
NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

NATIONAL WEATHER SERVICE
OFFICE of HYDROLOGIC DEVELOPMENT

Science Infusion Software Engineering Process Group
(SISEPG)

C Programming Standards and Guidelines

 Version 2.8

i Version 2.8
 8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

Revision History
Date Version Description
12/18/2006 2.6 Initial Version
04/23/2007 2.7 Section 2.4.14 Do Not Hardcode Values was updated and expanded to

provide further clarity.
08/13/2007 2.8 Updated to allow programmers to use “camel case” when naming variables

and functions. Gave Pointers and Dynamic Memory section its own section
(3.5).

ii Version 2.8
 8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

Table of Contents
REVISION HISTORY.. II
TABLE OF CONTENTS ...III
1 . INTRODUCTION... 1
2 . STANDARDS.. 2

2.1 READABILITY AND MAINTAINABILITY ... 2
2.1.1 Indentation ... 2
2.1.2 Braces... 3

2.2 FILE ORGANIZATION... 3
2.2.1 Include Files... 3

2.2.1.1 Header File Include Locations ... 3
2.2.1.2 Header File Include Syntax .. 3
2.2.1.3 Header File Paths ... 4
2.2.1.4 Guarding Against Multiple Inclusions ... 4

2.3 VARIABLE AND FUNCTION SCOPE... 4
2.3.1 Global Variables .. 4

2.4 VARIABLE DECLARATION, INITIALIZATION, AND QUALIFIERS.. 4
2.4.1 Leading and Trailing Underscores .. 5
2.4.2 Constants.. 5
2.4.3 Names Differing Only by Case ... 5
2.4.4 Conflicts with Standard Library Names ... 5
2.4.5 Local Variable Names .. 5
2.4.6 User-Defined Type Names.. 6
2.4.7 Initialize pointers to NULL... 6
2.4.8 Test pointers for NULL... 7
2.4.9 Use the Const Qualifier .. 7
2.4.10 Static Qualifier ... 7
2.4.11 Initialize Static Variables When Declaring Them .. 8
2.4.12 Static/Const Arrays... 8
2.4.13 Constant Declarations.. 8
2.4.14 Do Not Hardcode Values ... 9

2.5 POINTERS AND DYNAMIC MEMORY .. 10
2.5.1 Prevent Memory Leaks... 10
2.5.2 Returning Pointers from Functions .. 10
2.5.3 Dynamic Memory Allocation.. 10
2.5.4 Create Large Arrays on the Heap .. 10

2.6 FUNCTIONS ... 10
2.6.1 Function Names.. 10
2.6.2 Function Prototypes ... 11
2.6.3 Function Prototype Variables .. 11
2.6.4 Function Prototype Location.. 12
2.6.5 Static Functions.. 12
2.6.6 Explicit Function Return Types .. 13
2.6.7 Do Not Reinvent the Wheel... 13

2.7 PORTABILITY .. 13
2.7.1 Strive for Portability... 13
2.7.2 Data Alignment .. 13

3 . GUIDELINES ... 14
3.1 READABILITY AND MAINTAINABILITY ... 14
3.2 FILE ORGANIZATION... 14

iii Version 2.8
 8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

3.2.1 Source File Names.. 14
3.2.2 Comments ... 14
3.2.3 C Comment Organization... 14

3.3 VARIABLE AND FUNCTION SCOPE... 15
3.4 VARIABLE DECLARATION, INITIALIZATION, AND QUALIFIERS.. 16

3.4.1 Loop Index Variable Names ... 16
3.4.2 Pointer Names .. 16
3.4.3 User-Defined Types.. 17

3.4.3.1 Enumerated Types.. 17
3.4.3.2 Macros.. 17

3.4.3.2.1 Use Parentheses in Marco Definitions ... 17
3.4.3.3 Structures ... 18

3.5 POINTERS AND DYNAMIC MEMORY .. 19
3.5.1 Use Pointers as Arguments to Functions ... 19

3.6 FUNCTIONS ... 19
3.6.1 Functions versus Macros.. 19
3.6.2 Inline Functions.. 19
3.6.3 Functions in Loops ... 20
3.6.4 Embedded Statements... 20

3.7 PROGRAM CONTROL... 20
3.7.1 Avoid Unnecessary Code in Loops... 20
3.7.2 Combining Loops ... 20
3.7.3 Loop Direction ... 21
3.7.4 Conditional Tests.. 21
3.7.5 Explicit Conditional Tests .. 21
3.7.6 Goto.. 22

3.8 PORTABILITY .. 23
3.8.1 Organize Files According to Portability .. 23
3.8.2 Big Endian/Little Endian.. 23
3.8.3 Bit Manipulations... 23
3.8.4 Casting ... 24
3.8.5 Numbers ... 24

3.8.5.1 Floating Point Numbers ... 24
3.8.5.2 Hexadecimal Numbers ... 24
3.8.5.3 Octal Numbers ... 24

3.9 C PROGRAM PERFORMANCE ... 24
3.9.1 The Register Keyword .. 25
3.9.2 Shorts, Ints, and Longs ... 25
3.9.3 Boolean Values... 25
3.9.4 Initializing Memory .. 25
3.9.5 Copying Memory .. 25
3.9.6 Logical NOT... 25
3.9.7 I/O .. 26
3.9.8 Unary operators versus binary operators .. 26
3.9.9 Binary Multiplication ... 26
3.9.10 Searching and Sorting .. 26
3.9.11 Store Frequently Used Results ... 26

4 . REFERENCES.. 27

iv Version 2.8
 8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

1. INTRODUCTION

The Office of Hydrologic Development (OHD) produces software which NWS Weather
Forecast Offices (WFOs) and River Forecast Centers (RFCs) use to generate hydrologic
forecasts and warnings for rivers and streams across the country. OHD also develops and
maintains software which runs centrally to acquire and distribute critical data to the
WFOs and the RFCs. Just like many other organizations, software has become a critical
component supporting the operations of these forecast offices. Because software plays
such an important role, it is essential that it be well written and maintained.

