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PRELIMINARY AND INCOMPLETE1 
 
Introduction 
 
Missing data due to item non-response is a pervasive problem in social and economic data.   Often 
economists simply throw out observations with missing data.  Estimates based on the remaining samples 
can be inefficient or even biased.  A large and growing literature in statistics show to impute values for 
missing data, and a literature dating back at least to Rubin (1987) has shown how to use multiple 
imputation to estimate the additional uncertainty introduced into the data due to imputation.  Methods of 
single imputation, such as plugging in the industry mean or a ratio estimate, lead to underestimation of 
uncertainty in many analyses.  This paper will apply a particular version of multiple imputation, 
Raghunathan et al.’s (2001) sequential regression multiple imputation (SMRI), to a particular dataset, the 
Annual Survey of Manufactures (ASM).   The goal is to improve inferences for a commonly used 
confidential economic dataset.   But the SMRI method is applicable much more generally, and thus our 
empirical results may be of interest to researchers using any dataset that contains missing or imputed items.   

Although the SMRI method is due to Raghunathan et al. (2001), here we briefly describe the 
method and motivate its use.  SMRI is a multivariate technique for imputing missing values using a 
sequence of regression models.  The basic idea is to impute 
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X  on .),,( 21 etcXX , and so on.  The regression models are specified to match the distribution of the 

outcome variable.  For example, use a multinomial logistic regression for a multinomial variable, a logistic 
regression for a binomial variable, and a linear regression for a continuous variable with normally 
distributed errors.  An advantage of this strategy is that it is generally easier to specify plausible conditional 
models than plausible joint distributions.  A disadvantage is that the collection of conditional distributions 
is not guaranteed to correspond to a proper joint distribution, particularly when the models use different 
conditioning sets. 

Two other advantages of the SMRI method relative to the current Census imputation methods are 
transparency and flexibility.  The Census Bureau routinely imputes values for missing data, but it is often 
not clear to researchers using the microdata how this imputation was done.  And, while the imputation 
methods used by the Census Bureau (and other data collection agencies) may be appropriate for Census 
                                                             
1 This report is released to inform interested parties of ongoing research and to encourage discussion of 
work in progress.  Any views expressed on statistical, methodological, technical or operational issues are 
those of the authors and not necessarily those of the U.S. Census Bureau.  The research in this paper was 
conducted while the first author was an employee of the U.S. Census Bureau at the Triangle Census 
Research Data Center.  This paper has been screened to ensure that no confidential data are revealed. 
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Bureau goals such as industry tabulations, they may not be appropriate for researchers using confidential 
microdata.  Use of SMRI as a general method for imputation enables researchers to tailor the imputation to 
their particular application. 

