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Abstract

Many scientific applications in aerodynamics and solid mechanics are written in Fortran. Refitting
these legacy Fortran codes with distributed objects can increase the code reusability. The remote variable
scheme provided in NPSS/CCDK helps programmers easily migrate the Fortran codes towards a client-
server platform. This scheme gives the client the capability of accessing the variables at the server site. In
this paper, we review and enhance the remote variable scheme by using the operator overloading features
in C++. The enhancement enables NPSS programmers to use remote variables in much the same way
as traditional variables. The remote variable scheme adopts the lazy update approach and the prefetch
method. The design strategies and implementation techniques are described in details. Preliminary
performance evaluation shows that communication overhead can be greatly reduced.

1 Introduction

A distributed object is a reusable, self-contained piece of software that cooperates with other objects on the
same machine or across a network in a plug-and-play fashion via a well-defined interface. The Numerical
Propulsion System Simulation (NPSS) [7] attempts to provide a collaborative design and simulation en-
vironment based on this concept. It uses object-oriented technologies such as C++ objects to encapsulate
individual engine components and Common Object Request Broker Architecture(CORBA) [8] for object
communication and deployment across heterogeneous computing platform. Many scientific applications in
aerodynamics and solid mechanics are written in Fortran. Refitting these legacy Fortran codes with dis-
tributed objects can increase the code reusability. The NPSS provides a CORBA Component Development
Kit (CCDK) which is a C++ wrapper library. It is easier for programmers to code using the CCDK than to
implement all the functionality using CORBA IDL.

Because CORBA IDL to Fortran mapping has not been proposed, there seems to be no direct method of
generating CORBA objects from Fortran without using CORBA/C++ wrappers. The wrapper is responsible
for accepting the request from the clients and then launching the encapsulated legacy codes. Based on
the level of encapsulation, we can classify the wrapping approaches into two broad categories: shell script
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wrapping and re-structure wrapping. The shell script wrapping approach involves writing wrappers that
provide the input data for the code, execute the code as a shell command (e.g. using the UNIX system()
function), and retrieve the output result (see Figure 1). That is, the wrapper performs all of its interactions
with the legacy code via input and output files. The major advantage of this approach is that programmers
do not need to modify the Fortran code.

The re-structure wrapping approach involves re-engineering the Fortran code and compiling/linking the
code with CORBA/C++ wrapper. Namely, the code is re-organized and partitioned into client and server
parts (see Figure 2). Generally, a scientific application contains I/O module, control logic module, and
computation module. Using this approach, the control logic module could be moved to the client site to give
the client the flexibility of controlling and invoking individual iteration used in most scientific computation.

Note that the computation functions at the server site can be further decomposed into several objects or
components. A semi-automatic conversion tool which takes the Fortran program as input and helps pro-
grammers generate a C++ header file and an IDL file for wrapping can be found in [13]. Strategies about
program decomposition and object extraction have been discussed in references [1], [9], and [15]. This topic
is beyond the scope of the paper.

2NASA/TM—2001-210884



Both of the wrapping approaches should deal with the issues of passing the input data and getting the result
between the client and the server. For the shell script wrapping approach, the wrapper needs to transfer
the input/output data files. A feasible implementation method is to read the file into a multi-string format
variable, pass the variable to the remote site through a function argument, and restore/save the variable to a
file. For the re-structure approach, one method described in [13] extracts the Fortran COMMON blocks and
converts them into a structure-type attributes in CORBA IDL. Through the attributes, the client can initialize
the variables which will be used by the server.

An alternative re-structure method supported by the NPSS/CCDK is based on the remote variable scheme.
The server should register the variable with a name as the key to allow the client to access. The client
can set and get the variable’s value through it’s registered name. In this research, we are interested in the
enhancement of the remote variable programming interfaces in NPSS/CCDK. Our objective is to define
the remote variable operators to mimic conventional variable usage. With the support of remote variable
operations which have the same notations as traditional variables, the programmers can easily migrate their
Fortran codes towards a client-server platform.

2 The Remote Variable Scheme in NPSS/CCDK

NPSS/CCDK supports a remote variable scheme between the client and the server[16]. This scheme is
based on the distributed shared memory (DSM) technology in which data are logically shared but physically
distributed over networks of workstations. Depending on the level of implementation, we can classify the
approaches to supporting DSM into two major categories: page-based and object-based. The former is
usually implemented at the operating system level through an extended memory manager[5]. Transparency
is the major advantage of this approach because the memory system is totally hidden from users. The object-
based approach is often realized at the language or the library level to support shared objects[6]. It is more
flexible and requires less development efforts than the system dependent page-based approach.