The OHD Science Infusion Software Engineering Process Group (SISEPG) is developing
standards and guidelines to ensure that programmers follow good, widely accepted
software development practices when coding. It is believed that this will lead to well
written and better structured programs.

Well-written software offers many advantages. It should contain fewer bugs and run
more efficiently than poorly written programs. It also makes it easier for a programmer
who was not involved in the development of the software to learn how it works.

Software has a lifecycle. A large part of its lifecycle revolves around maintenance.
Software may exist for many years, even decades. Long after the original programmer
has moved on, the software will require maintenance in the form of bug fixes and
enhancements. The time spent doing this and hence the cost is greatly reduced when the
code is developed and maintained according to software standards.

The C programming language is a popular and powerful application development
language. The C programmer is given access to memory and system routines which if
used improperly can result in unreliable programs which waste system resources and
CPU cycles.

This document will present standards and guidelines for the C Programming Language.
The standards are programming techniques which OHD programmers are expected to
adhere to. Their use will be enforced through peer reviews and code walkthroughs. The
programming guidelines are good programming practices which developers are
encouraged to adopt.

The developer should read the OHD General Software Development Standards and
Guidelines document to become familiar with the standards and guidelines deemed by the
SISEPG to be applicable to all programming languages.

It is important to note that standards are not fixed, but will evolve over time. Developers
are encouraged to provide feedback to the SISEPG (sisepg@gateway2.nws.noaa.gov).
Also each project area may derive its own standards and guidelines if special
requirements are desired.

1 Version 2.8
8/13/2007

mailto:sisepg@gateway2.nws.noaa.gov

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

2. STANDARDS
C programming standards are a set of C programming rules which must be applied by C
developers when creating programs. These techniques are considered best practices
which greatly enhance the readability and maintainability of a program. During a code
walkthrough, the software reviewers will be inspecting the code to make sure that these
standards are adhered to.

2.1 Readability and Maintainability
See the OHD Software Development Standards and Guidelines for guidance on how to
make your files more readable and maintainable. These are standards which apply to
programming languages in general not just to the C language.

2.1.1 Indentation
The OHD Software Development Standards and Guidelines document states that
consistent indentation shall be used when distinguishing conditional or control blocks of
code.

Example:

Bad:

/* This example does NOT use consistent indentation. */
int main ()
{
 int a = 1 ;
 int b = 2 ;

 if (a == b)
 {
 fprintf (stdout , “A and B are equal.\n”) ;
 }
 else
 {
 fprintf (stdout , “A and B are not equal\n”) ;
 }

 return 0 ;
}

Better:

/* This example uses consistent indentation of 4 spaces. */
int main ()
{
 int a = 1 ;
 int b = 2 ;

 if (a == b)
 {
 fprintf (stdout , “A and B are equal.\n”) ;

Version 2.8
8/13/2007 2

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

 }
 else
 {
 fprintf (stdout , “A and B are not equal\n”) ;
 }

 return 0 ;
 }

2.1.2 Braces
The programmer shall be consistent in the use of braces.

Example:

Preferred Style:

for (i = 0 ; i < NUM_ANGELS_ON_A_PIN_HEAD ; ++i)
{
 /* Do some work here. */
}

Alternate Less Preferred Style (Kernighan and Ritchie):

for (i = 0 ; i < NUM_ANGELS_ON_A_PIN_HEAD ; ++i) {

 /* Do some work here. */
}

2.2 File Organization
See the OHD Software Development Standards and Guidelines for details on file
organization. These are high-level standards and guidelines which pertain to
programming languages in general, not just specifically to the C programming language.

2.2.1 Include Files

2.2.1.1 Header File Include Locations
A list of header files shall follow the file documentation block outlined in the OHD
Software Development Standards and Guidelines document.

2.2.1.2 Header File Include Syntax
For include files, the ‘<’ and ‘>’ symbols shall be used to include system header files in
your C source code. Double quotation shall be used for the inclusion of all other header
files, including the header files that you define. List the system header files first in
alphabetical order. Then list the non system include files (including COTS includes) also
in alphabetical order.

Example
#include <stdio.h>
#include <stdlib.h>

Version 2.8
8/13/2007 3

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

#include <string.h>

#include “pdc_engine.h”
#include “time_util.h”

2.2.1.3 Header File Paths
Do not use absolute or relative paths to point to your header files. It is mandatory that
you use the –I<dir> directive of the C compiler to instruct the compiler where your
header files are located.

2.2.1.4 Guarding Against Multiple Inclusions
Header files, particularly system header files, often include other header files. When this
occurs, one or more header files may be included more than once. This is called multiple
“inclusion” and is considered a poor programming practice. It may also keep source code
from compiling or result in compile-time warnings. To prevent multiple inclusions, the
following construct shall be used:

#ifndef HEADER_FILE_H
#define HEADER_FILE_H

/* Body of header_file.h file here. */

#endif /* HEADER_FILE_H */

The multiple exclusion symbol is the header file name in upper case with the suffix _H.
For example, for header file com_defs.h the multiple exclusion symbol would be
COMMS_DEFS_H.

2.3 Variable and Function Scope
The C programmer needs to have a good grasp of the lifetime and scope of a variable.
The following items describe common issues associated with variable scope.

2.3.1 Global Variables
The use of global variables shall be avoided. It is often difficult to determine where
global variables originate. It is equally difficult to ensure that the value of a global
variable is not modified in unexpected and unpredictable ways. It can be challenging to
debug global variable values in large programs. If there is a need to access the value of a
variable across files, then the scope of the variable should be made static to the file it is
located in. Access functions should then be created in that file so that the value can
easily be accessed by functions outside of that file. Doing this adds an objected oriented
flavor to your C programming style by promoting information hiding and restricted
access.