Tim Dunne (1998) and other researchers have noted that identifying and dealing with missing and 
imputed data are important problems for researchers using the Census of Manufactures (CMF) and Annual 
Survey of Manufactures (ASM) microdata.  Until very recently, the ASM and CMF data available in the 
Census Research Data Centers (RDC) contained no item-level flags to identify imputed data.  Dunne 
(1998) documented ways to identify imputed data in the CMF and ASM.   In one industry frequently 
studied by economists, roughly 40% of the data appears to be imputed (Collard-Wexler, 2007).2 To the 
extent that economists deal with missing data issues at all, they typically throw out observations identified 
as imputed (Foster, Haltiwanger, and Syverson, 2007; Collard-Wexler 2007; and many others).  Throwing 
out observations with missing or imputed data can lead to biased estimates and deflated standard errors 
(Little and Rubin, 2002).  On the other hand, treating imputed data as if it were complete data will typically 
lead to confidence intervals that are “too narrow”, i.e., the confidence intervals will understate the amount 
of uncertainty in the estimates due to missing data.  
   The U.S. Census Bureau uses a variety of methods to impute data in the ASM and CMF.  Based on 
our analysis of the item-edit flags in the 2002 CMF and the 2003-2005 ASM, one of the most common 
methods appears to be “cold-deck.”  The cold-deck method typically involves using data from other 
records, perhaps in the same industry, sometimes from earlier years, to impute missing data items.  While 
we have made inquiries at the Census Bureau through the appropriate channels, at the time of this writing 
we have not been able to ascertain precisely how the Census Bureau implements the cold-deck method in 
the ASM and CMF.   Nevertheless, we can say for certain that only one imputation per missing item is 
recorded in the ASM and CMF data available in the RDCs.  From a researchers’ perspective, having only 
one imputation per missing data item will typically cause the researcher to understate the amount of 
uncertainty in her estimates.  
   This paper uses new data and new methods to address both problems mentioned above: identifying 
and dealing with missing data in the ASM/CMF.  The Census Bureau does many different types of edits of 
the data it collects. The Census Bureau  classifies some types of edits as “imputed,” and others as “not 
imputed.”  The 2002 CMF and 2003-2005 ASM data contains item edit flags that identify imputed items, 
and the name of the method used to impute them.  For any data item for which the item edit flag is in the 
“imputed” category, we consider that data item “missing.”  We apply the sequential regression imputation 
method (Raghunathan et al., 2001) to multiply impute missing values.  Then we compare our method to a 
version of an imputation method currently used by the Census Bureau.  First we estimate a model of 
missingness based on the data.  We use this model to create missing data, that is, we “poke holes” in the 
records with complete data.    Then we create multiple imputations for these artificially missing values 
using the sequential regression method, and we create single imputations using a version of the cold-deck 
method (described below).  We find that industry means based on our multiple imputations tend to be 
closer to the true mean (based on the real data) than estimates from the data imputed (singly) using the 
cold-deck method.  Further, we find that our estimated confidence intervals tend to be wider than the 
confidence intervals from the single cold-deck imputed data, and our confidence intervals are more likely 
to cover the confidence intervals from the real data.  
 
Data 
 
As mentioned above, we use the 2002 Census of Manufactures (CMF) and the 2003-2005 Annual Surveys 
of Manufactures, since these years of the data have item-level edit flags.  Roughly a third of the plants in 
the manufacturing data come from Administrative Records (AR) data.  These plants are not sent a survey 
form.  We follow most of the economics literature and drop these plants from our sample.  The long-run 
goal of the project is to estimate plant-level and aggregate total factor productivity (tfp), so we are 
primarily interested in missing/imputed data in variables that are typically used to compute tfp: the total 
value of shipments (TVS), the total cost of materials (CM), production workers hours (PH), production 
                                                             
2 Roughly one third of the data in the CMF comes from establishments which have fewer than 5 employees 
and are not sent a survey form.  Data for these plants comes from Administrative Records (AR).  The 40% 
figure in Collard-Wexler refers to non-AR records.  Likewise, throughout this paper, when we refer to 
percentages of imputed or missing data, we are referring to percentages of non-AR records. 
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worker wages (WW), total salaries and wages (SW), expenditures on electricity (EE), capital expenditures 
on buildings (CBE), and capital expenditure on machinery (CME).   For each of these variables there is a 3-
digit item edit flag explaining whether the recorded value was reported and/or edited or imputed in some 
way.  As mentioned above, we treat as “missing” any data item which the Census Bureau item edit flags 
classify as “imputed.”  We then proceed to create our own imputations for these “missing” data items.   
Table 1 shows the rates of “missingness” for our variables of interest across all non-AR manufacturing 
plants in each year of our sample.   Payroll (total salaries and wages) can be found in administrative 
records, and the Census Bureau does not classify these payroll items as “imputed” (and thus we do not 
consider them missing).  This may account for the low rate of missingness reported for this variable in 
Table 1.   Among non-AR plants in the 2002 CMF, 44% of the CBE items are “raked.”  This means that the 
sum of reported detail items (such as capital expenditure on building and capital expenditures on 
machinery) do not balance to the reported total (such as total capital expenditures). The Census Bureau 
changes the details proportionally so that they add up to the reported total.  These “raked” items are not 
considered imputations, and thus we do not count them as missing.  This accounts for the low rates of 
missingness reported in Table 1 for the 2002 capital expenditures.    
 