The NPSS/CCDK remote variable scheme is a simplified version of the object-based DSM mechanism. As
we mentioned earlier, the purpose of this scheme is to provide a simple and elegant data-sharing capability
in the client-server platform. The client can read data into the shared variables which will be used by the
server to perform some computations. Then, the client can get the variables’ values back to either output the
result or to issue another request of iteration. That is, the variables are shared only between the client and
the server processes in a sequential manner. Therefore, there is no immediate need to support complicated
synchronization primitives and memory consistency policies addressed in the DSM technology.

Figure 3 depicts the framework of the remote variables in NPSS/CCDK. When the server starts, each shared
variable should be registered with a character-string name as the key. For example, a programmer can use
the following Fortran statement to register the real variable X:

call NPSS registerReal4Ref(’X’, X, NPSS INPUT, ’units’, ’description’, err)

Note that Fortran adopts call-by-reference as the parameter passing scheme. Hence, the location of the
shared variable X is passed to the registration function via the second parameter. This address is stored along
with the key in the shared variable list. To declare a corresponding remote variable X at the client site, the
following statement is used:

RemoteReal X = RemoteReal(cspan, "X");

As shown in Figure 3, each remote variable should be bound to a particular server which hosts the variable.
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The character-string name should be provided during the declaration in order to find the variable’s location
from the variable list at the server.

Two basic functions set() and get() are provided for setting and getting the remote variable’s value,
respectively. Figure 4 shows in details the implementation of the set() and get() methods which belong
to the ForeignElement server class. As described in [16], the ForeignElement class implements the
CorbaExtElement interface and provides an API with which the legacy Fortran code can be connected.
The calling sequence 2 � � 3 : 6 � � 8 in Figure 4 shows an example of such connection between Fortran
and the ForeignElement class. The symbol � � represents a function call, while the symbol : denotes
an execution sequence. That is, the registration of the remote Fortran variable X at line 2 calls the C++
function npss registerreal4ref at line 3. After executing a few statements, this function invokes the
ForeignElement method registerReal4Ref at line 6 and continues its execution at line 8.

The registered variable is inserted into the variable list varList in the ForeignElement::registerReal4Ref
method (at line 10) and is being searched via lookup() in the set() and get() methods (at line 16 and
24). Below we use α and β to denote the server site’s set() and get() method invocation sequences with
their line numbers as shown in Figure 4.

α 21 : 25 � � 37 : 39 � � 49

β 13 : 17 � � 32 : 34 � � 55

The CORBA-based ForeignElement class is encapsulated by another family of classes which include
RemoteServer, RemoteVariable, RemoteNumber, etc. These classes provide user-friendly interfaces to
the client and their implementation can be found in Figure 5. The calling sequences of the set() and get()
methods at the client are shown below:

γ 37 : 41 � � 55 : 58 � � α

δ 22 : 24 � � 50 : 53 � � β
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Note that the method invocations at line 58 and 53 will start the sequences α and β at the server, respec-
tively. To thoroughly understand how the remote variable scheme works between the client and the server,
interested readers can follow these four method invocation sequences to trace NPSS/CCDK source codes.

3 Enhancement of the Remote Variable Operations

3.1 Operator Overloading

With the support of the Foreign-related and Remote-related families of classes in CCDK, programmers
can easily re-engineer their legacy Fortran programs into the client-server platform. The efforts of learning
and programming with CORBA can be totally reduced. However, there are some rooms for improvement
in the remote variable operations. One is the asymmetrical relationship between getting and setting the
remote value. ”Get” is done via indirection (unary ’*’) while ”Set” is done by normal assignment. Another
is the lack of index operator (i.e. [ ]) support for the remote array element access. Programmers need to
call specific functions such as setElement() or getElement() to access remote array elements. Figure 6
shows these two problems.

NPSS programmers have to be aware of these uncommon operations on remotely based data. To alleviate
programmer’s burden, we need to modify the Remote- family of classes. In the old implementation, the
reason why an unary ’*’ is needed is to find the r-value of the variable. It distinguishes that its position
is on the right-hand side of the assignment operator =. We find that this can be replaced with the ADT
type-conversion overloading operator

operator type()
�
... �

because if the variable appears in an expression, this type-conversion function will be implicitly invoked[10].
As shown in Figure 7, the overloaded operator T() invokes the method get() and returns the variable’s
value.