2.4 Variable Declaration, Initialization, and Qualifiers
Naming and defining variables in a clear and consistent fashion is an essential component
in good programming. Assigning the const qualifier protects data from being
inadvertently modified.

Version 2.8
8/13/2007 4

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

2.4.1 Leading and Trailing Underscores
Names with leading and trailing underscores are reserved for system use and shall not be
used by the C programmer in this form or as part of a user created name.

Example:

Bad

int _customer_name;
int employee_name_;

Better

int customer_name;
int employee_name;

2.4.2 Constants
Constants defined by #define shall be in all CAPITAL letters. The same is true for
enumerated (enum) constants and constants defined with a specific data type. This
distinguishes these variables from variables with mutable values.

Example:

#define MINUTES_IN_HOUR 60

const short int MINUTES_IN_HOUR 60 ;
const short int num_minutes = MINUTES_IN_HOUR;
enum SevenDrawfs(BASHFUL, DOC, DOPEY, GRUMPY, HAPPY, SLEEPY,

 SNEEZY) ;

2.4.3 Names Differing Only by Case
Names that differ by case only, such as bar and Bar shall not be used.

2.4.4 Conflicts with Standard Library Names
Do not use names that might conflict with standard library function names.

Example:
Do not define a routine named strcpy for copying strings because the standard C string
library has already defined a strcpy function for this purpose.

2.4.5 Local Variable Names
One of two conventions shall be used when naming variables. The programmer has the
choice of separating words in the names of variables either by using underscores or by
using camel case. In either case, the names of the variables shall be as descriptive as
necessary to convey the meaning/usage of the variable. The programmer shall be
consistent and use the same naming convention for variable names and function names.

Version 2.8
8/13/2007 5

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

Example using underscores:
/* When using underscores, the words in the names of variables shall be
separated by underscores not capital letters. */
int do_something ()
{
 int the_first_thing_to_do ;
 int the_second_thing_to_do ;
 …
 return 0 ;
}

Example using camel case:

/* When using camel case, the first word in the variable name shall not
be capitalized. Subsequent words in the variable name shall be
capitalized. In camel case, words in the variable name are not
separated by underscores. */

int doSomething ()
{
 int theFirstThingToDo;
 int theSecondThingToDo;
 …
 return 0 ;
}

2.4.6 User-Defined Type Names
The names of user-defined types including structures and unions shall have the first letter
capitalized. Subsequent words in the name should also be capitalized (camel case) and
should not be separated by underscores.

Example:

typedef struct
{
 char * city_name ;
 char * name_of_mayor ;
 int population ;
} CityStruct ;

2.4.7 Initialize pointers to NULL
A pointer which is declared but not initialized is known as a dangling pointer. Un-
initialized pointers are dangerous because subsequent operations on the pointer will not
know if the pointer references a valid memory address. When a pointer variable is
declared always initialize it either with the address of an existing object or the value
NULL. This usually sets the pointer’s value to zero. The operating system is very strict
about memory operations in the reserved zero page address space. So initializing
pointers to NULL will quickly find code problems resulting from them being used before
being set to point to valid memory addresses. Any place the pointer is subsequently used
the C code shall first check the pointer to see if it is NULL before trying to dereference it.

Version 2.8
8/13/2007 6

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

Example:
char * pChar = NULL ;
char * pInt = NULL ;
int * pMeaningOfLife = NULL ;
int the_meaning_of_life = 42 ;

pMeaningOfLife = & the_meaning_of_life ;

2.4.8 Test pointers for NULL
Always test pointers for NULL values before trying to dereference them.

Example:
int * pInteger = NULL ;

...

if (pInteger != NULL)
{
 fprintf (stdout, “The value is %d.\n”, *pInteger);
}

2.4.9 Use the Const Qualifier
Use the const qualifier to denote variables whose value should not change during the
execution of a program. This allows the compiler to find places where a variable’s value
is being modified when it shouldn’t be. Using const takes advantage of the compile-time
error checking capabilities.

Example:
const int num_lives = 9 ; /* The number of lives a cat
 has. */
++ num_lives ; /* Results in a compilation
 error. Besides, cats

 can’t have 10 lives. */

2.4.10 Static Qualifier
Apply the static keyword to all file scope variables and functions whose use is local to
a single file. This will prevent routines outside of the file from linking to any of the static
modules in the file. It will also keep the namespace from becoming too cluttered and
help to prevent conflicts caused by duplicate symbols.

Example:

The following are the contents of the number_cruncher.c file. Variable global1 is visible
to all functions in this file and to all functions outside of this file. The declarations of
variables global2, global3, and global4 are preceded by the static qualifier. Using the
static keyword in this fashion sets the scopes of these variables to be this file only. That
is, they are only visible to routines in this file. Furthermore, these variables are only
visible from the point of their declaration to the end of the file. So, global2 is visible to

Version 2.8
8/13/2007 7

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

routines crunch_integers, crunch_floats, and crunch_doubles. Global3 is visible to
crunch_floats and crunch_doubles. Global4 is only visible to crunch_doubles.

/* FileName: number_cruncher.c
 Purpose: Number Crunching Routines. */

int global1;
static int global2 = 0;

int crunch_integers ()
{
}

static int global3 = 0;

int crunch_floats ()
{
}

static int global4 = 0;

int crunch_doubles ()
{
}

2.4.11 Initialize Static Variables When Declaring Them
The lifetime of a static variable is for the duration of a program. Always assign a static
variable an initial value when declaring it. This is despite the fact that static variables
will be automatically initialized to 0 (zero) when declared.

Example:
static int first_call_flag = 1 ;

2.4.12 Static/Const Arrays
Always make local arrays static. If the array’s contents are not to be modified, then make
the array const. Local variables are created on the stack each time a function is called.
This can waste valuable CPU cycles, especially for arrays which are initialized with a list
of initializers. Declaring these arrays as static will cause them to be created and
initialized only once at compile time. Declaring these arrays as const will prevent their
contents from being modified.

