
Towards an Engineering Discipline of Computational Security

Ali Mili, Alex Vinokurov
College of Computer Science

New Jersey Institute of Technology
Newark NJ 07102-1982 mili@cis.njit.edu

Lamia Labed Jilani
Institut Superieur de Gestion

Bardo 2000 Tunisia
Lamia.Labed@isg.rnu.tn

Frederick T. Sheldon
U.S. DOE Oak Ridge National Lab

PO Box 2008, MS 6085, 1 Bethel Valley Rd
Oak Ridge TN 37831-6085 sheldonft@ornl.gov

Rahma Ben Ayed
ENIT, University of Tunis
Belvedere, 1002 Tunisia

rahma.benayed@enit.rnu.tn

September 13, 2006

Abstract

George Boole ushered the era of modern logic by argu-
ing that logical reasoning does not fall in the realm of
philosophy, as it was considered up to his time, but in
the realm of mathematics. As such, logical propositions
and logical arguments are modeled using algebraic struc-
tures. Likewise, we submit that security attributes must
be modeled as formal mathematical propositions that are
subject to mathematical analysis. In this paper, we ap-
proach this problem by attempting to model security at-
tributes in a refinement-like framework that has tradition-
ally been used to represent reliability and safety claims.

Keywords

Computable security attributes, survivability, integrity,
dependability, reliability, safety, security, verification,
testing, fault tolerance.

1 Modeling Security as a Depend-
ability Attribute

Even though logically, system reliability is driven ex-
clusively by the existence and possible manifestation
of faults, empirical observations regularly show a very
weak correlation between faults and reliability. In [7],
Mills and Dyer discuss an example where they find a
variance of 1 to 50 in the impact of faults on reliability;
i.e. some faults cause system failure 50 times more often
than others; while their experiment highlights a variance
of 1 to 50, we have no doubt that actual variance is in
fact unbounded. Also, they find that they can remove

60 percent of a system’s faults and improve its reliability
by only ... 3 percent.In a study of IBM software prod-
ucts, Adams [1] finds that many faults in the system are
only likely to cause failure after hundreds of thousands
of months of product usage.

We argue that the same may be true for security: vul-
nerabilities in a system may have widely varying im-
pacts on system security. In fairness, the variance may
be wider for reliability than for security, because in mali-
cious security violations high impact vulnerabilities may
be more attractive targets than lower impact vulnerabil-
ities, but wide variances are still quite plausible. Wide
variances, to the extent that they are borne out, have
broad impacts on security management:

� In practice, security ought not be defined as the ab-
sence of vulnerabilities, no more than reliability is
defined by the absence of faults.

� In practice, security ought not be measured or quan-
tified by the number of vulnerabilities, just as it is
widely agreed (as highlighted by Adams’ [1] and
Mills’ [7] work) that faults per KLOC is an inap-
propriate measure of reliability.

� Security cannot be improved by focusing on vulner-
abilities, as we have no way to tell whether a given
vulnerability has low (1) or high (50) impact on se-
curity. Rather, security should be managed by pur-
suing a policy that leads us to the highest impact
vulnerabilities first (a similar approach to usage pat-
tern testing [4, 7, 9]).

In light of these observations, we argue in favor of mod-
eling security in a way that reflects its visible, measur-
able, observable attributes, rather than its hypothesized

causes. To this effect, we introduce the outline of a Logic
for System Security, which represents / captures security
properties in terms of its observable attributes. This logic
is defined in terms of the following features:

� A notation for security specification, which details
how to capture security requirements of a system.

� A formula for security certification, which formu-
lates the condition under which a system (repre-
sented by its security abstraction) meets a given set
of security requirements (represented by security
specifications).

Note that in order to quantify reliability as the mean
time to failure, we must define what it means to fail,
which in turn requires that we define specification and
correctness. Likewise, defining and quantifying security
requires that we define the concepts of security specifi-
cation and security certification. In this paper, we dis-
cuss broad premises that characterize our approach, and
present tentative notations and formulas for the proposed
logic for system security.

In section 2 we briefly review our results in using a
refinement calculus to compose verification claims and
decompose verification goals in terms of reliability and
safety. In section 3 we discuss a generalized representa-
tion of reliability, safety and security claims that stems
from our refinement based model. In section 4 we dis-
cuss formal definitions of some security attributes, and
explore how these definitions lend these attributes to be
integrated into our refinement-based model. Finally, we
briefly summarize and assess our findings in section 6.

