
1

Robotics with the XBC

Controller
Session 2

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

2

Learning Goals

 The student will learn the basics of
motor control with the XBC, digital
sensors, if-then and while loops,
Boolean expressions and be able to
combine these elements into a
mobile robot that reacts to its
environment.

3

Basic motor control

 The most basic motor control
function in IC is the “motor”
function.

 Defined as motor(<motor_#>, <speed>)

 motor_# = motor port 0-3

 speed = -100 to 100

4

Example of use

 To move forward for 3 seconds:

 Type in, save, and run the following program.
Make certain the left motor is plugged into port
#0 and the right motor is plugged into port #2.

void main()

{

motor(0,100);

motor(2,100);

sleep(3.0);

ao();

}

5

My robot doesn‟t go
straight!

 If your robot does not go forward your motor
wires are likely plugged in backwards.

 If your robot goes backwards:
 Both motor wires are plugged in backwards.

 If your robot turns left:
 The left motor wire is plugged in backwards.

 If your robot turns right:
 The right motor wire is plugged in backwards.

 If you robot veers to the right or left, one
motor is weak, or an axle is pinched.

6

What is happening…

 void main()
 Remember, all C programs start at the main

function.

 {
 Opens the block of statements for “main”

function.

 motor(0,100);
 Turn on motor port 0 at full power [100%]

 Notice the ending ;

 motor(2,100);
 Turn on motor port 2 at full power

 Notice the ending ;

7

What is happening
continued…

 sleep(3.0);
 Pause for 3 seconds while motors continue to

rotate.

 Notice the ending ;

 ao();
 Turn off all motors

 }
 Close the main function [end block of

statements]

 Note: All statements end with ‘;’

8

Turning

 In order to turn we move one motor
backwards and the other forwards.

 Turn the motor backwards in the
direction you want to turn. i.e. if
you want to turn left run the left
motor backwards.

9

Example of turning

void main()

{

motor(0,100);

motor(2,100);

sleep(3.0);

motor(0,-100);

motor(2,100);

sleep(1.5);

ao();

}

10

Your turn…

 Write a program that will cause your
robot to do the following:

 Move forward for 2 seconds

 Turn left for 0.5 seconds

 Move backwards for 2 seconds

 Turn right for 0.75 seconds

11

void main()

{

motor(0,100);

motor(2,100);

sleep(2.0);

motor(0,-100);

motor(2,100);

sleep(0.5);

motor(0,-100);

motor(2,-100);

sleep(2.0);

motor(0,100);

motor(2,-100);

sleep(0.75);

ao();

}

12

Other motor control
functions

 ao();

 Turn all motors off

 fd(<motor_#>);

 Turn on motor_# in a “forward” direction at
full power.

 bk(<motor_#>);

 Turn on motor_# in a “backwards” direction
at full power.

 off(<motor_#>);
 Turn off motor_#

13

Boolean expressions

 Boolean expressions evaluate to either TRUE or FALSE.

 2<5 = TRUE

 3>5 = FALSE

 0 = FALSE

 1 = TRUE

 All expressions with a relational operator (i.e <) are
boolean expresions.

 AND, OR, NOR, XOR, NOT are other boolean operators.

 Also known as relational, conditional, or comparison
expressions

14

Boolean expressions
continued.

 < less than

 <= less than or equal

 > greater than

 >= greater than or equal

 == equal

 != not equal

 && and

 || or

 ! not

15

Explanation of AND, OR and
NOT

 In an AND expression BOTH statements MUST be true.

 (2<3) && (17<30) = TRUE

 (4>2) && (14<10) = FALSE

 In an OR expression EITHER statement can be true.

 (2<3) || (17<30) = TRUE

 (4>2) || (14<10) = TRUE

 (4<2) || (14<10) = FALSE

 NOT is a unary operator which negates or reverses the
current statement.

 !0 = TRUE

 !1 = FALSE

 !(2<3) = FALSE

16

Advanced AND explanation

 The expression is evaluated 'Left to
Right„. If any part of the expression
returns ZERO the evaluation ends.

k=0;

i=3;

j=2;

if (i-i && j++) k=1

What will j and k equal???

17

Advanced OR explanation

 OR also evaluates 'Left to Right' and will
stop when an expression returns
true.

k=0;

i=3;

j=2;

if (i+i || j++) k=1

What will j and k equal?

18

If-then statements

 if (<expression>)
<statement-1>
else <statement-2>

 (<expression>)
 A Boolean or conditional expression

 <statement-1>
 program statements to execute if (<expression>)

evaluates to TRUE

 else <statement-2>
 Optional statements to execute if (<expression>)

evaluates to FALSE.

19

Pseudo code example

if (test for something)

{

Do this if true…

}

If not true jump to here…..

20

While loops

 while (<expression>)

<statement>

 (<expression>)

 A boolean expression to test

 <statement>

 C program statements to execute if (<expression>)

evaluates to TRUE

 Multiple statements can be contained in braces

{ …}

21

Pseudo code while example

while(test for something)

{

do this……

}

When while test = FALSE jump to
here…..

