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Summary. Modal analysis of three-dimensional structures frequently involves finite
element discretizations with millions of unknowns and requires computing hundreds
or thousands of eigenpairs. We review in this paper methods based on domain decom-
position for such eigenspace computations in structural dynamics. We distinguish
approaches that solve the eigenproblem algebraically (with minimal connections to
the underlying partial differential equation) from approaches that couple tightly the
eigensolver with the partial differential equation.

1 Introduction

The goal of our paper is to provide a brief review of multilevel methods for eigenspace
computations in structural dynamics. Our review is not meant to be exhaustive
and so we apologize for relevant work not discussed. In particular, our interest
is in multilevel algorithms for the numerical solution of the algebraic generalized
eigenvalue problem arising from the finite element discretization of three-dimensional
structures. Our interest is also restricted to methods that are scalable, both with
respect to the mesh size and the number of processors of extremely large distributed-
memory architectures. We start our paper by a formal discussion of the origin of the
eigenvalue problem.

The dynamic analysis of a three-dimensional structure is modeled by the hyper-
bolic partial differential equation

ρ
∂2u

∂t2
− E(u) = f(t) in Ω (1)

where u is the vector of displacements, E is a self-adjoint elliptic differential op-
erator, ρ is the mass density, and f is a vector function for loading. We assume
that appropriate homogeneous boundary and initial conditions are specified on the
three-dimensional simply connected domain Ω.

† Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the U.S. Department of Energy under contract DE-AC04-
94AL85000.
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Structural dynamic analyses are usually divided into two categories: frequency
response and transient simulation. In the former category, natural frequencies of
the structure and their mode shapes are determined to verify their separation from
frequencies of excitation or to compute the response from a given input force at a
given location. In the second category, we study the motion of the structure and its
time history under prescribed loads. For these dynamic response problems, several
solution methods are available and we refer the reader to [16] and the references
therein for an overview. Often, modal analysis is an effective solution method be-
cause, due to the orthogonality of the modes, modal superposition gives the solution.
In addition, the frequency range of excitation is usually in the low end of the nat-
ural frequencies of the structure. Consequently, high frequency modes have a much
lower participation in the response than lower modes and the contribution of high
frequency modes can be neglected.

The vibration frequencies and mode shapes of the structure are solutions of the
problem

−E(u) = λρu in Ω (2)

with the same homogeneous boundary conditions as (1). The eigenvalue λ is the
square of the natural frequency ω. A finite element discretization of the weak form
of the vibrational problem (2) leads to the generalized eigenvalue problem

Kuh = Muhλh (3)

where K and M are the stiffness and mass matrices of order n respectively that
represent the elastic and inertial properties of a structure. The parameter h is the
characteristic mesh size. We assume a choice of boundary conditions such that both
matrices are symmetric and positive definite.

Finite element discretizations of three-dimensional structures frequently involve
well over one million unknowns and modal truncation requires often hundreds or
thousands of eigenpairs. Consequently, computing these eigenpairs results in a chal-
lenging linear algebra problem. The remainder of our paper reviews two approaches
that can be used to compute the needed modes. We will focus on techniques to com-
pute eigenpairs in the low end of the spectrum for two reasons. First, the frequency
range of excitation and the dominant modes for the structural response are in the
low end of the natural frequencies. Secondly, standard results from finite element
theory [3, 48] give the following a priori error estimates

λ ≤ λh ≤ λ(1 + Ch2λ), (4)

assuming sufficient regularity. These estimates imply that the finite element dis-
cretization represents more accurately the modes with small natural frequency.

Our paper is organized as follows. Section 2 describes algebraic approaches to
solve the eigenvalue problem (3). Section 3 discusses variational methods tightly
coupled to the partial differential operator E .