To encapsulate the functions setElement() and getElement() of remote-array access, we also overload
the index operator [ ] (see Figure 8). The old implementation lets one local object represent all of the array
elements. A problem arises when programmers use the following statement

ARO[0] = ARO[1];
the first index 0 will be overwritten by the second index 1 because they share the same space in the local
object. To solve this problem, we add one more level of the remote array class. The intermediate class
RemoteArray1D represents an individual array element and each has its own index number. The higher

level class contains an array of the intermediate class elements and an overloading index operator [ ]. Note
that our current implementation allocates array elements via new inside a for loop. The performance cost is
very high. Future modification is needed to have a one-time allocation instead of requesting element space
one by one.

The cin and cout operators are also overloaded for the remote variables. Therefore, programmers can read
data into remote variables using these operators. Figure 9 shows the new usage. In fact, these overloading
operators for remote variables allow users to write client-server programs just as using traditional languages.

5NASA/TM—2001-210884



-------------------------------------- npss_int.f ---------------------------------------------------
1 c Register namelist variables.
2 call NPSS_registerReal4Ref(’X’, X, NPSS_INPUT, ’units’, ’description’, err)

-------------------------------------- Fortran.C ----------------------------------------------------
3 void npss_registerreal4ref__ (const char* name, NCPReal4& value, int& ioStatus, ...)
4 { ForeignElement* self = ForeignElement::self();
5 ...
6 self->registerReal4Ref(nameStr, value, IOS(ioStatus), unitStr, descStr);
7 }

-------------------------------------- ForeignElement.C ---------------------------------------------
8 void ForeignElement::registerReal4Ref(const char* name, NCPReal4& value,...)
9 { CVariableBasePtr newVar = new CFloatRef(name, value);

10 _varList.insertKeyAndValue(&(newVar->getName()), newVar);
11 registerAttributes(newVar, ioStatus, units, description);
12 }
13 CORBA::Any* ForeignElement::get(const char* name ADD_ENV_DECL)
14 { CORBA::Any* anyPtr;
15 NCPString attrName;
16 CVariableBasePtr it = lookup(name, attrName);
17 anyPtr = it->get(attrName);
18 ...
19 return anyPtr;
20 }
21 void ForeignElement::set(const char* name, const CORBA::Any& value,CORBA::Boolean restricted ADD_ENV_DECL)
22 { ...
23 NCPString attrName;
24 CVariableBasePtr it = lookup(name, attrName);
25 it->set(attrName, value, restricted);
26 }
27 CVariableBasePtr ForeignElement::lookup(const char* name, NCPString& attrName)
28 { ...
29 CVariableBasePtr it = _varList.findValue(&findName);
30 return it;
31 }
-------------------------------------- CCDK/CBase/CVariableBase.C -----------------------------------
32 CORBA::Any *CVariableBase::get(const char*name){
33 CORBA::Any *it=new CORBA::Any();
34 getToAny(name,*it);
35 ...
36 }
37 void CVariableBase::set(const char *name,const CORBA::Any &it,CORBA::Boolean restricted){
38 ...
39 setFromAny(name,it);
40 }
-------------------------------------- ForeignVariable.H --------------------------------------------
41 class CFloatRef : public CVariableBase {
42 protected:
43 NCPReal4& _var;
44 ...
45 public:
46 CFloatRef(const char* name, NCPReal4& it) : CVariableBase(name), _var(it) {};
47 ...
48 }
-------------------------------------- ForeignVariable.C ---------------------------------------------
49 void CFloatRef::setFromAny(const char* name, const CORBA::Any& it)
50 { ...
51 if (it >>= doubleVal) {
52 _var = doubleVal;
53 ...
54 }
55 void CFloatRef::getToAny(const char* name, CORBA::Any& it)
56 { ...
57 double doubleVal = _var;
58 it <<= doubleVal;
59 }

Figure 4: Server code
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-------------------------------------- Client.C -----------------------------------------------------
1 RemoteServer* cspan;
2 cspan = new RemoteServer("CSPANdemo");
3 RemoteReal X = RemoteReal(cspan, "X");
4 X = 1.25;

-------------------------------------- RemoteVariable.H ----------------------------------------------
5 typedef RemoteNumber<CORBA::Double> RemoteReal;
6 template <class T> class RemoteNumber : public RemoteVariable<T> {
7 ...
8 }
9 template <class T> class RemoteVariable {