2 Background: Genesis of our Ap-
proach

In this section we will briefly present the main contribu-
tions of [6], then we discuss how and why we propose
to extend this work, thereby laying the groundwork for
our subsequent developments. For the sake of readabil-
ity, we will keep the discussion of this section (and most
of the paper, in fact) fairly non-technical, referring inter-
ested readers to bibliographic sources for details; though
we may sometimes present mathematical formulas, to fix
the reader’s ideas, we do not consider that understand-
ing the details of these formulas is required to follow our
discussions. Also, while the formulas we present refer
to a relation-based refinement calculus, we submit that
most of our claims hold for most specification/ refine-
ment models. Indeed, it is possible to define the concept
of refinement in any specification model, and to build our

arguments from the ground up using the model-specific
refinement ordering.

2.1 Refinement Calculi

Without significant loss of generality, we use homoge-
neous relations (i.e. relations from some set

�
to itself)

to represent functional specifications and program func-
tions. Among constant relations on some space

�
we

consider the universal relation (
�����

), that we denote
by � ; the identity relation (���	�
���� ��� �), that we denote
by � , and the empty relation (���), that we denote by � .
We denote the relational product by mere concatenation,
i.e. ����� as the product of � by ��� , and we use the hat
symbol (��) to represent relational inversion. A relation
� is said to be total if and only if �������� ; and a relation
is said to be deterministic if and only if ������ � .

We introduce the refinement ordering between rela-
tions (interpreted as specifications) as follows: � refines
��� if and only if

���"!#� � �"!����%$#� � �'&(� �*)
We denote this property by �,+-��� or ���/.0� and we
admit that this is a partial ordering (i.e. it is reflexive,
antisymmetric and transitive). Intuitively, � refines �1� if
and only if � captures all the requirements information
of � � . Also, a program 2 is correct with respect to a
specification � if and only if the program’s function re-
fines � . To further convey the meaning of the refinement
ordering, we note that � refines ��� if and only if any
program that is correct with respect to � is (a fortiori)
correct with respect to ��� .

In addition to its ordering properties, the refinement
relation also has lattice-like properties [2]. Two specifi-
cations � and � � are said to be consistent if they can be
refined simultaneously; in relational terms, this is written
as:

���3!#� � �4&5�*��!#� � �6�)
The reason why consistency is important for the purpose
of lattice properties is that only consistent relations admit
a join (least upper bound). If � and ��� are consistent then
they admit a join with respect to the refinement ordering,
which is denoted by � 78��� and defined by

� 78� � & �9�:!#� � $ � � �"!#�%$#� !8� �)
The join captures all the requirements information in �
and all the requirements information in �1� (upper bound)
and nothing more (least). Whereas the join is condi-
tional, the meet is not: any two relations � and �1� have a
meet (greatest lower bound), which is denoted by ��;��1�
and defined by:

��;<� � &(�9�"!8� � �"!���� $8� � �)

2

The meet represents all the requirements information that
is captured simultaneously by � and ��� .

2.2 Composing Dependability Claims

In this section we use the lattice-like structure of the re-
finement ordering to discuss how to compose depend-
ability claims. Specifically, we consider a system that
we have statically verified for some correctness crite-
rion, that we have tested against some functional ora-
cle using some test data, and that we have made fault
tolerant by appropriate assertions and recovery routines,
the question we wish to ask is: How can we add up the
individual claims that each measure allows us? What
claims do these measures, combined together, allow us
to make? How do we know whether the measures we
have taken (testing, proving, fault tolerance) are comple-
menting each other, or whether they are testing the same
aspects over and over again?

To answer these questions, we have (in [6]) proposed
a common refinement based model, in which we cast all
three families of methods (static verification, testing, and
fault tolerance); we have shown that all three methods
can be interpreted as establishing that the system being
analyzed refines some specification, that depends on the
method and the method’s parameters. Using the join op-
erator, we can then compose eclectic measures, stem-
ming from different methods, into a single claim. Specif-
ically, we discuss below, briefly, how we interpret all
three families of methods by means of refinement. We
let 2 be the program that we are interested in.