 2002 2003 2004 2005 
Total Value of Shipments 28 29 27  26 
Total Cost of Materials 42 35 33 34 
Plant Hours (production workers) 39 30 27 27 
Worker wages 19 25 22 22 
Total Salaries and wages 0 1 0 0 
Electricity expenditures 46 30 30 30 
Capital expenditures (buildings) 0 36 27 28 
Capital expenditures (machinery) 0 36 27 31 
Sample size 215,683 64,417 55,645 57,155 

Table 1: Percentages of missingness/imputation among all non-AR plants in the 2002 Census of 
Manufactures and the 2003-2005 Annual Surveys of Manufactures, according to item edit flags. 
   
 The Table 2 reports the standard deviations of the percentage missing for each 5-digit NAICS 
manufacturing industry for each year of our sample.  The table shows that the rates of missingness vary 
considerably across industries within the manufacturing sector.   
 
 
  

Variable 2002 2003 2004 2005 
Total Value of Shipments 14 11 10 9  
Total Cost of Materials 12 13 11 10 
Plant Hours (production workers) 10 11 9 10 
Worker wages 13 11 8 8 
Total Salaries and wages 0 1 1 1 
Electricity expenditures 14 12 11 10 
Capital expenditures (buildings) 0 13 10 10 
Capital expenditures (machinery) 0 13 10 10 

Table 2: Standard deviations of 5-digit NAICS industry percentage missing, among non-AR plants in the 
2002 Census of Manufactures and the 2003-2005 Annual Surveys of Manufactures, according to item edit 
flags. 
 
 
An Imputation Model 
 

As mentioned above, Raghunathan et al. (2001) develop a multivariate technique for multiply 
imputing missing values, SMRI, that uses a sequence of regression models.  The basic idea is to impute 
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.),,( 31 etcXX , impute 
3
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3
X  on .),,( 21 etcXX , and so on.  The regression 

models are specified to match the distribution of the outcome variable.  For example, the user can specify a 
multinomial logistic regression for a multinomial variable, a logistic regression for a binomial variable, and 
a linear regression for a continuous variable with normally distributed errors.   

In preliminary analysis we found that most of our variables have large positive first order 
autocorrelations, but insignificant autocorrelations at higher lags.  The exceptions were the capital 
expenditure variables, which also have significant second-order autocorrelations.  Thus we hypothesize that 
an imputation model using just current and one-period lagged values might do a good job.  Using just OLS, 
we tried several different regression specifications for plants with complete data.  Based on the R-squared 
of the regressions our preferred specification is: 
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where Yijt is any of our variables listed in tables 1 and 2, for plant i in year t; the X’s are lagged values of 
all of these variables, including the variable Y; and ε is an error term.  We ran this regression for 86 4-digit 
NAICS industry groups and found that the R-squared of the regression exceeded 0.90 for all variables and 
all industries.   
 Using the specification in equation (1) as a starting point, we then applied the method of 
Raghunathan et al. (2001) using IVEware, code based on the SAS macro language.  IVEware implements 
the sequential regression approach, conditioning on all variables (which in our case includes squared terms) 
in the specified models.  We want to ensure that our industries are homogenous enough so that using the 
same imputation model for all plants in the industry makes sense.  At the same time we need to keep the 
industry grouping coarse enough to keep the analysis of many industries feasible.  To balance these two 
aims we assume that all establishments in the same 5-digit NAICS industry can use the same imputation 
model.  For this preliminary analysis we allow for a year dummy variable, but otherwise we assume the 
parameters of the model are the same across all years within the same industry.   Thus our full imputation 
model is:  
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where i indexes the plant, j is the industry, t is the year, and k indexes the explanatory variable.  Note that 
lagged values of the dependent variable appear as predictors. The parameter δjt is an industry-specific year 
dummy.  The SMRI procedure first imputes initial values for all missing data, drawn from models 
estimated with the complete data.  The procedure then cycles through all the variables, replacing missing 
values based on equation (2).  That is, for variable Y, the imputations are drawn from the posterior 
predictive distribution defined by the regression in (2), where the parameters of the regression have non-
informative prior distributions.  This involves estimating the parameters in equation (2) using the current 
version of the completed data, then randomly drawing a value of Y using the drawn parameter values.  At 
each draw, the procedure imputes new values for the originally missing values, using the imputed values of 
covariates from previous iterations.  In practice we iterate 10 times for each imputation and keep 20 
imputations for each missing value.   Thus we do 200 imputations for each missing value and keep 20.   
 