10 protected:
11 // Local copy of the data.
12 T _data;
13
14 // The (bound) remote server to use.
15 RemoteServer*& _server;
16
17 // Name of variable on remote server.
18 RWCString _refStr;
19 ...
20 }
21 template <class T>
22 void RemoteVariable<T>::get(void)
23 {
24 CORBA::Any* anyPtr = _server->get(_refStr);
25 if (!_get(anyPtr)) {
26 ...
27 }
28 }
29
30 template <class T>
31 int RemoteNumber<T>::_get(CORBA::Any* anyPtr)
32 {
33 return *anyPtr >>= _data;
34 }
35
36 template <class T>
37 void RemoteVariable<T>::set(void)
38 { CORBA::Any anyVal;
39
40 anyVal <<= _data;
41 _server->set(_refStr, anyVal);
42 }
-------------------------------------- RemoteServer.H -----------------------------------------------
43 class RemoteServer {
44 ...
45 private:
46 NCPCorba::CorbaExtElement* _server;
47 ...
48 }
49
-------------------------------------- RemoteServer.C ------------------------------------------------
50 CORBA::Any* RemoteServer::get(const char* varName)
51 { CORBA::Any* anyPtr;
52 ...
53 anyPtr = _server->get(varName);
54 }
55 void RemoteServer::set(const char* varName, CORBA::Any& value,
56 int synchronous)
57 { ...
58 _server->set(varName, value, 1);
59 }

Figure 5: Client code
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Server:
call NPSS_registerReal4Ref(’CP’,CP,NPSS_INPUT,’units’,’description’,err)
call NPSS_registerReal4Array1Dref(’ARO’,ARO,50,NPSS_INPUT,’units’,’description’,

err)

Client:
RemoteReal CP = RemoteReal(cspan,"CP");
RemoteRealArray1D ARO = RemoteRealArray1D(cspan, "ARO");
CP = 4.0;
double g;
g = *CP; // problem 1
ARO.setElement(0,3.0); ARO.setElement(1,2.5); // problem 2
ARO.setElement(2, ARO.getElement(0)+ARO.getElement(1));
g= ARO.getElement(1);

Figure 6: Problems of Uncommon Remote Variable Operations

3.2 Lazy Update and Prefetch

Generally, we can separate the NPSS client-server computing into three phases: the pre-execution phase at
client, the server execution phase, and the post-execution phase at client. The remote variables are usually
initialized during the pre-execution phase and their computed values are either displayed or used for deter-
mining another iteration during the post-execution phase. In the pre-execution phase, many variables can
be set. To reduce the number of message transmitted, we adopt the lazy update approach to postpone send-
ing the set requests. These variables’ values will be merged, transfered, and set via invoking the function
setMultiple() just before launching the server’s computation. Similarly, when the server execution phase
ends, the client can prefetch a few variables through the function getMultiple() before these variables
are actually used. When these variables are referenced later, their data are available locally. Figure 10 and
11 demonstrates the difference between the immediate streaming requests and the lazy/prefetch approaches
with aggregated data.

In our implementation, the pools W pool v and R pool u declared in the RemoteServer class are used to
keep track of which variables needs to be lazily set and prefetched, respectively (see Figure 12). To avoid
searching the pools to determine whether a variable is in the pools or not, we use two booleans inWpool and
inRpool for each variable to denote its status. A variable will be inserted into the W pool v when its value
is updated (e.g. cin >> X; , X = 2.0; ). A flush() function is provided and will be invoked implicitly
before server starts execution.

Since the NPSS CCDK is provided as a library instead of a compiler, there is no way we can determine which
variables could be prefetched after the server execution phase finishes. One solution is to let programmers
explicitly add a prefetch() function call in their Client.C program. Our solution is based on the time
locality concept used in the cache implementation[14]. If a variable is referenced but the local copy is not
fresh, we will get a copy from the server immediately and put this variable in the R pool u. Therefore, it
can be prefetched in the next iteration. We also use the flag Referenced as the reference bit for a variable.
It is set to be true when the variable is referenced (see Figure 7 the operator T() function). If a variable is
in the R pool u but not referenced, our current implementation will remove it from the R pool u. In fact,
it’s not necessary to do this because one more variable in prefetching won’t cost too much. On the contrary,
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template <class T> class RemoteVariable: public RV {
protected:
T _data;
string _refStr;
bool inRpool, inWpool, Referenced;
bool lazy;// default true, programmers may disable the lazy update
RemoteServer*& _server;
...
fillzet(NCPCorba::NamedValue & nv) {