Example:
const static char * dwarfs [] = { “Bashful”, “Doc”, “Dopey”,
 “Grumpy”, “Happy”, “Sleepy”,
 “Sneezy” } ;
static int student_ids [NUM_STUDENTS] = {0} ;

2.4.13 Constant Declarations
Constant declarations shall appear in a header file. This promotes the sharing of the
constants and reduces the likelihood that the same constant will be declared in multiple

Version 2.8
8/13/2007 8

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

source files. If a constant must be declared in a source file, then it should be declared in
the beginning of a file after the include files. Placing definitions before the beginning of
the first routine in a file allows for easier location and identification when searching for
them.

2.4.14 Do Not Hardcode Values
(except 0, 1 and sometimes 2 used as basic math concepts)

Avoid hard-coding numerical constants in a C source module. Instead, declare a constant
using either a #define directive or a const directive. In both cases, the constant name
should be all uppercase. In fact, const is preferred over #define except in the case of
array dimensions.

Declaring constants promotes code readability. Also, if the value of the constant needs
to be modified, it only needs to be changed at the place it is declared. The code can then
be recompiled and all references to that constant will receive the modified value.

Example:

const int MAX_DICE_ROLLS = 3;
const int PENALTY_POINTS = 100;

...

if (num_rolls == MAX_DICE_ROLLS)
{
 printf (“You have no rolls left!\n”);
}
else if (num_rolls > MAX_DICE_ROLLS)
{
 /* Deduct points from the score. */
 score = score – PENALTY_POINTS;
}

Possible exceptions to this rule include:

• Cases in which the meaning of a hard-coded variable is obvious

Example:

/* Increment the number of minutes by one hour. */
minutes_to_launch = minutes_to_launch + 60;

• Cases in which the hard-coded variable is a part of a standard formula

Example:

/* Convert the temperature from Fahrenheit to Celsius. */
temperatureF = (temperatureC * 1.8) + 32.0;

Version 2.8
8/13/2007 9

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

• Cases in which the values of 0, 1 and 2 are used in basic mathematical operations
such as initializing a variable to 0 or incrementing the value of a variable by 1.
The value 2 may be used in binary mathematical operations.

Example:

/* Initialize the number of moles whacked to zero. */
num_moles_whacked = 0;

/* Increment Pujol’s number of base hits by 1. */
albert_pujols_base_hits = albert_pujols_base_hits + 1;

2.5 Pointers and Dynamic memory

2.5.1 Prevent Memory Leaks
Always free dynamically allocated memory when it is no longer needed. Always free all
dynamically allocated memory when an application terminates. Dynamic memory is
deallocated by calling the free () function. Always set the value of a pointer to NULL
after freeing the memory that it points to. Memory tools such as IBM Rational Purify or
Valgrind can be used to detect the locations of memory leaks.

2.5.2 Returning Pointers from Functions
Do not return a pointer to a stack dynamic variable in a function if the variable has not
been declared as static. The variables will go out of scope and be destroyed when the
function ends and the pointer will be pointing to unused memory. If returning a pointer
to memory which was dynamically allocated in a function (heap dynamic), make sure the
caller knows that it is his/her responsibility to free the memory.

2.5.3 Dynamic Memory Allocation
Use dynamic memory allocation (malloc) prudently.

2.5.4 Create Large Arrays on the Heap
Use dynamically allocated memory for large arrays, as opposed to declaring stack-based
variables. Allocating arrays dynamically will create them on the heap. The heap has
more space than the stack.

2.6 Functions

2.6.1 Function Names
One of two conventions shall be used when naming functions. The programmer has the
choice of separating words in the function name either by using underscores or by using
camel case. In either case, the name of the function shall be as descriptive as necessary to
convey the meaning/usage of the function. The programmer shall be consistent and use
the same naming convention for function names and variable names.

Version 2.8
8/13/2007 10

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

Example using underscores:
/* When using underscores, the words in the function name shall be
separated by underscores not capital letters. */
int do_something ()
{
 int the_first_thing_to_do ;
 int the_second_thing_to_do ;
 …
 return 0 ;
}

Example using camel case:

/* When using camel case, the first word in the function name shall not
be capitalized. Subsequent words in the function name shall be
capitalized. In camel case, words in the function name are not
separated by underscores. */

int doSomething ()
{
 int theFirstThingToDo;
 int theSecondThingToDo;
 …
 return 0 ;
}

2.6.2 Function Prototypes
Function prototypes inform the compiler about the existence of functions before they are
defined. This allows the code to compile without having to ensure all functions are
defined before they are called. It also enforces prototype checking. That is, it makes sure
that the correct number and type of arguments are being passed into the function.

2.6.3 Function Prototype Variables
The arguments specified in a function prototype shall be associated with variable names.
These variable names must match the variable names in the function definition. Doing
this makes function prototypes more meaningful. A programmer can tell more about the
arguments which need to be supplied to a function if the arguments in the prototype have
meaningful names associated with them.

Example:

Bad:
/* A function prototype whose arguments do not have variable
 names. */

float compute_total_price (float , float);

Better:
/* The same function prototype with variable names for
 its arguments. */

Version 2.8
8/13/2007 11

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

float compute_total_price (float price_of_merchandise ,
 float sales_tax) ;

2.6.4 Function Prototype Location
For all non-static functions, prototypes shall be declared in header files. These header
files must be included in the files where the functions are defined and in any source file
where the function is called.

2.6.5 Static Functions
If a function is only used in a module, then precede its definition with the keyword
“static”. This will ensure that the linker only tries to link this routine with routines in
that file. It keeps the variable/function namespace from getting cluttered with the names
of functions which nobody will use. It will also help to prevent collisions (linker
duplicate symbol errors) between routines which have the same names.

Note that when a function is declared static, it does not need a prototype. Also, the
function definition must be placed at a point in the file before the first time it is called.