2 Algebraic approach

A popular approach is to use a block Lanczos [26] code with a shift-invert transfor-
mation (K−σM)−1M. If σ is a real number, then the standard eigenvalue problem
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(K− σM)−1Muh = uhν,

�
ν =

1

λh − σ

�
, (5)

results by subtracting σM from both sides of (3) followed by cross-multiplication.
This standard eigenvalue problem is no longer symmetric. However, a careful choice
of inner product renders the operator (K− σM)−1M symmetric (for instance, the
M-inner product).

The Lanczos algorithm builds iteratively a basis for the Krylov subspace

Km+1 = span{x0, (K− σM)−1Mx0, · · · , [(K− σM)−1M]mx0} (6)

to approximate the eigenpairs (see [20, 26, 34] for further details). At every Lanczos
iteration, the action of (K − σM)−1 on a vector or a block of vectors is required.
Grimes et al. [26] solve the resulting set of linear equations by forward and backward
substitution with the factors computed by a sparse direct factorization. However,
performing sparse direct factorizations becomes prohibitively expensive when the
dimension n is large or when the distributed-memory architecture has a large number
of processors.

Other solutions are the following:

• replace the sparse direct method with a preconditioned iterative linear solver
within the shift-invert Lanczos algorithm;

• replace the shift-invert Lanczos algorithm with a preconditioned eigenvalue al-
gorithm.

These approaches are not new and we propose to review them.
For the first approach, most structural analysts choose a shift σ∗, σ∗ < λh

1 , so
that the matrix K−σ∗M is symmetric positive definite. This choice is motivated by
the availability of scalable preconditioners for symmetric positive definite matrices.
A scalable preconditioner for K− σ∗M is desirable because the rate of convergence
of the resulting preconditioned conjugate gradient iteration is independent of the
mesh size and the number of processors. Recently, Farhat et al. [22] proposed a new
iterative solver for symmetric indefinite matrices, i.e. allowing an arbitrary shift σ.
Numerical experiments showed the scalability of the solver. However, to the best
of our knowledge, their approach for symmetric indefinite matrices has not been
coupled with a shift-invert Lanczos algorithm.

For a shift σ∗ such that σ∗ < λh
1 , choices of scalable iterative linear solvers

include FETI-DP [21], the conjugate gradient preconditioned by balanced domain-
decompostion (BDDC) [19], or the conjugate gradient preconditioned by algebraic
multigrid (AMG) [50, 49, 1]. No comparison is available to assess the quality of each
combination. However, an efficient algorithm has been developed at Sandia National
Laboratories.

Salinas [7, 8, 43] is a massively parallel implementation of finite element analy-
sis for structural dynamics. This capability is required for high-fidelity validated
models used in modal, vibrations, static, and shock analysis of weapons systems. A
critical component of Salinas is scalable iterative linear algebra. The modal analysis
is computed with a shift-invert Lanczos method (for a shift σ∗ < λh

1 ) using parallel
ARPACK [34, 37] and the FETI-DP iterative linear solver [23, 21]. Because the
shift-invert Lanczos iteration used by ARPACK makes repeated calls to FETI-DP,
the projected conjugate iteration used for computing the Lagrange multipliers re-
tains a history of vectors computed during each FETI-DP invocation. After the first
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FETI-DP call by ARPACK, the right-hand side in the projected conjugate itera-
tion is first orthogonalized against this history of vectors. The number of projected
conjugate iterations is therefore reduced as the number of Lanczos iterations needed
by ARPACK increases. Besides the capability developed for Salinas, the authors
are not aware of any multilevel-based modal analysis capabilities for use within a
three-dimensional structural dynamics code.

Replacements for the shift-invert Lanczos algorithm include gradient schemes
that attempt to minimize the Rayleigh quotient and Newton schemes that search for
stationary points of the Rayleigh quotient. The gradient schemes include conjugate
gradient algorithms [6, 24, 28, 31, 35, 40]. The Newton-based schemes include the
Davidson-based methods [18] such as the Jacobi-Davidson algorithm [47].

