
Titilc: A Simple Approach to Modeling Uncertainty in C++
,.

Author : Evan Planning

Introduction

Many classes have been introduced in the pages of this magazine
and elsewhere which use overlc>ading and other features of C++ to
produce specialized mathematical classes which can be used like
built–in types: more compact representation,
rational numbers, complex numbers, vectors, matrices, and more.
This article presents the first of a family of classes which
generalize floating-point. numbers to include an estimate of the
uncertainty of each number.

Motivation

As an example of a floating pc)int applicaticjn consider a spacecraft
trajectory simulator. Such a program might start with an
initial posit-ion and velcjci.ty for the spacecraft, and project
it forward in time. For each timestep it wc)uld move the
spacecraft in accordance with its current velocity and
adjust the velocity to account for the gravitational attraction
of significant bodies. l-f the program is implemented
perfectly, then for a given set of initial conditions it will
be able to predict perfectly where the spacecraft will be at
any future moment.

But i.n the real world there may be some uncertainty in our
knowledge of the spacecraft’s initial positj.on and velocity, as
well as the positions anc~ masses of planets. So what is really
needed is a simulator that can track the effect of initial
uncertainties and provide an assessment of the uncertainty in
the final position. When a spacecraft is headed for a close
encounter with an asteroid, “mission planners will need to
know more than whether the most likely path of the spacecraft
impacts the asteroid. They will need to knc)w the probability
of a collision.

If our example program were coded in C, the options for adding
uncertainty appraisal to this application would be: (1) ignore
it, (2) try a number of plausible sets of inputs and look at
the output, or (3) rewrite the application to keep an assessment
of uncertainty alongside the expected value of each uncertain
value . With C++ we add option 4: use an UncertainDouble variable
in place of each possibly uncertain double, and let the
Uncertai.nDouble class take care of all the bookkeeping.

Implementation

The code presented here follows the Gaussian model c]f urlcertaint_y
(see sidebar) and is built around two private
double data members: value (also called mean) and uncertainty
(also called sigma). This class is known
as UDoubl.eMS for uncertain double mean-sigma. Listing I is the
definition of this class, and for the most part looks like the
definition of any mathematical. class. rneano and devial.iono
member functions give read-on].y access to the data members.
Other differences are discussed below.

Listing 2 gives the implements.ti.ons of the constructors and

d.estr. uctors fo~- UDoubleMS. !rhe consLruct_ors
initialize the vaJue and uncertainty data memk)ers. The. . destructor does nothing.

C++’s built-in double data type can be seen as the degenerate
case of UDoubleMS with uncertainty equal to zero. In fact
when uncertainty is zero, members of thjs class do behave exactly
like the built-in double type. For this reasc>n, one corlstructor
accepts a single argument of type double. Thjs constl”uctor uses
the argument as the value and defaults i.he uncertainty i.o 0.0.
‘I’his is t-he default conversion from double to UDoubleMS.

The uncertainty associated wji-h a numbe]- tells us how many
digits are significant, and so allows us Lo p~ int that. Ilurnber more
intelligently than is usual with doubles.
The function uncertain__Printo (Ljstin9 3)
takes a mean and a deviation (and an optional ostream) and prints
out mean +/- deviation, carefully printing only as many digits
of the mean as correspond to the first Lwo digits of the deviation.
(“+/-” is read “plus or minus”.)
So 1.2345 +/- 0.2387 prints as “1.23 +/-- 0.24” and 0.012345 +/– 5.321
prints as “().0 +/- 5.3”. ‘1’his function is used by UDoubleMS’s
operator<< () (not shown). l-t is implemented outside of Lhe
UDoubleMS class so that it can be used by other UDouble classes.

Operator>>() is much simpler and is similarly implemented in terms of
uncertain_reado .