In the example below, the crunch_integers and crunch_floats functions are static. They
cannot be called by routines outside of this file. The visibility of static functions begins
at the point they are declared in a file and continues until the end of the file. Prototypes
are not needed for static functions and should not be used. Because of the limited
visibility of static functions, the crunch_floats routine below can call the crunch_integers
routine, but the crunch_integers routine cannot call the crunch_floats routine. The
crunch_doubles routine can call both the crunch_integers and the crunch_floats routines.
Also, the crunch_doubles routine is not declared as static. So it is visible to routines
outside of this file.

Example

/* FileName: number_cruncher.c
 Purpose: Number Crunching Routines. */
static int crunch_integers ()
{
 /* Some crunching takes place here...*/
}

static int crunch_floats ()
{
 /* Some crunching takes place here...*/
}

int crunch_doubles ()
{
 crunch_integers ();
 crunch_floats ();
}

Version 2.8
8/13/2007 12

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

2.6.6 Explicit Function Return Types
Do not default a return type to int. Always explicitly state the return type of a function.
If the function does not return a value, then make sure that its prototype and definition
have return types of void. This should not be a problem if programmer is careful to
define prototypes for all the functions he/she has created (except of course the static
functions).

Example:

Do not Do This:
list_builder (List ** pListHead) ; /* No explicit return type.
 It defaults to int. */

Do This:
int list_builder (List ** pListHead) ; /* Explicit return
 type. */

2.6.7 Do Not Reinvent the Wheel
Always use routines from the Standard C library when and where appropriate. Also, try
to reuse routines developed by other programmers in your development organization.

2.7 Portability
Portability means that a source code file can be compiled and executed on different
machines with the only changes being the possible inclusion of different header files and
the use of different compiler flags. The header files contain #define and typedef
constructs that may vary from machine to machine (a different machine may mean
different hardware, a different operating system, a different compiler, or any combination
of these).

2.7.1 Strive for Portability
Recognize that some things are inherently non-portable. These shall be avoided
wherever possible.

2.7.2 Data Alignment
Avoid writing code which assumes that data are stored in a particularly way with respect
to word boundaries in memory. For instance, it is not correct to assume that the size of a
structure is the total of the sizes of its data elements. In fact, the size of a given structure
can be different on different operating systems (HP vs. LINUX vs. Windows).

Data alignment is an important consideration. Various machines begin addresses at even
numbers while others may do this but restrict the valid addresses to a multiple-of-four
address.

Version 2.8
8/13/2007 13

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

3. GUIDELINES
C programming guidelines are a set of C programming practices which are considered
best practices which enhance the readability and maintainability of a program. While
developers are not required to use these techniques, they are encouraged to integrate them
into their programming style.

3.1 Readability and Maintainability
See the OHD Software Development Standards and Guidelines for guidelines on how to
make your files more readable and maintainable. These are guidelines which apply to
programming languages in general, not specifically to C. C specific items will be
discussed in the sections below.

3.2 File Organization
See the OHD Software Development Standards and Guidelines for guidelines on file
organization. These are guidelines which pertain to programming languages in general,
not specifically to the C programming language.

3.2.1 Source File Names
The names of source files which belong to a common library or an executable should
have a common prefix which identifies them as being part of that library or executable.
This includes header files. This helps programmers quickly determine which library a
source file belongs to, especially a header file.

Example: The names of the source files used to build the libPdcEngine.a library could
appear as follows:

pdc_engine_parser.c
pdc_engine_reader.c
pdc_engine_writer.c

3.2.2 Comments
See the OHD Software Development Standards and Guidelines document for details on
writing prologue documentation in a source file.

3.2.3 C Comment Organization

Three general types of comments are encountered in C programming:

Block comments

Example

int main ()
{
 /* This is an example of a block comment.

14 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

 It spans multiple lines. Be careful not
 to forget the closing comment symbol. */

 /* This as an alternative example of block comments.
 * In this example, there is a ‘*’ character at the
 * at the beginning of each line. This makes the
 * block stand out visually, making it more obvious
 * to the reader that this is a block comment, not code.
 * In this style, the final closing comment is on a line
 * by itself:
 */

 return 0;
}

One-line comments

Example

int main ()
{
 /* This is an example of a one-line comment. */
 return 0 ;
}

In-line comments

Example

int main ()
{
 int a = 1; /* This is an example of an inline comment. */
 int b = 2;
 return 0;
}

Different forms of comments are appropriate for different places in source code. Place
comments describing data structures, algorithms, and the like in block form. Generally
one-line comments and inline comments describe a short code fragment. Try to align
one-line comments with the code they describe. Place enough space between the code
and the beginning of inline comments to promote readability.

Placing a blank line before and after a block or one-line C comment to separate it from
the surrounding source code will make the source code easier to read.

3.3 Variable and Function Scope
The C programmer needs to have a good grasp of the lifetime and scope variables and
functions.

15 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

3.4 Variable Declaration, Initialization, and Qualifiers
Naming and defining variables in a clear and consistent fashion is an essential component
in good programming. Assigning the const qualifier protects data from being
inadvertently modified.

3.4.1 Loop Index Variable Names
Loop index variable names may be short and do not need to be descriptive.

int i ; /* A loop index variable. */

for (i=0; i < NUM_ITEMS; ++ i)
{
 …
}

3.4.2 Pointer Names
Pointers should be named in some fashion that distinguishes them from other “ordinary”
variables. One possibility is that pointer variable names start with a lower case “p”
followed by the rest of the name with the first character capitalized, e.g. pValue. This
makes recognition of pointer variables in source code easier.

Another possible naming convention for pointers is to append “ptr” to the end of pointer
variable names. The name of the pointer should either imply the type of the data object it
is referencing or the name of the pointer should describe the data it represents.

The programmer should be consistent in naming pointers. Do not mix different naming
conventions.

