
1

Robotics with the XBC

Controller
Session 2

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

2

Learning Goals

 The student will learn the basics of
motor control with the XBC, digital
sensors, if-then and while loops,
Boolean expressions and be able to
combine these elements into a
mobile robot that reacts to its
environment.

3

Basic motor control

 The most basic motor control
function in IC is the “motor”
function.

 Defined as motor(<motor_#>, <speed>)

 motor_# = motor port 0-3

 speed = -100 to 100

4

Example of use

 To move forward for 3 seconds:

 Type in, save, and run the following program.
Make certain the left motor is plugged into port
#0 and the right motor is plugged into port #2.

void main()

{

motor(0,100);

motor(2,100);

sleep(3.0);

ao();

}

5

My robot doesn‟t go
straight!

 If your robot does not go forward your motor
wires are likely plugged in backwards.

 If your robot goes backwards:
 Both motor wires are plugged in backwards.

 If your robot turns left:
 The left motor wire is plugged in backwards.

 If your robot turns right:
 The right motor wire is plugged in backwards.

 If you robot veers to the right or left, one
motor is weak, or an axle is pinched.

6

What is happening…

 void main()
 Remember, all C programs start at the main

function.

 {
 Opens the block of statements for “main”

function.

 motor(0,100);
 Turn on motor port 0 at full power [100%]

 Notice the ending ;

 motor(2,100);
 Turn on motor port 2 at full power

 Notice the ending ;

7

What is happening
continued…

 sleep(3.0);
 Pause for 3 seconds while motors continue to

rotate.

 Notice the ending ;

 ao();
 Turn off all motors

 }
 Close the main function [end block of

statements]

 Note: All statements end with ‘;’

8

Turning

 In order to turn we move one motor
backwards and the other forwards.

 Turn the motor backwards in the
direction you want to turn. i.e. if
you want to turn left run the left
motor backwards.

9

Example of turning

void main()

{

motor(0,100);

motor(2,100);

sleep(3.0);

motor(0,-100);

motor(2,100);

sleep(1.5);

ao();

}

10

Your turn…

 Write a program that will cause your
robot to do the following:

 Move forward for 2 seconds

 Turn left for 0.5 seconds

 Move backwards for 2 seconds

 Turn right for 0.75 seconds

11

void main()

{

motor(0,100);

motor(2,100);

sleep(2.0);

motor(0,-100);

motor(2,100);

sleep(0.5);

motor(0,-100);

motor(2,-100);

sleep(2.0);

motor(0,100);

motor(2,-100);

sleep(0.75);

ao();

}

12

Other motor control
functions

 ao();

 Turn all motors off

 fd(<motor_#>);

 Turn on motor_# in a “forward” direction at
full power.

 bk(<motor_#>);

 Turn on motor_# in a “backwards” direction
at full power.

 off(<motor_#>);
 Turn off motor_#

13

Boolean expressions

 Boolean expressions evaluate to either TRUE or FALSE.

 2<5 = TRUE

 3>5 = FALSE

 0 = FALSE

 1 = TRUE

 All expressions with a relational operator (i.e <) are
boolean expresions.

 AND, OR, NOR, XOR, NOT are other boolean operators.

 Also known as relational, conditional, or comparison
expressions

14

Boolean expressions
continued.

 < less than

 <= less than or equal

 > greater than

 >= greater than or equal

 == equal

 != not equal

 && and

 || or

 ! not

15

Explanation of AND, OR and
NOT

 In an AND expression BOTH statements MUST be true.

 (2<3) && (17<30) = TRUE

 (4>2) && (14<10) = FALSE

 In an OR expression EITHER statement can be true.

 (2<3) || (17<30) = TRUE

 (4>2) || (14<10) = TRUE

 (4<2) || (14<10) = FALSE

 NOT is a unary operator which negates or reverses the
current statement.

 !0 = TRUE

 !1 = FALSE

 !(2<3) = FALSE

16

Advanced AND explanation

 The expression is evaluated 'Left to
Right„. If any part of the expression
returns ZERO the evaluation ends.

k=0;

i=3;

j=2;

if (i-i && j++) k=1

What will j and k equal???

17

Advanced OR explanation

 OR also evaluates 'Left to Right' and will
stop when an expression returns
true.

k=0;

i=3;

j=2;

if (i+i || j++) k=1

What will j and k equal?

18

If-then statements

 if (<expression>)
<statement-1>
else <statement-2>

 (<expression>)
 A Boolean or conditional expression

 <statement-1>
 program statements to execute if (<expression>)

evaluates to TRUE

 else <statement-2>
 Optional statements to execute if (<expression>)

evaluates to FALSE.

19

Pseudo code example

if (test for something)

{

Do this if true…

}

If not true jump to here…..

20

While loops

 while (<expression>)

<statement>

 (<expression>)

 A boolean expression to test

 <statement>

 C program statements to execute if (<expression>)

evaluates to TRUE

 Multiple statements can be contained in braces

{ …}

21

Pseudo code while example

while(test for something)

{

do this……

}

When while test = FALSE jump to
here…..