Comparison to Cold-deck Imputation 
 
To assess the performance of the sequential regression imputation method for missing values in the ASM 
and CMF, we compare our results to results based on a version of “cold-deck” imputation.   The single 
regression method can handle missing values in any of the observed variables and it allows for different 
types of missing data patterns.  In particular, it does not require monotone missingness.3   However, to keep 

                                                             
3 IVEware does assume that the missing data mechanism is ignorable. 
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the comparison simple, we focus on samples with missing items in only one variable at a time.  
Specifically, we begin by selecting plant-year observations in which the Total Cost of Materials (CM) 
variable may or may not be missing, but all other variables in table 1 are reported on the survey form (and 
not imputed).4   Although the item-edit flags only exist for the years 2002-2005, we want to use lagged 
values of the variables as predictors.  Thus for year 2002 CMF observations, we included lagged values 
from plants in the 2001 ASM.  Using this sample, we estimate a logit model of missingness for each 5-digit 
NAICS: 
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where I() is the indicator function: I(CMijt)=1 if CMijt  is observed and I(CMijt)=0 if CMijt  is missing; Λ is 
the cdf of the logistic distribution; and X1ij through Xkij are all the variables in table 1 except the Total Cost 
of Materials.   We keep the predicted probabilities from (3) for each plant.  Then we select only the plant-
year records in our sample with “complete” data, meaning all the variables in table 1 are observed, 
including CM and one-year lags of all variables.  For each complete data record, we take a draw from a 
Bernoulli distribution with probability equal to that record’s predicted probability from (3).  Based on the 
Bernoulli trial we set CM to missing or we keep the observed CM.  Basically we are “poking holes” in the 
CM variable in the complete data.    
 Having created artificially missing data from our complete records, we do two types of imputation: (i) 
multiple imputation using sequential regression and (ii) single imputation using a cold-deck method.  For 
the purpose of our comparison and to avoid disclosure issues we select the 89 5-digit NAICS industries that 
have more than 300 complete plant-year records.  To ensure some degree of comparability of plants within 
an industry we throw out industries with 9’s in the NAICS code, since these tend to be catch-all categories 
(e.g., 33399=”All Other General Purpose Manufacturing”).  This leaves us with 66 industries and 261 
industry-years (three industry-years did not have enough complete records).   The appendix has a complete 
list of the industries in our sample. 
 For the multiple imputations using the sequential regression method, we used a model in the form of 
equation (2).  IVEware allows the user to perform stepwise regressions: for each industry the program adds 
explanatory variables to the regression specification one at a time until the R-squared of the regression 
increases by less than a specified number (we choose 0.01).  Thus in general the regression specification is 
different for different industries.  We found that on average our imputations were closer to the real data if 
we excluded the capital expenditure variables.5   We construct 20 imputations for each missing value and 
then use Rubin’s (1987) combining formulas to compute confidence intervals which reflect not only the 
uncertainty from sampling, but also the uncertainty in our estimates due to the missing data.   
 For comparison, we also impute single values for the artificially missing Total Cost of Materials (CM) 
data using a simple ratio method, which we also refer to as a “cold-deck” method.  For each artificially 
missing CM item, we impute CM_impijt=TVSijt*(CMjt/TVSjt), where TVSijt is plant i’s  total value of 
shipments in year t, CMjt is the mean cost of materials in industry j in year t and TVSjt is the mean value of 
                                                             