Examples:

/* Pointer names using the “p” naming convention. */

CityStruct * pCityStruct = NULL ; /* A pointer to a CityStruct
 structure. */
char * pChar = NULL ; /* A pointer to a character. */
char * pComma = NULL ; /* A pointer to the comma returned
 by a call to the C library function
 strchr. */
int * pStudentAges = NULL ; /* A pointer to an array of
 student ages. */

/*Pointer names using the “Ptr” naming convention. */
char * charPtr = NULL ; /* A pointer to a character. */
char * commaPtr = NULL ; /* A pointer to the comma returned
 by a call to the C library function
 strchr. */

16 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

3.4.3 User-Defined Types

3.4.3.1 Enumerated Types
You may use an enum to place constants together in a logical group or when actual values
for the constants are unimportant. The value of the first item in an enum list is always 0
(zero) unless otherwise specified. As with other constants, use uppercase characters to
construct the constant name. Notice that proper alignment and indentation will improve
readability. If an enum is going to be used in mapping elements into an array, then it is
often helpful to have the last constant in the enumeration be named something like
NUM_ENUM_ELEMENTS. An array can then be dimensioned to have
NUM_ENUM_ELEMENTS, and the array will then have an element for each constant in
the enumeration (with the exception of the NUM_ENUM_ELEMENTS constant).

Example:
typedef enum Clouds { CIRRUS, ALTOCUMULUS, CUMULONIMBUS, NIMBUS,
 STRATUS, NUM_CLOUD_TYPES } CloudTypes ;

/* This array will have space for the CIRRUS, ALTOCUMULUS,
 CUMULONIMBUS, NIMBUS, and STRATUS types. */

CloudTypes cloud_array [NUM_CLOUD_TYPES] ;

3.4.3.2 Macros
Macros should be used judiciously. Macros are useful to represent really short blocks of
logic which are called only a few times. If the block of logic is used more frequently,
then it is preferable to use a small static function in place of a macro.

3.4.3.2.1 Use Parentheses in Marco Definitions
When using macros, it is essential to use parentheses to ensure correct evaluation of the
macro.

Example:

/* The following macro definition could result in an error. */
#define PI 3.14159
#define CIRCLE_AREA(x) (PI * x * x)

area = CIRCLE_AREA (c + 2) ;

/* The preprocessor will expand this macro to: */

area = PI * c + 2 * c + 2 ;

/* Given operator precedence in C, this will be incorrectly
 evaluated as: */

area = (PI * c) + (2 * c) + 2 ;

/* The following macro definition uses parentheses to ensure that it is

17 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

 evaluated as the programmer intended it to be. */

#define CIRCLE_AREA(x) (PI * (x) * (x))
area = CIRCLE_AREA (c + 2) ;

/* The preprocessor will expand this macro to: */

area = PI * (c + 2) * (c + 2) ;

This will evaluate in the correct order.

3.4.3.3 Structures
Structures (also known as records) are useful for creating collections of variables of
different types. Their use also makes I/O operations more efficient. Structures are also
useful for passing arguments to a function. For example, suppose a function takes 15
arguments, ten of which are option flags. Instead of passing these option flags
individually into the function, it is better (from software engineering and code
maintainability standpoints) to create a structure which contains these option flags and
pass a pointer to this structure into the function. This has the advantage of increasing the
efficiency of the function call. It also makes it easier to add new options in the future
without having to modify function prototypes.

Example:

/* This function takes several closely related calling arguments.
 Having multiple calling arguments increases the overhead of
 calling this function. It also makes it more difficult to add
 new calling arguments as may required by future enhancements.*/

static int get_river_data (char * PE,
 char * TS,
 int maximum_observed_forecast,
 int show_only_data_above_floodstage)
{
 …
}

/* This version of the get_river_data routine takes a
 pointer to the RiverData structure as its only argument.
 This structure contains all of the elements passed into
 the get_river_data routine above. Note that this pointer
 is qualified with the const keyword. Passing the structure
 as a pointer reduces the overhead of calling this function.
 The const keyword ensures that the function does not
 modify the structure passed into it. */

typedef struct RiverData
{
 char PE [SHEF_PE_LEN + 1] ;
 char TS [SHEF_TS_LEN + 1] ;
 int maximum_observed_forecast ;
 int show_only_data_above_floodstage ;

18 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

} RiverData ;

static in get_river_data (const RiverData * pRiverData)
{
 …
}

3.5 Pointers and Dynamic memory
Misuse of pointers and dynamic memory allocation is the cause of many C program bugs.
The following are guidelines to help the programmer avoid software bugs associated with
the incorrect use of pointers.
3.5.1 Use Pointers as Arguments to Functions
User-defined types can be large. C implements pass by value for function arguments.
This means that the function receives a copy of each calling argument. To increase the
speed with which arguments are passed, use pointers to pass user-defined types to
routines. If a user-defined type should not be modified by the routine it is being passed
to, make sure that the routine receives it as a const pointer.

3.6 Functions

3.6.1 Functions versus Macros
Consider using macros instead of invoking functions. This is especially true when:

• The amount of source code in the function is small
• The function is called a small number of times.

3.6.2 Inline Functions
Considering inlining functions if the functions are:

• Small
• Called many times, as from a loop

/* This function writes a message to a log file.
 * Since it is called many times from within the
 * program, it has been assigned the ‘inline’ qualifier.
 * Based on this qualifier, the compiler may or may
 * not inline the function. */

inline void log_message (FILE * pLogFile,
 const char * pMessage)
{
 if (pLogFile == NULL)
 {
 fprintf (stderr, “NULL log file argument.\n”);
 return;
 }

 if (pMessage == NULL)

19 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

 {
 fprintf (stderr, “NULL log message argument.\n”);
 return;
 }

 /* Write the log message to the log file. */
 fprintf (logFile, message);
}

Remember that the inline keyword is only a suggestion to the compiler. The compiler
may or may not perform the inline based on how it optimizes code.