Propagation of Single Uncertainties

If x is 0.5 +/- 0.1, what. is f(x)? We could make a goc]d guess
by looking at. f(O.5) for the mean and then at f(O.4) and f(O.6)
to estimate the deviation. Mathematically, in the Gaussian approximation
we need to know the value of fo at 0.5 (f(O.5)) and the slope of
fo in the neighborhood of 0.5 (f’ (0.5)) (the slope or derivative
is the ratio of small changes in f(x) to small change in x) .
The mean of f(x) is fo applied to the mean of x and the deviation
of f(x) is the deviation of x scaled by the slope of fo at
the mean of x: f(x) = f(<x> :-/- dx) = f(<x>) +/- f’ (<x>)dx. This
formula may look daunting but, it is really quite simple to use when
the slope of fo is known. And the slope i.s known for all functions
we need to make UDoubleMS act like double: unary +, unary -~ acoso ,
asino, atano, atan20, ceilo, COS(), cosho, expo, fabso, flooro,
fmodo, frexpo, I.dexpo, logo, loglO(), modfo, POW(), sine, sinho,
sqrto, tano, and tanho.

Unary + and – have slopes of 1.0 and -1.0 respectively and so are
easily implemented (I,isting 4) . The rest c)f these functions are
written using knowledge of slopes. Fox example, the slope of sino
is COS(), the slope of expo is expo, the slope of ceilo is O
(except at integers, where it. is infinite.) (Listing 5).

When the slope of a function is not known in advance, it
can be approximated by taking the difference between
f(mean + sigma) and f(mean - sigma) . Listing 6 presents
the one argument version of PropagateUncertaintiesBySlope (),
which does exactly this.

Multiple Sources of Uncertail”lty

Many operations combine two potentially uncertain inputs inLo one
uncertain output. The simplest of these is binary “+”: if a is
1.(I +/- 0.1. andb is 1.0 +/- 0.1 what is c = a + b? The value
of c follows familiar rules: 1.0 + 1..0 =- 2.0. But the uncertainty of c

will depend on whether or not a and b arc correlated, that is whether
or riot Lhejr uncertainties share a common source. As extreme cases

. .
where a and b are positively and negatively correlated we can consider

I
the possibilities that b j.s a and that b is (2 – a) .

‘I’he first case might arise when we have
two blocks known t-o be identical and we measure one. We are t_hen
asking how long two of the blocks laid end–to–end are, and of course
this is exactly twice the length of a single block. In this case
c==a + b=a + a = 2.0 * a == 2.0 * (1.0 +/- 0,1) = 2.0 +/-- 0.2.
Here the uncertainties of a and b have the same source
and the same sign, so they simply add. You might think of them as
parallel vectors. [Fig la] Using an ideal uncertain double (UDouble)
class this case might be coded:

I UDouble a(l.0, 0.1), b;
b = a ;
tout << a << “ + “ << b << “ = “ << (a + b) << endl;

which prints:

1.00 +/- 0.10 + 1.00 +/-. 0.10 = 2 . 0 0 +/- 0 . 2 0

The case where b is (2 - a) is somewhat harcier to imagine, but
perhaps we have a box known to be 2 meters long and two blocks that
together fill it perfectly. So even though our measurement of
block a is imperfect we know that b is (2 - a). In this case
c=a+b==a +(2-a)== 2+-(a-a)=2.()+/-().0
Since the uncertainties of a and b have a comn~on
source but opposite sense they subtract. You might think of them as
parallel vectors pointing in opposite directic>ns (antiparall.el vectors)
[Fig lb]. This case might be coded:

UDouble a(l.0, 0.1), b;
b = 2.0 - a;
tout << a << “ + “ << b << “ == “ << (a + b) << endl;

which prints:

1 . 0 0 +/- 0 . 1 0 + 1.00 +/- 0.10 = 2 . 0 0 0 0 0 0 0 +/- 0 . 0

UDoubleMS is a class template in order t.o allow it to expand
to two almost identical. classes. ‘I’he int parameter is_c:orrelated
is conceptually a boolean, but I didn’t use t}le new boc>]ean type
because it is not yet widely available. When is correlated
is true uncertainties add sjmply; when it is fai”se uncertainties
add by hypotenuse as we will. see below. The (correlated version
of UDoubleMS allows
the uncertainty private data member to Lake o]) negative values
so that anti-correlated uncertainties can cancel when added.
The first case above would have the internal representations
a == (1.0, 0.1), b = (1.0, 0.1) but in the second case this would
be a = (1.0, 0.1), b == (1.0, -0.1). So adding the corresponding
components gives the answers we derived above. I,ist_ing 7 is
operator+=() and binary operator+-() .

The uncorrelated case arises when the uncertainties i.n a and b
come from independent sources. In this case the
uncertainty vectors would be (on average) at right angles and
their sum would
be their hypotenuse, or the square root. of the sum of their squares:
sqrt(0.1A2 +- 0.1.A2) = 0.1 * sqrt(2) -= 0.14 [Ipig l.c] so
c = a +b= 2,00 +-/- 0.14.
This case is an application of the uncorrelated version of the
UDoubleMS<is_correlated> class, UDoubleMS<O>. This case can
be coded:

.,
“UDouble a(l .0, 0.1), b(l .0, 0.1);
tout_ << a << “ + “<<b<<”= “ << (a + b) << cndl;

which prints:

1.00 +/- 0.10 + 1.00 +/-.. 0.10 = 2.00 +/- 0.14

‘I’he most complicated case of adding uncertainties js whc’n the two
operands are partially
correlated. If a and b are independent and c is their sum, as in
the previous case, then a and c are neither perfectly correlated
nor perfectly independent. a is correlated with the a porLion of
c but uncorrelat-ed with the b portion of c. [Fig l.d] The code
presented here cannot trace such partial correlations, but. more
advanced methods can do so. Such classes may be presented
in future articles here and preliminary implementations are included
on the code disk(?) . One such case might be coded:

UDouble a(l.0, 0.1), b(l.0, 0.1), c;
// make “c” be half correlated with “a” and half with “b”
// renormalized to be 1.00 +/- 0.10
c = (a + b) / sqrt (2.0) + 1.0 - sqrt(2.O);
tout << a << “ +- “ << c << ‘1 = “ << (a + c) << cndl;

which prints:

1.00 +/- 0.]0 + 1.00 +/-- 0.10 == 2.00 +/- 0.18

All binary functions use slope to
figure out the uncertainty frc>m each source and then add the two
uncertainties either simply (if correlated) or as hypotenuse
(not correlated). The operatc)rs which work this way are +==, -=, *==,
/=, and binary +, -, *, and /, and fmodo, atan20, and powo . Some
examples are given in Listings 7 & 8.

Listing 9 shows how uncertainties are propagated by slope through
an unknown function of two uncertain variables.

The only operations that are defined for type double that
are not also defined for (JDoubleMS are casting to other
numerical types and relatj.onal operators. This is because
UDoubles are conceptually multi–valued. What should

UDoubleMS<O> = ud(100.0, 3.o);
int i = ud;

yield? ud is 100.0 +/- 3.0 and so j.s likely
to be near 97 or 98 or 99 or 100 or 101 or 102 or 103, but could well
be anywhere from 90 to 110, and in theory might be -10,230.
The most sensible single value is the mean, and if this is wanted
it is available through int i = ud.meano ; . S~milarly t:here
is no single answer to the question of whether 100.0 +/- 3.0
is greater than 101.0 +/- 6.0. It i.s possible to assign
a probability to this value but if that probability is expressed
as a simple floating-point. number between 0.0 and 1.0, then
expressions like if- (uda > ucib)
true. If a comparison of means
if (uda.meano > udb.meano) .

Implementation Issues

will almost always evaluate as
is wanted then the app~-c)priate idiom is

I have found i.t useful during development to 311clude all funrt !on
defini.ti.ons in situ in the class template defirlition. Wl~ile lnany
dislike this approach because it may use more compile time and

~e~ause it clutters Lhe class definition,
i.t saves a great deal of time in development. when only one file,.