� Static Verification. If we prove by static analysis
that 2 is correct with respect to some specification�

, we represent this claim by:

2 + �)
� Testing. We assume that we have tested program 2

on test data � using oracle � , and that all tests have
been executed successfully (if not, we redefine �),
we claim that this allows us to write:

2 +������9�
where � ��� represents the (pre) restriction of � to
� . Details can be found in [6].

� Fault Tolerance. If we test some condition � at
run-time, and whenever the condition does not hold
we invoke a recovery routine 	 , then we can claim
that:

2 +
� ;�	 �
where we take the liberty to use the same symbol
(�) to represent the condition and the relation that

represents it, and to use the same symbol () to
represent the recovery routine and the relation that
represents it. Because we do not know for each ex-
ecution whether � holds or not, we do not know
whether we can claim 2 +�� (if � holds) or
2 +	 (if � does not hold). Since we are assured
that 2 refines at least one of them at each execution,
we know that it refines their meet.

From static analysis, we infer: 2 + � . From (certifica-
tion) testing, we infer: 2 +�� , where �0&������ . From
fault tolerance, we infer: 2 +�� , where � &���;�	 .
From lattice theory, we infer:

25+5� � 7�� 7��1�)

2.3 Decomposing Dependability Goals

A more interesting application of the lattice of refinement
involves decomposing a complex dependability goal into
simpler sub-goals. Imagine that we must prove that some
product 2 refines a complex specification � , and imag-
ine that � is structured as the join of several simpler
sub-specifications, say ��� , ��� , ... ��� ; we had shown in
[2] that the join offers a natural mechanism to structure
complex specifications as aggregates of simpler specifi-
cations. Lattice properties provide that in order to prove
25+(� , it suffices to prove 25+ ��� for all � .

We consider the question: which method (among
static verification, testing, fault tolerance) is best adapted
for each sub-specification � � . This question is discussed
in some detail and illustrated in [6]. We summarize it
briefly here:

� Static Verification. Ideal candidates for static verifi-
cation are relations that are reflexive and transitive.
Indeed, static verification usually revolves around
inductive arguments (of loops, recursive calls); the
reflexivity of the specification makes the basis of in-
duction trivial, and the transitivity of the specifica-
tion makes the induction step trivial. What makes
static verification very difficult in general is the need
to invent or guess invariant assertions and interme-
diate assertions; when the specification at hand is
reflexive and transitive, it can be used as a suffi-
cient (i.e. sufficiently strong) assertion throughout
the program. Verifying programs against reflexive
transitive specifications is so straightforward, it can
actually be readily automated.

� Testing. Ideal specifications for testing are relations
that can be coded reliably, as we do not want a faulty
oracle to mislead the whole testing process. Be-
cause testing is done off-line (in the sense: not dur-
ing the normal operation of the system), execution

3

efficiency is not a major consideration (by contrast
with executable assertions), but reliability of the or-
acle is.

� Fault Tolerance. Ideal specifications for fault tol-
erance are unary relations, i.e. relations that refer
to the current state but not to past states (for exam-
ple, in a sorting program, checking that the current
array is sorted is a unary property, while checking
that the current array is a permutation of the ini-
tial array is a binary property). What makes fault
tolerance techniques inefficient is the need for sav-
ing past states (memory overhead) and for checking
the correctness of current states with respect to past
states (CPU overhead). With unary specifications,
we are spared both of these overheads.

In [6] we show an example of application where the over-
all verification effort of a program with respect to a com-
pound specification is significantly smaller than the effort
of applying any one of the methods.

2.4 Extensions of the Model

In this paper we extend out previous work in three or-
thogonal directions:

� First, by replacing the logical claims of the origi-
nal model with probabilistic claims, on the grounds
that all methods, even formal methods, produce
claims with associated degrees of (un)certainty, and
with associated implicit conditions, which probabil-
ity theory is equipped to capture and reason about.

� Second, by expanding the model to include, not
only reliability claims, but also claims dealing with
safety and security, on the grounds that these claims
are interdependent, and that from the user’s stand-
point it does not matter whether the failure of a sys-
tem is due to faulty design or to malicious activity.

� Third, by integrating failure cost into the equation,
on the grounds that a complex specification typi-
cally has many components, whose failures carry
widely varying costs, that we must account for in a
differential manner.