3.6.3 Functions in Loops
Limit use of library functions, especially in loops. For example, consider using the form
x*x rather than the math library function pow (x, 2).

3.6.4 Embedded Statements
An embedded assignment statement is a form of side effect. Avoid using embedded
assignment statements.

Example:

Bad:

if ((status = strcmp (string1, string2)))
{
 fprintf (stderr , “\nThe strings are not equal.\n”) ;
}

Better:

status = strcmp (string1, string2) ;

if (status != 0)
{
 fprintf (stderr , “\nThe strings are not equal.\n”) ;
}

3.7 Program Control

3.7.1 Avoid Unnecessary Code in Loops
Whenever possible, move code out of loops when it does not depend on the loop index.

3.7.2 Combining Loops
Consider combining two or more loops to reduce total loop overhead costs.

20 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

3.7.3 Loop Direction
Loops which count down to 0 can be faster than loops which count up from 0 (especially
when loop counters are declared using the register keyword)

3.7.4 Conditional Tests
Optimize logical tests by reordering. When a series of logical tests is performed and one
of the tests is significantly faster and capable of determining the result, perform the faster,
most capable test first.

Example

Acceptable:

if (((a == 1) || (b == 1) || (c == 1) || (d == 1))&&
 (f == 1))
{
 …
}

Better:

/* This is better because the test of f == 1 determines immediately
 whether the entire condition will evaluate to true. This is an
 example of short circuit evaluation.*/
if ((f == 1) && ((a == 1) || (b == 1) || (c == 1) ||
 (d == 1)))
{
 …
}

3.7.5 Explicit Conditional Tests
Defaulting tests for non-zero is generally a bad idea if the variable being tested is not
being used as a Boolean variable. We recommend that explicit tests against a set value
be coded, as:

Example:

if (result) /* Ok, but … */

if (result != FAIL) / * This is much better from a readability
 standpoint. */

Generally, it is better to test values for inequality with 0 (FALSE) rather equality with 1
(True). Most functions (but not all) are guaranteed to return 0 (zero) if false, but only
non-zero (i.e. any value other than 0) if true.

Example:

status = some_function (arg1 , arg2 , arg3) ;

21 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

/* Check return status value for an error condition. */
if (status != 0)
{
 /* An error occurred. */
}

If the variable is being used as a Boolean (that is, it has a value of 1 if true and a value 0
if false) and the variable is named in a fashion that indicates its Boolean nature, then an
explicit value is not required in the conditional test. In fact, using an explicit value in this
instance can lessen the program’s readability.

Example:

int is_empty = 1 ; /* This variable may have a value of 0 or 1.
 Its name indicates its Boolean nature.
 When used in a conditional test its
 Meaning is clear without the need for
 an explicit value. */

if (is_empty)

is the same as

if (is_empty != 0)

from an efficiency point of view. But, in this case, the first form is more readable.

3.7.6 Goto
Use the goto statement very sparingly. Structured programming techniques have
practically eliminated the need for the goto statement. In the opinion of many
programmers, the goto statement should never be used.

With that said, there are a couple of situations where a goto may be employed if
absolutely necessary. It may be employed to break out of several levels of
for/while/switch nesting (though you should rethink any code that meets this condition.)
It may also be used in source code that performs a lot of error testing the result of which
are premature returns from the source module. The goto statement can be used to
redirect the error statements to a common exit or return point in the module.

Example:

int test_value_validity (int value)
{
 int status = OK ;

 /* First error test */
 if (value < 0)
 {
 status = NotOk ;

22 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

 goto RETURN_BLOCK ;
 }

 /* Some work happens here. */

 /* Second error test */

 if (value > 100)
 {
 status = NotOk ;
 goto RETURN_BLOCK ;
 }

 /* Some work happens here. */

 /* Third error test */
 if (value != 42)
 {
 status = NotOk ;
 goto RETURN_BLOCK ;
 }

 /* Some work happens here. */

 RETURN_BLOCK:

 printf (“An invalid value, %d, has been passed into function “
 “test_value_validity.\n”, value);
 return status ;
}

3.8 Portability
Portability means that a source code file can be compiled and executed on different
machines with the only changes being the possible inclusion of different header files and
the use of different compiler flags. The header files contain #define and typedef
constructs that may vary from machine to machine (new machines may mean different
hardware, a different operating system, a different compiler, or any combination of
these).

3.8.1 Organize Files According to Portability
Try to organize machine-independent code in separate files.

3.8.2 Big Endian/Little Endian
Recognize that some machines are little endian and some are big endian. Byte ordering
in words (and further, word ordering) is important.

3.8.3 Bit Manipulations
Bit shifts and bit masks are affected by word size. Do not assume all machines have the
same word size.

23 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

3.8.4 Casting
Avoid downcasting from larger to smaller types. If you must downcast to a smaller type,
use an explicit cast.

/* Some work happens here. */
int four_byte_number = 45;
short two_byte_number;

/* An explicit cast from integer to short is used. */
two_byte_number = (short) four_byte_number;

3.8.5 Numbers

3.8.5.1 Floating Point Numbers
Include at least one digit on either side of the decimal point for floating point variables.

const float GRAVITY_EFFECT = 0.937 ;
float salary = 0.0 ;

3.8.5.2 Hexadecimal Numbers
Start hexadecimal variables with 0x and use uppercase for A-F.

Example:
const int MAX_WEIGHT = 0x1F4A;

3.8.5.3 Octal Numbers

Use caution when initializing values for numeric constants and variables. A value with a
leading zero is assumed to be octal, not decimal.

Example:

/* This defines the number of minutes in an hour as a decimal 60. */
#define NUM_MINUTES_IN_HOUR 60
/* This defines the number of minutes in an hour as a decimal 48. */
#define NUM_MINUTES_IN_HOUR 060
3.9 C Program Performance
Modern compilers have sophisticated code optimization features. While it is likely that a
compiler will optimize code to take into account many of the following items, the
programmer is encouraged to understand these simple practices which can make a
program run faster.