All the algorithms perform a Rayleigh-Ritz analysis on a subspace S that is
computed iteratively. At the (m+1)-th iteration, the current subspace Sm+1 satisfies

Sm+1 ⊂ span(Sm,N−1R(m)) (7)

where R(m) is the block vector of residuals

R(m) = KX(m) −MX(m)Θ(m).

The current iterates X(m) are the best eigenvector approximations for (K,M) in
the subspace Sm. The matrix Θ(m) is diagonal and contains the Rayleigh quotients
for the iterates X(m).

The motivation for these preconditioned eigenvalue algorithms is to avoid the re-
quirement for a linear solve so that a single application of a preconditioner per outer
iteration can be used. So N, applied in equation (7), is in general a preconditioner
for the matrix K (the Jacobi-Davidson algorithm is one exception, see [47] for fur-
ther details). Good preconditioners are a prerequisite for any of the preconditioned
algorithms to perform satisfactorily. If a scalable preconditioner N is available for
K, then this preconditioner is a candidate for use within a preconditioned eigen-
value algorithm. Although less studied, preconditioned iterations for the eigenvalue
problem should also be independent of the mesh size. The reader is referred to
[30, 32] and [41, 42] for a review of the many issues involved and convergence the-
ory, respectively. These papers also contain numerous citations to the engineering
and numerical analysis literature.

Finally, little information is available that compares the merits of shift-invert
Lanczos methods versus preconditioned eigensolvers when hundreds or thousands
of eigenpairs are to be computed. In particular, practical experience with precon-
ditioned algorithms for computing eigenpairs in an interval inside the spectrum is
lacking. The paper [2] compares a number of preconditioned algorithms with the
shift-invert Lanczos method (for a shift σ∗ < λh

1 ) on several large-scale eigenvalue
problems arising in structural dynamics when an algebraic multigrid preconditioner
is available. For these particular engineering problems, the preconditioned algo-
rithms were competitive when the preconditioner is applied in a block fashion and
the block size is selected appropriately.

Ultimately, maintaining numerical orthogonality of the basis vectors is the domi-
nant cost of the modal analysis as the number of eigenpairs requested increases. The
cost is quadratic in the number of basis vectors. The cost of maintaining numerical
orthogonality is a crucial limitation that motivates the next approach.
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3 Variational approach

The previous section described schemes where knowledge of the partial differen-
tial equation is only required through the application of a linear solver or a pre-
conditioner. In contrast, the approaches in this section make extensive use of the
variational form of the equation.

The leading method in the automotive industry to compute hundreds or thou-
sands of eigenpairs is the automated multilevel substructuring method (AMLS)
[4, 5]. For example, in [33], the authors show how AMLS is more efficient than
the shift-invert Lanczos method [26] coupled with a sparse direct solver to compute
a large number of eigenpairs for two-dimensional problems. AMLS is a variation of a
component mode synthesis technique (CMS). Component mode synthesis techniques
[29, 17] originated in the aerospace engineering community . These schemes decom-
pose a structure into numerous components (or substructures), determine compo-
nent modes, and then synthesize these modes to approximate the eigenpairs of (3).
Their goal is to generate approximations that aptly describe the low frequency modal
subspace rather than to solve iteratively the eigenproblem. The reader is referred
to [46] for a review of CMS methods from a structural dynamics perspective. The
variational formulation and analysis of classical CMS techniques is due to Bourquin
[9, 10, 11].

To make the process concrete, suppose that the structure Ω is divided into two
subdomains Ω1 and Ω2 with the common interface Γ . We look for solutions of

−E(u) = λρu in Ω (8a)

u = 0 on ∂Ω. (8b)

Let (u1
j )1≤j≤m1 (resp. (u2

j )1≤j≤m2) represent eigenvectors on Ω1 (resp. Ω2) for the
same operator E with homogeneous Dirichlet boundary conditions on ∂Ω∩∂Ω1 (resp.
on ∂Ω ∩ ∂Ω2) and specific boundary conditions on Γ that will be discussed later.
Component mode synthesis techniques compute approximations to eigenpairs of (8)
via a Rayleigh-Ritz analysis on an appropriate subspace coupling the information
spanned by the vectors (u1

j )1≤j≤m1 and (u2
j )1≤j≤m2 . These techniques differ by the

boundary conditions specified on Γ and by the definition of the coupling subspace.
In practice, the eigenpairs on Ω1 and Ω2 are discretized by finite elements and are
computed numerically.