I
must be changed for any change of interface and i.t decreases the
total code size.

AnoLhel- thing that has proved useful during this development
effort is that this package contains multiple very different
implementations of Lhe same functionality. This collection of
classes now contains a UDoubleTest class that has meml)ers of
the other UDouble types and distributes all operations t.o the
members . In this way it is easy to compare the output c~f
various methods and see at a glance where they differ.

This code uses one newi.sh C-t+ feature: a t.ernplate with a parameter
that i.s not. a type. Using a new feature limited my portability
enough that I decided against trying to add any other new features
like exceptions and the bool type.

Demo Program

The code disk also contains a program that puts UDc)ubleMS through
its paces and explains the results. Thjs demc> program is
implemented mostly in terms of another class, UDoubleTest, which
is composed of one private UDoubleMS<O> membe~ and one LJDoubleMS<l>,
and distributes most operations to those classes. Listing 10 is
part of class UDoubleTest, Listing 11 is part of the cierno program,
and Listing 12 is part of the output from the demo prc)gram.

Practical Use of UDoubleMS

An application t_hat uses UDoubleMS must include header uncertain.h
and must change all double variables that can be uncertain to
UDoubleMS. Input can be handled by operator>>() if it.
is formatted as “mean +-/- sigma”; otherwise custom input
routines will be needed. Output should be fo)-matted cc)rrectl.y
by the overloaded operator<<() without modification.

The class UDoubleMS<l> should be used in cases with only
one source of uncertainty. UDoubleMS<O> can l)e used where
there are multiple uncertainties and each independent
uncertainty gets mixed with other uncertainties exactly
once. Many applications will fit neither of these sets
of restrictions, and so will need the more advanced classes
in this collection.

Speed Issues

Depending on the operatic)ns used in a program, changing
variables from double to UDoubleMS will probably SI.OW
the program down by about a factor of three. For
many applications this slowdown will not be a problem because
computers hav’e become so much faster in recent years and
because for many applications 1/0 or graphics take more CPU
time than floating-point. calculations.

In cases where this slowdown is unacceptable, a typedef
could be used for the type of all variables which may need
to be UDouble. Then a compile-time definition could choose
to make a double version or a UDouble version, and the
UDouble version might be used only occasionally to check
assumptions of uncertainty.

Speed could stjll be improvecl somewhat by adding versic]ns

,
,!.

o.f.all binary operations that accept one double operand
and one UDoubleMS operand. These versic,ns could be faster

. . than the full. two-UDoubleMS versions~ but would contribute to
code bloat.

Other UDouble Classes

UDoubleMS offers the simplest possible model c>f uncertainty.
The other UDouble classes on the code disk offer more ac~curate, but
more computational.ly expensive, solutions to the problem of
modeling uncertainties. The 17DoubleMSC class uses sonle knowledge
of the second derivative of functions (curve) to improve
accuracy and (optionally) to warn when curves begin to break
down Lhe applicability of the Gaussian mc)del. It also warns
when discontinuities threaten the applicability of this model..
The correlation tracking class,
UDoubleCT, uses the same underlying Gaussian n(odel as the
UDoubleMS class, but keeps track of uncertainties from
multiple sources correctly. The ensemble class,
UDoubleEnsembl.e, does not depend on the Gaussian model but
instead models each uncertain variable with an ensemble of
possible values.

Conclusion

I like to Lhink of these classes as adding intelligence to
an application, A carefully ciesigned application using UDoubleMS
is not only making the basic calculations that a more primitive
application would make but also “thinking” abc)ut the accuracy
of its results, With the UDOubleMSC class with Gaussian breakdown
checking, the application could even check the accuracy of the
first_-order check on accuracy.

Acknowledgements

This work was partly done at the Jet Propulsic)n Laboratory,
California Institute of T.echnc>logy, under a cc>ntract from the
National Aeronautics and Space Administration.