4 For the current preliminary paper, we report results only for the Total Cost of Materials imputations.  We 
plan to compare our imputations to relevant alternative imputation methods for all the main ASM variables.  
For some variables, other imputation methods are more common than the cold-deck method.  For example, 
for electricity expenditures (EE), the most common imputation method used by the Census Bureau seems 
to be plugging in the “industry average.”  Thus for the electricity variable we plan to compare our 
imputation results to results where the industry average is substituted for missing values. 
5 In principle capital expenditures should have explanatory power for the cost of material inputs and other 
variables.  Capital expenditures differ from other variables in that capital investment is more “lumpy” 
(Doms and Dunne, 1998; Power, 1998; Sakellaris, 2004), with many observed 0 values.  In principle, the 
IVEware program can handle variables with mixed discrete/continuous distributions like these capital 
expenditure variables.  However, so far, including the capital expenditure variables has caused the 
imputations to be far from the real data.  In future work we plan to look into this further. 
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shipments in industry j in year t.  We use this method as our benchmark for comparison for three reasons: 
(i) it is simple and transparent; (ii) in most industries at some of the CM items that are flagged as imputed 
by the “cold-deck” method seem to be imputed this way—i.e., many cold-deck-flagged CM observations in 
a given industry have the same CM/TVS ratio; (iii) at the time of this writing we have not yet been able to 
find out how the other CM items flagged as “cold-deck” were imputed.  Table 3 presents a comparison of 
our results using the sequential regression multiple imputation method and the single value ratio method. 
 
 
 
 Mean s.d. 25th  

Percentile 
Median 75th  

percentile 
True mean minus 
MI mean 

-418 1843 -458 -75 24 

True mean minus 
Cold-deck mean 

-732 3305 -652 -228 22 

R_MI 0.98 0.02 0.98 0.99 1.00 
R_cold-deck 0.95 0.06 0.93 0.96 0.98 
W_MI 1.04 0.14 1.00 1.01 1.04 
W_cold-deck 1.02 0.16 0.99 1.00 1.01 
Table 3.  Comparison of industry-year means for sequential regression multiple imputation versus  
the single value ratio method for the Total Cost of Materials, thousands of dollars.  All the statistics 
in the table are computed from industry-year means; thus each statistic represents many plant-level 
observations. See text for explanation of R and W statistics. 
 

The first row of table 3 shows the across-industry distribution of the difference between the 
industry-year mean computed from the real (complete) data and the combined industry-year mean from our 
20 implicates using the sequential regression imputation method.  The first column of the first row the 
mean across all our industries of the difference between the industry means from the real data and the 
industry means from our multiply imputed data.  This cell shows that on average the industry-year means 
of the Total Cost of Materials from our preferred imputations are about $418,000 higher than the industry-
year means from the real (complete) data.  This is perhaps not a great performance, but it is significantly 
better than the $718,000 upward bias in the estimates from the single imputation ratio method.  The first 
two rows of the second column show that the standard deviation of the difference between the means from 
our preferred imputations versus the real data is significantly smaller than the standard deviation of the 
mean differences from the single value ratio method.  At the median of the distribution of mean differences, 
our method dominates the single value ratio method: a $75,000 difference versus a $228,000 difference. 