This paper does not produce results in the sense of so-
lutions that are analyzed, validated and deployed; rather,
it offers motivated ideas and proposals, that serve as a
launching pad for further research.

3 A Unified Representation

In this section we critique the model presented in the
previous section, then propose a generalization that ad-
dresses some of its shortcomings.

3.1 The Need for Generalization

In order to motivate the need for generalizing the model
presented in the previous section, we briefly discuss why
it is inadequate, as it stands.

� Most dependability measures are best modeled as
probabilistic claims rather than firm logical claims.

� Most claims are contingent upon implicit condi-
tions. For example, testing is contingent upon the
condition that the testing environment is a faithful
simulation of the operating environment (or, more
precisely, that it is at least as harsh as the operat-
ing environment). Also, static verification is con-
tingent upon the condition that the verification rules
used in the static proof are borne out by the com-
piler and the operating environment. Also, fault
tolerance is contingent upon the condition that the
assertion-checking code and the recovery code are
free of faults.

� Many claims may lend themselves to more than one
interpretation. For example, if we test 2 against or-
acle � using test data � , we can interpret this in one
of two ways: either that 2 refines � ��� with proba-
bility 1.0 (subject to the hypothesis discussed above,
that the testing environment subsumes the operating
environment); or that 2 refines � (not restricted to
� this time), subject to the subsumption hypothesis,
and to the hypothesis that � is a faithful represen-
tative of the program’s domain (i.e. 2 fails on � if
and only if it fails on the whole domain), with some
probability � less than 1.0. While the logic, refine-
ment based, model discussed in section 2 represents
only the first interpretation, the probabilistic model
can represent both. In addition, we will see how the
proposed model allows us to keep both interpreta-
tions, and makes use of them both (which is only
fair, since they are both plausible interpretations).

� If we admit the premise that dependability claims
are probabilistic, we must now consider failure
costs. It is not enough to know that 2 refines ���
with some probability � � , over some period of oper-
ational time; we must also know what costs we will
incur in the case (probability ����� � � �) that 2 fails
to refine ��� during that time.

4

� While the refinement ordering proves to be adequate
for representing reliability claims and safety claims,
as we will discuss subsequently, it is not adequate
for representing security claims. We wish to gener-
alize the form that specifications can take, and con-
sequently also generalize the concept of refinement
to capture security properties.

3.2 A Generalized Model

We submit the premise that dependability methods can
be characterized by the following features:

� Property. This feature represents the property that
we want to establish about 2 : In section 2 we were
interested exclusively in refinement, but it is possi-
ble to imagine other properties, such as performance
(with respect to performance requirements), secu-
rity (with respect to security requirements), recov-
erability preservation, etc.

� Reference. This feature represents the reference
with respect to which we are claiming the prop-
erty cited above. This can be a functional specifi-
cation (if the property is correctness, or recoverabil-
ity preservation), an operational specification (if the
property is a performance property), or a security
specification (if the property is a security property),
etc.

� Assumption. This is the condition assumed by
the verification method; all verification methods are
typically based on a set of (often) implicit assump-
tions, and are valid only to the extent that these as-
sumptions hold. We propose to make these assump-
tions explicit, so that we can reason about them.

� Certainty. This feature represents the probability
with which we find that the property holds about
2 with respect to the reference, conditional upon
the Assumption. The same dependability measure
(e.g. testing 2 with respect to some oracle using
some test data, proving a refinement property with
respect to some specification, etc) can be interpreted
in more than one way, possibly with different prob-
abilities.

� Failure Cost. Safety and security requirements are
usually associated with costs, which quantify the
amount of loss that results from failing to meet
them. Safety costs may include loss or endanger-
ment of human life, financial loss, endangerment of
a mission, etc. Security costs may include disclo-
sure of classified information, loss of availability,
exposure of personal information, etc. The purpose

of this feature is to quantify this cost factor, and as-
sociate it explicitly with the failure that has caused
it.

� Verification Cost. Verification costs complement
the information provided by failure costs, by quan-
tifying how much it costs to avoid failure, or reduce
the probability of failure. Together these two func-
tions help manage risks and risk mitigation.