The family of fixed interface CMS methods was introduced by Hurty [29] and
improved by Craig and Bampton [17]. Fixed interface methods impose homogeneous
Dirichlet boundary condition along the interface Γ . Coupling between the local
sets of vectors (u1

j )1≤j≤m1 and (u2
j )1≤j≤m2 is achieved by adding a set of vectors

defined on Γ harmonically extended into Ω. The definition of these coupling vectors
distinguishes the various fixed interface CMS methods.

Other researchers proposed free interface methods where a homogeneous Neu-
mann boundary condition is imposed on Γ . Continuity on Γ for the approximation
of the eigenvectors of (3) is enforced so that constraints with Lagrange multipliers
appear in a subspace [45] for the final Rayleigh-Ritz analysis. The recent paper by
Rixen [44] reviews several CMS techniques and introduces a dual fixed interface
method. For a one-dimensional model problem, Bourquin [9] showed that a fixed
interface method better approximates the eigenspace than a free interface method.
Consequently, we focus our discussion on fixed interface methods.
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AMLS [5] is a fixed interface method where the coupling modes are harmonic ex-
tension of eigenmodes for the Steklov-Poincaré and the mass complement operators.
After a finite element discretization, the mass and stiffness matrices are ordered as
follows, for two subdomains,

M =

2
4 MΩ1 0 MΩ1,Γ

0 MΩ2 MΩ2,Γ

MT
Ω1,Γ MT

Ω2,Γ MΓ

3
5 and K =

2
4 KΩ1 0 KΩ1,Γ

0 KΩ2 KΩ2,Γ

KT
Ω1,Γ KT

Ω2,Γ KΓ

3
5 . (9)

The coupling mode pencil is (K̃Γ , M̃Γ ), where

K̃Γ = KΓ −
2X

i=1

KT
Ωi,Γ K−1

Ωi
KΩi,Γ

and M̃Γ ,

MΓ −
2X

i=1

�
KT

Ωi,Γ K−1
Ωi

MΩi,Γ + MT
Ωi,Γ K−1

Ωi
KΩi,Γ −KT

Ωi,Γ K−1
Ωi

MΩiK
−1
Ωi

KΩi,Γ

�
,

are the Schur and mass complement matrices. The AMLS method forms these in-
terface matrices and factors the Schur complement. For the case of two subdomains,
AMLS is summarized in the following three steps

1. Compute local eigenvectors (u1
j )1≤j≤m1 and (u2

j )1≤j≤m2 .

2. Compute coupling modes (uΓ
j )1≤j≤mΓ for the pencil (K̃Γ , M̃Γ ).

3. Perform a Rayleigh-Ritz analysis for the pencil (K,M) on the subspace

span
n

(u1
j )1≤j≤m1 , (u2

j )1≤j≤m2 , (EuΓ
j )1≤j≤mΓ

o

where E denotes the harmonic extension.

For large structures, AMLS recursively divides the structure into thousands of sub-
structures and associated interfaces. This nested decomposition results in a hierar-
chical tree of substructures and interfaces or, analytically, in a direct sum decom-
position of

�
H1

0 (Ω)
�3

into orthogonal subspaces. The paper [5] examines a math-
ematical basis for AMLS in the continuous variational setting and the resulting
algebraic formulation. AMLS computes efficiently a large number of eigenpairs be-
cause the orthogonalizations of large scale vectors are eliminated. The orthogonality
of the approximations is obtained by the final Rayleigh-Ritz analysis. Unfortunately,
AMLS is not well suited to three-dimensional eigenvalue problems when solid ele-
ments are used. Indeed, AMLS supposes that the interface matrices are formed and,
sometimes, factored. Consequently, the cost of AMLS is that of computing a sparse
direct factorization for the stiffness matrix using multifrontal methods. As is well
known, sparse direct methods are not scalable with respect to mesh or the number
of processors.