In principle all single imputation methods suffer from the fact that the confidence intervals of any 
estimates from singly imputed data tend to understate the amount of uncertainty in the estimate due to 
missing data. Therefore we would like to compare confidence intervals for estimates computed from our 
multiply imputed data to confidence intervals from the real data and from the singly imputed data.  For 
each of our 20 implicates, we compute a 95% confidence interval for each of the 261 industry-year means. 
Then, for each industry-year we used Rubin’s (1987) combining formulas to combine the confidence 
intervals from our 20 implicates.  Then we compute the 95% confidence intervals for each industry-year 
mean from the real data.  For each industry-year, we find the intersection of the (combined) confidence 
interval from our multiple imputations with the confidence interval from the real data.  Define R_MIj as the 
length of this intersection divided by the length of the confidence interval from the real data.   
This measures how much the confidence intervals from our multiple imputations overlap with the C.I.’s 
from the real data.  The third row of table 3 reports the mean, standard deviation, median and 25th and 75th 
percentiles of the distribution of these ratios.  The results shows that the C.I.’s from our multiply imputed 
data overlap more than 90% of the C.I. from the real data across the distribution of industry-years.  The 
fourth row of table 3 shows the distribution of the analogous ratio for the cold-deck imputations.  The C.I.s 
from the cold-deck imputations cover less of the C.I.’s from the real data, but not much less. 
 We want to check that the coverage of our C.I.’s is not driven by having unreasonably large C.I.’s 
from the multiple imputations.  For each industry-year we compute the ratio of the width of the 
(appropriately combined) C.I.’s from the 20 implicates to the width of the C.I. from the real data.  A ratio 
close to 1 means that a C.I. is not “too” large.  The fifth row of table 3 shows the mean, standard deviation, 
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median and 25th and 75th percentile of the distribution of this ratio across industry-years.  The width of the 
C.I.’s from our multiply imputed data is typically quite close to width of the C.I. from the real data.  The 
sixth row of the table shows the distribution of the analogous ratio for the cold-deck imputations.  
Comparing these to row 5, the C.I.’s from the single cold-deck imputations tend to be smaller than the 
C.I.’s from the multiple imputations, but not much smaller.   
 
 
Tentative Conclusions and Next Steps 
 
As emphasized throughout, the results presented here are preliminary.  The sequential regression multiple 
imputation method produces less biased results that single value ratio imputation method.  The difference 
between the confidence intervals is in general not as large as we expected.  One reason for this may be our 
sample selection criteria.  To avoid disclosure issues we chose industries with many complete records.  The 
vast majority of these industries have fewer than 10% missing values in the Total Cost of Materials 
variables, and, by construction all of the other variables in table 1 are observed in our sample.  Tables 1 and 
2 show that for the typical manufacturing industry far more than 10% of its data items are missing.  When 
the rates of missingness are higher, one would expect the confidence intervals from single imputation to be 
much smaller than the true data intervals, and the correctly combined confidence intervals from multiply 
imputed data to better reflect the uncertainty. 
 The results presented here only include imputations for missing values in one variable, the Total Cost of 
Materials.  In future work we plan to apply the sequential regression method for imputations of all the 
variables in tables 1 and 2, and possibly other variables, and to use these imputed data to compute plant-
level total factor productivity (tfp).  Plant-level tfp is often estimated from something like the following 
equation:6 
   
 )lnlnln(lnln 0 ijtmjijtljijtkjjijtijt CMLKTVStfp aaaa +++-=   , 
 
where K is a measure of the plant’s capital stock (usually constructed from capital expenditures and assets), 
L is a measure of labor inputs (constructed from plant hours, production workers’ wages, and total salaries 
and wages), and the other variables and indices are as described above.  The cold-deck ratio method 
described in the main text forces the ratio of materials to shipments to be the same for all imputed 
observations in the same industry and year.  Thus one might expect the ratio method to understate the 
amount of dispersion in plant-level tfp.  Dispersion in within-industry plant-level tfp is an important feature 
of the U.S. manufacturing data (Abraham and White, 2006; Collard-Wexler, 2007; others).  Since the 
sequential regression imputation method conditions on all the observations, it can potentially capture more 
of the dispersion of tfp seen in the observed data. 

While we have focused on the implications of missing and imputed data for researchers using the 
microdata via the Census Research Data Centers, this research may also have direct implications for 
Census Bureau programs.  While we reiterate that these results are preliminary, the first two rows of table 3 
seem to indicate that sequential regression multiple imputation estimates are less biased than estimates 
from data imputed use the ratio method, even for simple industry-level means.  We hope to investigate 
these implications further when and if we find out exactly how the Census Bureau does “cold-deck” 
imputations in these data.   
 