---------—---—------------—--- . ..-— -------- -------- --—----- -- ---——--———_-
Sidebar: The Gaussian Approximation

Errors are most frequently modeled as belonging to a Gaussian, or
“bell curve” distribution. in this approximation each quantity is fully
characterized by only twc) parameters: the central value, or mean,
and the deviation, or uncertainty. The mean tells what the
most likely value is, while the deviation tells how far the
actual value is likely to be spread around the mean. For a pure
Gaussian distribution there is about a 32% chance that the value
is more than one deviation away from the mean, a 4.5% chance that
the value is more than 2 deviations away from the mean, anti a
0.3% chance that the value is more than three deviations away from
the mean.
When the deviation is zero then the distribution is 100% certain
to have the value of the mean.

The probability density for a Gaussian distribution is proportional to
[need formula printing here] e “-[(x--mean)A2/ (2*sigmaA2)l

One reason for using the Gaussian model is how well it matches
many real. distributions. In fact, the Central Limit. Theorem
guarantees that for any
distribution with a mean and a deviation, the sum of n

,.
“.”. .

va]-iables with this distribution will become nlore and more
li”kc a Gaussian djst. r-i but~Lon as n gets larger.

The other reason for the popularity of the (;aussian model
is its computational simplicity. The sum of two variables
with Gaussian disl_ributic)ns has a Gaussian distribution. The
distribution i.s smooth and differentiable. It even F’c)ulier
transforms into anot_her Gaussjan di.stri.bution.

Drawbacks

But Lhis model. is noL always good enough. Th(re are many examples
of real–world dist.rj.buti.ons that are not. Gaussian. Tjmc! read from
a perfectly accurate system clock has uni.form]y distributed error
between two consecutive ticks. (eg. if the rcsolut.ion is seconds,
then a reading of 12:00:00 is equally likely to be 12:00:00.01,
12:00:00.50, and 12:00:00.99 but absolut..ely w~ll not be 11:59:59:99
or 12:00:01 .00.)

One particularly l.i.miti.ng problem with the Gaussian model is that
its “tails” (the edges of the distribution) are infinite. There
is a small but finite chance that the value is 100 deviations away
from the mean. But infinite tails cannot be made to mc)del cases where the
distribution must have a limit. I may say th;it a block is 1.0 +-/- 0.1
inches wide. The Gaussian interpretation of this stat.ernent allows
a chance that the actual block has a negative wjdth, but we know
this cannot be true.

Expanding Lhe Gaussian mc)del

The mean is sometimes referred to as the first moment of a
distribution, and is calculated frc)m a set of data simply by
averaging the values of the data. The deviation is the second
moment and can be calculated using the mean and the average of
the squares of the values. Distributions which are almost
Gaussian can be describec~ more fully using a few more moments
(the third moment is call.ed skew and generally reflects the
asymmetry of the distribution) . But higher moments arc
increasingly difficult tc) compute accurately, and must
be avoided or used with care. Without an infinite number of
moments, however, it is j.mpossible to describe some important
practical cases, such as tails with I.imits.

Loss of “Gaussianness”

I stated earlier that sum of Gaussian distributions i.s
also Gaussian. Unfortunately, most operations can prociuce
distributions that are not Gaussian even when the the operands
are . In the Gaussian approxi.rnation, application of a function
to an initial Gaussian variable is approximat.ed by transformation
by a tangent to the true function. Figure A shows failures of
this model wh’en the function is discontinuous or curved.
------—----—--——— -------- -—--------- _______ -------- ----- ____________
Author’s Background:

Evan Manning has degrees in Applied Physics from Caltech and SLanford.
He has been working as a self-taught C programmer in defense and space
applications for the past 8 years. Currently he works for Telos
Information Systems as a consultant at NASA’s Jet Propulsion Laborat.oxy.
He can be reached at manning@alumni. .calt.ech .edu.