An alternative to AMLS is to not form the Schur and mass complements. In this
case, we do not subdivide the interface into a hierarchy but consider one interface.
A preconditioner for the Schur complement, for instance BDDC [19], can be used
within a preconditioned eigensolver for the interface eigenvalue problem. Although
the interface problem is reduced in size over that of the order of (3), the application
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of the mass and Schur complements matrices and of the Schur complement precon-
ditioner remains expensive. Bourquin [10] and Namar [38] consider different pencils
to compute the coupling interface modes. But defining the most efficient choice of
pencil remains an open question.

Finally, we comment on the eigenspace error. Bourquin [9, 10, 11] derived asymp-
totic results for second order elliptic differential eigenvalue problems and their finite
element discretization. The error in the eigenspace computed by a CMS technique
depends upon the error due to modal truncation and discretization. The bounds of
Bourquin also indicate that the number of coupling modes necessary may become
small when the interface Γ is small. Similarly, when the subdomains are small, the
number of local modes needed is small. For further details, we refer the reader to
[9, 10, 11].

To conclude this section, we review overlapping techniques to compute approxi-
mations for the eigenproblem (3). Charpentier et al. [15] defined a component mode
synthesis technique using overlapping subdomains. Their approach simplifies the
definition of the coupling space as it just combines the local sets of vectors from
each subdomain. But performing the final Rayleigh-Ritz analysis on this subspace
is more complex because the decomposition of

�
H1

0 (Ω)
�3

is not a direct sum and
the local sets of vectors lack orthogonality properties.

In analogy to multiplicative Schwarz preconditioners, Chan and Sharapov [14]
define a multilevel technique that minimizes the Rayleigh quotient

min
x 6=0

xT Kx

xT Mx
(10)

with a series of subspace and coarse grid corrections. When computing the smallest
eigenvalue, they show that convergence is obtained independently of the mesh size
and the number of overlapping subdomains. However, experience with large-scale
engineering problems is lacking.

Finally, multigrid techniques have also been used to approximate eigenpairs of
(3). Neymeyr [39] reviews multigrid eigensolvers for elliptic differential operators.
The Rayleigh quotient minimization algorithm [36, 25] uses corrections from each
geometric grid to compute eigenpairs. Cai et al. [13] have established grid indepen-
dent convergence estimates. Other researchers [27, 12] have applied multigrid as a
nonlinear solver for the eigenproblem. Unfortunately, practical experience with com-
puting many modes using multigrid techniques is lacking. Furthermore, all of the
existing algorithms make use of geometry to define their set of grids. The authors
are investigating the use of algebraic multigrid to define their grids and minimize
the Rayleigh quotient.

4 Conclusions

We have reviewed several multilevel algorithms to compute a large number of eigen-
pairs for large-scale three-dimensional structures. We can distinguish two major
approaches to solve this problem.

The first approach consists in using an efficient algebraic eigensolver coupled
with a multilevel preconditioner or linear solver. Many of the schemes discussed
are efficient. It will be interesting to see how shift-invert Lanczos can benefit from a
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scalable iterative solver for symmetric indefinite matrices. But, ultimately, maintain-
ing numerical orthogonality of the basis vectors is the dominant cost of the modal
analysis.

The second approach couples more tightly the eigensolver with the variational
form of the partial differential equation. The corresponding schemes have the ad-
vantage of minimizing or eliminating the orthogonalization steps with large scale
vectors and so are appealing. However, practical experience is needed in order to
ascertain the efficiency of the resulting approach for three-dimensional problems.
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élastiques, PhD thesis, Université Paris VI, 1991.
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