// parameter nv is call by reference
// called by RemoteServer flush() to merge several var set.
nv.name = _refStr;
nv.val <<= _data;
inWpool = false ;

}
};

template <class T> class RemoteNumber : public RemoteVariable<T> {
public:
RemoteNumber(RemoteServer*& server, const char* refStr)

: RemoteVariable<T>(server, refStr) {};
T operator = (T value) {

_data = value;
if (lazy) {

if (!inWpool) {
add this object to the W_pool;
set inWpool to true;

}
else

set(); // send _data back to server immediately
}
returen _data;

}
operator T() { // rvalue conversion

if (lazy) {
if (!inRpool && !inWpool) { // local copy is not fresh

get(); // get a copy from the server
add this object to the R_pool; set inRpool to true;

}
Referenced = true;
return _data;

}
else

return get();
}
friend istream& operator>>(istream& in, RemoteNumber & x) {

T temp;
in >> temp;
x = temp; // use overloaded =
return in; // enable cascaded calls };

... similar overloading for operators +=, -=, *=, /=, << ...

...
};

Figure 7: Pseudo Codes of the Remote- family of classes
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template <class T, class E> class _RemoteArray1D : public RemoteStruct<T> {
public:
_RemoteArray1D(RemoteServer*& server, const char* refStr, int i)

: RemoteStruct<T>(server, refStr),indx(i) {};
E getElement();
void setElement(E value);
operator E() { // rvalue conversion;

if (lazy) ... similar to operator T()...
else getElement();
return _elm;

}
...

protected:
int indx;
E _elm; // local copy

};
template <class T, class E> class RemoteArray1D : public RemoteStruct<T>{
public:
RemoteArray1D(RemoteServer*& server, const char* refStr)

: RemoteStruct<T>(server, refStr), aSize(-1),a(0) {}
_RemoteArray1D<T,E> & operator[](int i) { // subscript operator,

if (a == 0) {
aSize = size(); // remote method invocation
a = new _RemoteArray1D<T,E>* [aSize] ;
for(int i=0; i < aSize; i++) {

a[i] = new _RemoteArray1D<T,E>(server, refStr,i); //expensive
}

}
if( i >= 0 && i < aSize) {

return *a[i];
}
else ...

};
...
protected:

_RemoteArray1D<T,E> **a;
int aSize;

};

Figure 8: Pseudo Codes of the RemoteArray class

cin >> CP;
g = CP;
cin>> ARO[0]; ARO[1] = 2.5;
ARO[2] = ARO[0] + ARO[1];
g= ARO[1];

do {
cspan->execute();
cout << CP;
cout <<ARO[2];

} while ( Q < R );

Figure 9: Improved Remote Variable Operations
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class RV { // an abstract class; inherited by RemoteVariable
public:
virtual const char* getName(void) =0;

friend class RemoteServer; // enable RemoteServer to access protected below
protected:
virtual void fillzet(NCPCorba::NamedValue &) = 0;
virtual void fillzet(NCPCorba::ANamedValue &) = 0;
virtual void fillget(NCPCorba::ANamedValue &) = 0;
...

};
class RemoteServer {
public:
void flush(){

for each object in the W pool v
put its info (e.g. _refStr, _data) into the aggregated message Ms via fillzet();
reset its inWpool to false;

_server->setMultiple(Ms); // invoke a remote method
clear the W pool v;
... similar for array elements pool Av;

}
void prefetch() {

for each object in the R pool u
if (Referenced == false) { reset its inRpool and remove it from the R pool u};
else put its info (e.g. _refStr) into the aggregated message Mg via getName();

Ng = _server->getMultiple(Mg); // get an aggregated message Ng with obj values back
Decomopose Ng and reset Referenced to false for for each object in the R pool u;
... similar for array elements pool Au;

}
void execute() { flush(); _server->compute(); prefetch(); }

private:
NCPCorba::CorbaExtElement* _server; // pointer to foreign element server
RWTValOrderedVector< RV *> u; // R pool for variables
RWTValOrderedVector< RV *> Au; // R pool for array elements
RWTValOrderedVector< RV *> v; // W pool for variables
RWTValOrderedVector< RV *> Av; // W pool for array elements

};

Figure 12: Pseudo Codes of the RemoteServer class

if a variable is referenced in every other post-execution, it’s better to keep it in the pre-fetch pool. Like the
lazy update approach, the prefetch method is transparent to programmers.