 
 
 
 

                                                             
6 Typically, the dollar-valued variables would also be deflated so that the measures are in real (constant 
dollar) terms; other variables such as energy inputs or two types of labor or capital inputs might also be 
added to the specification, and the coefficients might be allowed to vary over time; or proxy variables 
might be used as in Olley and Pakes (1996) or Levinsohn and Petrin (2003).   In all of these cases, the 
principle is the same: sequential regression allows for more flexibility to capture the assumed relationship 
between the variables than simple ratio methods do.  
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Appendix.  Table A.1 lists the names and 5-digit NAICS codes of the 66 industries used to compute the 
statistics in Table 3 (in descending order of number of complete observations). 
   
NAICS 
code 

Name NAICS 
code 

Name 

32311        Printing 32733         Concrete Pipe, Brick, and Block Mfg 
32221       Paperboard Container Mfg 33361         Engine, Turbine, and Power 

Transmission Equipment Mfg 
33351 Metalworking Machinery Mfg 33151      Ferrous Metal Foundries 
32732 Ready-Mix Concrete 33641         Aerospace Product and Part Mfg 
33232 Ornamental and Architectural Metal 

Products 
32612         Plastics Pipe, Pipe Fitting, and 

Ulaminated Profile Shape Mfg 
33441        Semiconductor and Other Electronic 

Component 
31311         Fiber, Yarn, and Thread Mills 

31161 Animal Slaughtering and Processing 33152         Nonferrous Metal Foundries 
33271        Machine Shops 32518         Other Basic Inorganic Chemical Mfg 
33281        Coating, Engraving, Heat Treating, and 

Allied Activities 
32512         Industrial Gas Mfg 

33231        Plate Work and Fabricated Structural 
Product Mfg 

32312         Support Activities for Printing 

33211        Forging and Stamping 32551         Paint and Coating Mfg 
32412        Asphalt Paving, Roofing, and Saturated 

Materials 
31142         Fruit and Vegetable Canning, Pickling, 

and Drying 
32121        Veneer, Plywood, and Engineered Wood 

Product Mfg 
32616         Plastics Bottle Mfg 

32111        Sawmills and Wood Preservation 33243         Metal Can, Box, and Other Metal 
Container Mfg 

32191        Millwork 33131         Aluminum Production and Processing 
33721        Office Furniture (Including Fixtures) Mfg 32621         Tire Manufacturing 
31151        Dairy Product (Except Frozen) Mfg 32212         Paper Mills 
33272         Turned Product and Screw, Nut and Bolt 

Mfg 
33637         Motor Vehicle Metal Stamping 

33712         Household and Institutional Furniture 
Mfg 

32615         Urethane and Other Foam Product 
(Except Polystyrene) Mfg 

31111         Animal Food Mfg 33111         Iron and Steel Mills 
31181         Bread and Bakery Product Mfg 33221         Cutlery and Handtool Mfg 
32611         Plastics Packaging Materials and 

Unlaminated Film 
31122         Starch and Vegetable Fats and Oils Mfg 

32721         Glass and Glass Product Mfg 32712         Clay Building Material and Refractories  
33531         Electrical Equipment Mfg 31141         Frozen Food Mfg 
33341         Ventilation, Heating, A/C Mfg 33251         Hardware Mfg 
32521         Resin and Synthetic Rubber Mfg 33291 Metal Valve Mfg 
33621         Moter Vehicle Body and Trailer Mfg 32213         Paperboard Mills 
33711         Wood Kitchen Cabinet and Countertop 

Mfg 
31321         Broadwoven Fabric Mills 

33261         Spring and Wire Product Mfg 31121         Flour Milling and Malt Mfg 
31211         Soft Drink and Ice Mfg 32223         Stationery Product Mfg 
32541         Pharmaceutical and Medicine Mfg 32561         Soap and Cleaning Compound Mfg 
33331         Commercial and Service Industry 

Machinery Mfg 
33661         Ship and Boat Building 

32222         Paper Bag and Coated and Treated Paper  33311         Agricultural Implement Mfg 
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