22

An example program
void main()

{

while(a_button() == 0)

{// Open while loop braces

}// Close while loop brace

printf("A button pressed!\n");

sleep(0.5);

printf(“Program End”);

}

23

What are those weird //
things?

 The // denotes comments in code.

 Comments are NOT executed or
downloaded to the XBC.

 Comments are used to make the
code more readable.

 Use comments liberally throughout
your code.

24

Comments continued

 Block comments are used to
comment large sections.

 /* opens a block comment

 */ closes a block comment

 Example:

/* This comment

Takes up more than one line

*/

25

Explanation

 void main()

 Start the “main” function

 {

 Open brace for the main function

 while(a_button() == 0)

{// Open while loop braces

}// Close while loop brace

 Check the status of the “a” button

 If it is NOT pressed then loop back up and check again.

 Could also be written as while(!a_button())

26

More explanation

 a_button() checks the status of the a button on
the game boy.
 Returns a 1 if pressed

 Returns a 0 if not pressed.

 printf("A button pressed!\n");
 Print “A button pressed” if the while loop tests as

FALSE.

 sleep(0.5);
 A brief pause

 printf(“Program End”);
 Tell reader that the program stopped.

 }
 Close the main function

27

Another example

void main()

{

while(1)

{// Open while loop braces

if (a_button() == 1)

{ // open if statement brace

printf("A button pressed!\n");

sleep(0.5);

}// close if statement brace

}// Close while loop brace

}

28

Explanation…

 while(1)

{// Open while loop braces

 1 is ALWAYS TRUE therefore this while loop will never
exit.

 if (a_button() == 1)

{ // open if statement brace

printf("A button pressed!\n");

sleep(0.5);

}// close if statement brace

 Test the “a” button. If it is pressed then execute the
statements between the braces { }

 }// Close while loop brace

 Return to the top of the while loop

 } - close the main function

29

An assignment

 Write a program that will do the
following:

 Your robots wheels move in a reverse
direction if the “a” button is pressed.

 Otherwise (else) your robots wheels
move in a forward direction.

30

Possible solution
void main()

{

while(1)

{

if(a_button())

{

bk(0);

bk(1);

}

else

{

fd(0);

fd(1);

}

}

}

31

Digital sensors

 Digital sensors have only TWO
possible states:

 On or off

 1 or 0

 Touch sensor the most common
example. [The A button is a built in

touch sensor.]

32

Reading digital sensors

 digital(<port#);

 Port# = ports 8-15

 Returns a 0 or a 1

33

An example of using
digital() to print its state

void main() // assumes a touch sensor attached to port #8

{

while(1)

{

display_clear();

if(digital(8))

{

printf("Digtal port 8 = 1");

}

else

{

printf("Digtal port 8 = 0");

}

sleep(.25);

}

}

34

Preparing bumper-bot

 V1 kits – Plug the left switch into
port 8 and the right switch into port
9.

 All others - Plug the front bumper
into port 8 and the rear bumper into
port 9.

35

V1 Kit Project

 Write a program that will cause your
robot to roam around the room and react
to its environment with the front touch
sensors.

 If the left touch sensor is triggered the
robot backs up and then turns right and
continues.

 If the right touch sensor is triggered the
robot backs up and then turns left and
continues.

36

Project - All other kits

 Cause “bumper-bot” to play ping-
pong

 If the front bumper is pressed the
robot goes in reverse.

 If the rear bumper is pressed the
robot goes forward.

37

Normally open Vs. Normally
closed switches

 Be aware that the switches on the
V1 kit are mounted in such a way
that they are NORMALLY CLOSED
(NC).
 They should return a 1 or TRUE when

the robot has NOT encountered an
obstacle.

 To test if it HAS hit an object:
• if(digital(8) == 0)

38

Normally open Vs. Normally
closed switches continued

 All other kits are NORMALLY OPEN
(NO)

 They should return a 0 or FALSE when
the robot has NOT encountered an
obstacle.

 To test if it HAS hit an object:

• if(digital(8) == 1)

39

Using comments to set
robot parameters.

 Remember, comments do nothing
other than document the code and
robot.

 Comments are especially useful in
documenting the configuration of
the robot.

40

/*

Program Name: bumperbot.ic

Date Created: August 9th, 2006

Author: David Culp

email: culpd@cfbisd.edu

Purpose:

This program will cause a differential drive robot with a touch

switch in the front and the back to "ping pong“: When the front

switch is touched the robot begins moving backwards. When the

rear switch is triggered the robot begins moving forwards.

Robot configuration:

Left DC motor - port 2

Right DC motor - port 0

Front touch switch - digital port 8 NORMALLY OPEN SWITCH

Rear touch switch - digital port 9 NORMALLY OPEN SWITCH

*/

void main()

{

41

void main()

{

fd(0); //start robot going forward

fd(2);

while(1) // do this forever

{

if(digital(8) == 1) // if the front bumper is pressed

{

bk(0);// set both motors in reverse

bk(2);

}//end if

if(digital(9) == 1)// if back bumper is pressed

{

fd(0); //set both motors going forward

fd(2);

}//end if

}//end while

} // end main