22

An example program
void main()

{

while(a_button() == 0)

{// Open while loop braces

}// Close while loop brace

printf("A button pressed!\n");

sleep(0.5);

printf(“Program End”);

}

23

What are those weird //
things?

 The // denotes comments in code.

 Comments are NOT executed or
downloaded to the XBC.

 Comments are used to make the
code more readable.

 Use comments liberally throughout
your code.

24

Comments continued

 Block comments are used to
comment large sections.

 /* opens a block comment

 */ closes a block comment

 Example:

/* This comment

Takes up more than one line

*/

25

Explanation

 void main()

 Start the “main” function

 {

 Open brace for the main function

 while(a_button() == 0)

{// Open while loop braces

}// Close while loop brace

 Check the status of the “a” button

 If it is NOT pressed then loop back up and check again.

 Could also be written as while(!a_button())

26

More explanation

 a_button() checks the status of the a button on
the game boy.
 Returns a 1 if pressed

 Returns a 0 if not pressed.

 printf("A button pressed!\n");
 Print “A button pressed” if the while loop tests as

FALSE.

 sleep(0.5);
 A brief pause

 printf(“Program End”);
 Tell reader that the program stopped.

 }
 Close the main function

27

Another example

void main()

{

while(1)

{// Open while loop braces

if (a_button() == 1)

{ // open if statement brace

printf("A button pressed!\n");

sleep(0.5);

}// close if statement brace

}// Close while loop brace

}

28

Explanation…

 while(1)

{// Open while loop braces

 1 is ALWAYS TRUE therefore this while loop will never
exit.

 if (a_button() == 1)

{ // open if statement brace

printf("A button pressed!\n");

sleep(0.5);

}// close if statement brace

 Test the “a” button. If it is pressed then execute the
statements between the braces { }

 }// Close while loop brace

 Return to the top of the while loop

 } - close the main function

29

An assignment

 Write a program that will do the
following:

 Your robots wheels move in a reverse
direction if the “a” button is pressed.

 Otherwise (else) your robots wheels
move in a forward direction.

30

Possible solution
void main()

{

while(1)

{

if(a_button())

{

bk(0);

bk(1);

}

else

{

fd(0);

fd(1);

}

}

}

31

Digital sensors

 Digital sensors have only TWO
possible states:

 On or off

 1 or 0

 Touch sensor the most common
example. [The A button is a built in

touch sensor.]

32

Reading digital sensors

 digital(<port#);

 Port# = ports 8-15

 Returns a 0 or a 1

33

An example of using
digital() to print its state

void main() // assumes a touch sensor attached to port #8

{

while(1)

{

display_clear();

if(digital(8))

{

printf("Digtal port 8 = 1");

}

else

{

printf("Digtal port 8 = 0");

}

sleep(.25);

}

}

34

Preparing bumper-bot

 V1 kits – Plug the left switch into
port 8 and the right switch into port
9.

 All others - Plug the front bumper
into port 8 and the rear bumper into
port 9.

35

V1 Kit Project

 Write a program that will cause your
robot to roam around the room and react
to its environment with the front touch
sensors.

 If the left touch sensor is triggered the
robot backs up and then turns right and
continues.

 If the right touch sensor is triggered the
robot backs up and then turns left and
continues.

36

Project - All other kits

 Cause “bumper-bot” to play ping-
pong

 If the front bumper is pressed the
robot goes in reverse.

 If the rear bumper is pressed the
robot goes forward.

37

Normally open Vs. Normally
closed switches

 Be aware that the switches on the
V1 kit are mounted in such a way
that they are NORMALLY CLOSED
(NC).
 They should return a 1 or TRUE when

the robot has NOT encountered an
obstacle.

 To test if it HAS hit an object:
• if(digital(8) == 0)

38

Normally open Vs. Normally
closed switches continued

 All other kits are NORMALLY OPEN
(NO)

 They should return a 0 or FALSE when
the robot has NOT encountered an
obstacle.

 To test if it HAS hit an object:

• if(digital(8) == 1)

39

Using comments to set
robot parameters.

 Remember, comments do nothing
other than document the code and
robot.

 Comments are especially useful in
documenting the configuration of
the robot.

40

/*

Program Name: bumperbot.ic

Date Created: August 9th, 2006

Author: David Culp

email: culpd@cfbisd.edu

Purpose:

This program will cause a differential drive robot with a touch

switch in the front and the back to "ping pong“: When the front

switch is touched the robot begins moving backwards. When the

rear switch is triggered the robot begins moving forwards.

Robot configuration:

Left DC motor - port 2

Right DC motor - port 0

Front touch switch - digital port 8 NORMALLY OPEN SWITCH

Rear touch switch - digital port 9 NORMALLY OPEN SWITCH

*/

void main()

{

41

void main()

{

fd(0); //start robot going forward

fd(2);

while(1) // do this forever

{

if(digital(8) == 1) // if the front bumper is pressed

{

bk(0);// set both motors in reverse

bk(2);

}//end if

if(digital(9) == 1)// if back bumper is pressed

{

fd(0); //set both motors going forward

fd(2);

}//end if

}//end while

} // end main

