose (in 10 mSv) .018 .011 .088 .017 .010 .097

current employment -.561 .107 <.001 -.561 .107 <.001
age in years .089 .004 <.001 .089 .004 <.001

paycode (monthly) -.610 .095 <.001 -.609 .095 <.001
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when she moved to Albert Einsten College of Medicine in May of 2003;

A Dell Dimension 4100 Computer was bought in February of 2001; Dr. Xue left it at NYU

School of Medicine when she moved to Einstein.
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Final Invention Statement

No inventions were conceived under the grant.
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