In our implementation, an abstract class called RV is created for providing a few virtual functions. This
abstract class is inherited by the RemoteVariable class (see Figure 8). As shown in Figure 12, the
RemoteServer class uses the RV class to declare the pools. When the server needs to prepare a merged
message for setMultiple(), it invokes the polymorphic function fillzet() which fills the variable’s
information into the message buffer.
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Figure 13: The effect of Lazy Update with setMultiple

4 Performance Evaluation

In this section, we evaluate the performance of the remote variable scheme in NPSS/CCDK. In the first
experiment, we evaluate the effectiveness of using the lazy update approach. We measure the elapsed time
to update the remote variables for both of the immediate update approach and the lazy update approach. For
comparison purpose, we conduct the experiment on two different hardware configurations. One is a pair of
Sun Ultra-2 workstations (clock 200MHz, 256MB memory ) running Solaris 5.6 over Fast Ethernet[4]. It is
worth mentioning that this kind of high-end workstation is fast enough to saturate a 100Mbps Fast Ethernet,
The CORBA package Orbix[3] is used in this configuration. while a Sun SPARC 5 (120MHz) cannot[12].
The other configuration is a SGI Origin 2400 with 24 processors (clock 196MHz, 16GB memory) over
system inter-connection networks. Because of availability, only the free package MICO[11] is installed on
this multiprocessor machine.

Figure 13 shows the elapsed time by varying the number of variables. It is not surprising that the lazy
update approach performs much better than the non-lazy approach for both configurations. The effect is
more significant over Fast Ethernet than over system bus because the former is slower than the latter. Taking
100 variables as an example, the lazy approach is 4.6 times faster than the non-lazy approach over Fast
Ethernet, while it is only 3.1 times faster through system internal connection.

We get very similar performance figures for the prefetch approach with getMultiple. Hence, we don’t
present them here. Normally, the client may access only a few variables after server execution phase. The
prefetch still can gain large performance improvement when the number of iterations increases. For example,
assume that there are k variables could be prefetched and n iterations are required. The number of messages
will be reduced from k � n to k � n � 1. This is because in the first iteration we need to get these k variables,
while we only need one single getMultiple request in the rest n � 1 iterations. Let tget � x � denote the time
to get x variables via one message. Then, the variable access time could be reduced from k � n � tget � 1 � to
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Benchmark CSPAN Immed. Update Lazy Update Improvement % Script Wrapping

SUN - Fast Ether 0.405 sec. 0.271 sec. 33% NA
SGI - System Bus 0.257 sec. 0.202 sec. 21% 0.184 sec

Table 1: Performance Improvement for the Client-Server CSPAN using Lazy Update

k � tget � 1 ��� � n � 1 �	� tget � k � .
In another experiment, we use the 1-dimensional axial-flow compressor design code CSPAN which is written
in Fortran as the benchmark[2]. This code uses a rapid approximate design methodology based on isentropic
simple radial equilibrium to determine the flow path either for a given number of stages or for a given overall
pressure ratio. We re-engineer the code and migrate it to the client-server platform. For the purpose of
comparison, we also implement a file transfer method. The method putfile we add to NPSS/CCDK takes
an input file name as the argument and transfer this file from the client to the server. An example is shown
below.

cspan->putfile("fan.input");
Table 1 shows the empirical result. Using the lazy update approach, performance can be improved ranging
from 21% to 33%. It’s interesting that the script wrapping approach performs even better than the lazy
update approach.

5 Summary

The remote variable scheme provided in NPSS/CCDK helps programmers easily migrate the Fortran codes
towards a client-server platform. The efforts of learning and programming with CORBA can be totally
reduced. This scheme gives the client the capability of accessing the variables at the server site. In this
paper, we discuss the implementation of the remote variable scheme in CCDK. We identify several areas for
improvement and implement them by overloading the data-type conversion operator and the index operator.
The enhancement enables NPSS programmers to use remote variables in much the same way as traditional
variables. Furthermore, the lazy update and the prefetch approaches used in the scheme greatly reduce the
number of messages transmitted. NASA has many research sites. The message transmission cost between
two distant sites is usually higher than local. We can expect that NASA researchers will benefit more from
using the enhanced NPSS/CCDK when they run the client and server programs across different sites.
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