24 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

Program readability needs to be considered along with program performance. If the
performance of a program is acceptable, then it is better to avoid performance enhancing
code which can be tricky and harder to read.

3.9.1 The Register Keyword
Use the “register” keyword to indicate variables, such as loop indexes, which are used
frequently in a program. The register keyword instructs the compiler to place the
values of these variables in registers on the CPU. This makes their use more efficient.
Modern compilers are able to recognize variables which will benefit from being stored in
registers. Modern CPUs generally have many registers which are at the disposal of the
compiler. The register keyword is just a suggestion to the compiler. The compiler is free
to ignore it.

Example:

register int i ; /* A loop index variable. */

3.9.2 Shorts, Ints, and Longs
If int is shorter than long, it is usually faster to perform operations on int.

Division and right-shift of unsigned short can be as slow as the same operations on a
long integer.

3.9.3 Boolean Values
Consider using multiple char variables to store Boolean values (unpacked) rather than
storing multiple Boolean values in a single char (packed). Doing this eliminates bit
shifts, bit AND, and bit OR operations (but it uses more space).

3.9.4 Initializing Memory
Consider using memset to initialize large areas of memory (any variable type), where all
values must be the same.

3.9.5 Copying Memory
Consider using memcpy to copy an entire multidimensional array to another
multidimensional array all at once instead of using nested loops.

3.9.6 Logical NOT
The Logical NOT does not usually introduce additional calculations. The statements

if (is_empty) and

if (!is_empty)

typically generate the same amount of code and require the same number of CPU cycles.

25 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

3.9.7 I/O
I/O Operations almost always result in lost program efficiency. This includes writing and
reading data to and from files and databases. If the data in the file or database table needs
to be frequently read, consider buffering the data in memory after the first time it is read.
This results in increased memory usage but reading data from memory is much faster.

3.9.8 Unary operators versus binary operators
The form x++ is more efficient that x=x+1 or x+=1 (ditto for --).

3.9.9 Binary Multiplication
Consider replacing multiplication of integer variables by powers of 2 with left shifts (e.g.,
i=j<<2; rather than i=j*4;). This is also applicable for division by powers of 2 and
right shifts.

On some machines, shifts of one bit can be faster than shifts of multiple bits. So consider
an implementation which involves a single bit shift instead of one which involves a
multi-bit shift.

3.9.10 Searching and Sorting
When sorting and searching large amounts of data, use sort and search technique patterns
most appropriate for the type and use of data (e.g., sequential search, binary search, heap
sort, shell sort, and quick sort).

3.9.11 Store Frequently Used Results
Reduce repetitive computations by only doing them once and saving the result in a
temporary variable for future access

Also, consider storing frequently manipulated strings into a table and use table indexes or
pointers to reference these strings.

26 Version 2.8
8/13/2007

NOAA – National Weather Service/Office of Hydrologic Development
Science Infusion Software Engineering Process Group – C Programming Standards and Guidelines

4. REFERENCES
• Strategies for Streamlining Software Performance
• RPG C Coding Standards – Draft # 1
• Standards and Style for Coding in ANSI C
• The C Programming Language, 2nd Edition, Brian Kernighan and Dennis Ritchie

27 Version 2.8
8/13/2007

	 Revision History
	Table of Contents
	 . INTRODUCTION
	 . STANDARDS
	 Readability and Maintainability
	 Indentation
	 Braces

	 File Organization
	 Include Files
	 Header File Include Locations
	 Header File Include Syntax
	 Header File Paths
	 Guarding Against Multiple Inclusions

	 Variable and Function Scope
	 Global Variables

	 Variable Declaration, Initialization, and Qualifiers
	 Leading and Trailing Underscores
	 Constants
	 Names Differing Only by Case
	 Conflicts with Standard Library Names
	 Local Variable Names
	 User-Defined Type Names
	 Initialize pointers to NULL
	 Test pointers for NULL
	 Use the Const Qualifier
	 Static Qualifier
	 Initialize Static Variables When Declaring Them
	 Static/Const Arrays
	 Constant Declarations
	 Do Not Hardcode Values

	 Pointers and Dynamic memory
	 Prevent Memory Leaks
	 Returning Pointers from Functions
	 Dynamic Memory Allocation
	 Create Large Arrays on the Heap

	 Functions
	 Function Names
	 Function Prototypes
	 Function Prototype Variables
	 Function Prototype Location
	 Static Functions
	 Explicit Function Return Types
	 Do Not Reinvent the Wheel

	 Portability
	 Strive for Portability
	 Data Alignment

	 . GUIDELINES
	 Readability and Maintainability
	 File Organization
	 Source File Names
	 Comments
	 C Comment Organization

	 Variable and Function Scope
	 Variable Declaration, Initialization, and Qualifiers
	 Loop Index Variable Names
	 Pointer Names
	 User-Defined Types
	 Enumerated Types
	 Macros
	 Use Parentheses in Marco Definitions

	 Structures

	 Pointers and Dynamic memory
	 Use Pointers as Arguments to Functions

	 Functions
	 Functions versus Macros
	 Inline Functions
	 Functions in Loops
	 Embedded Statements

	 Program Control
	 Avoid Unnecessary Code in Loops
	 Combining Loops
	 Loop Direction
	 Conditional Tests
	 Explicit Conditional Tests
	 Goto

	 Portability
	 Organize Files According to Portability
	 Big Endian/Little Endian
	 Bit Manipulations
	 Casting
	 Numbers
	 Floating Point Numbers
	 Hexadecimal Numbers
	 Octal Numbers

	 C Program Performance
	 The Register Keyword
	 Shorts, Ints, and Longs
	 Boolean Values
	 Initializing Memory
	 Copying Memory
	 Logical NOT
	 I/O
	 Unary operators versus binary operators
	 Binary Multiplication
	 Searching and Sorting
	 Store Frequently Used Results

	 . REFERENCES