To reflect this characterization, we represent dependabil-
ity claims as follows:

� �*20+ �� ��� & � �
where 2 is the product, + is the property we claim about
it, � is the specification against which we are making
the claim, � is the assumption under which we are mak-
ing the claim, and � is the probability with which we are
making the claim. We further add two cost functions:

� Failure Cost: This function (which we denote by
�) maps a property (say, +) and a reference (say,
some specification �) into a cost value (quantified
in financial terms, or in terms of human lives at risk,
etc). Hence

� � + � ���
represents the cost that we expect to incur whenever
a candidate system 2 fails to satisfy property + with
respect to � .

� Verification Cost: This function (which we denote
by �) maps a property (say, +), a reference (say, �),
an assumption (say, �) and a method (say, �), to a
cost value (expressed in Person Months). Hence

� � + �
� ���1���5�
represents the cost of applying method � to prove
that 2 satisfies property + with respect to � under
the assumption � .

Although this model appears on the face of it to deal only
with claims that pertain to the whole system 2 , we can
in fact use it to represent verification steps taken on com-
ponents of 2 [10]. We use an illustrative example: We
let 2 be the composition of two components, say 2 � and
2 � , and we assume that we have used some method to
establish the following claim:

� �*2 � + � � ��� & �)
We submit that this can be written as a property of 2
(rather than merely a property of 2 �) if we add an as-
sumption about 2 � . Hence, for example, we can infer a
claim of the form

� �*25+��*��� ��� � ���#2 � + ��� � & � � �

5

for some reference � � and some probability � � . We sub-
mit that this model enables us to collect every piece of
information that we can derive from dependability mea-
sures, so that all the verification effort that is expended
on 2 can be exploited (to support queries, as we will dis-
cuss in section 5).

3.3 Implications of the Model

The first implication of this probabilistic model is that
verification claims are no longer additive, in the sense
that we discussed in section 2. While in the logic,
refinement-based model we could sum up all our claims
in a single refinement property, in the new probabilistic
model it is generally not possible to do so. Nor is it desir-
able, in fact, as the result would probably be so complex
as to be of little use. What we advocate instead is to use
an inference system where all the collected claims can
be stored, and subsequently used to answer queries about
the dependability of the system. This will be illustrated
in section 5 through a simple example.

The second implication of this model is that it allows
us to introduce a measure of dependability that integrates
cost information. When we say that a system 2 has a
given MTTF, it is with respect to some implicit specifi-
cation, say � . It is also with respect to some implicit
understanding of failure cost, i.e. how much we stand to
lose if our system fails to satisfy � . If we consider that �
is an aggregate of several sub-specifications, say � � , � � ,
... ��� , it is conceivable that the components ��� , ��� , ...
��� have different failure costs associated with them; for
example, failing to refine ��� will cost significantly more
than failing to refine ��� , but the MTTF does not reflect
this, as it considers both as failures to refine � . We in-
troduce the concept of Mean Failure Cost (MFC), which
combines terms of the form

� � 25+ ��� � � � � + �
� � �
where the term

� � 2 +(� � � represents the probability
that 2 fails to refine � � and � � + �
� � � represents the cost
that we incur when it does.

4 Modeling Security

In order to integrate security into the refinement model
discussed above, and take advantage of its capability
in terms of composing claims and decomposing goals,
we must formulate security properties in refinement-like
terms. In [8] Nicol et al. discuss a number of dimen-
sions of security, including: data confidentiality, data
integrity, authentication, survivability, non-repudiation,
etc. In the context of this paper, we focus our attention

on survivability, and readily acknowledge a loss of gen-
erality; other dimensions of security are under investi-
gation. Survivability is defined in [3] as the capability
of a system to fulfill its mission in a timely manner, in
the presence of attacks, failures, or accidents [8]. We
discuss in turn how to represent security (survivability)
requirements, and how to represent the claim that a sys-
tem meets these security requirements. In the sequel we
discuss in turn two aspects of security: survivability and
integrity. The modeling of other aspects is under investi-
gation.

4.1 Modeling Survivability

4.1.1 Specifying Survivability Requirements

We note that there are two aspects to survivability: the
ability to deliver some services, and the ability to de-
liver these services in a timely manner; to accommodate
these, we formula security requirements by means of two
relations, one for each aspect. Using a relational speci-
fication model presented in [2] we propose to formulate
functional requirements as follows:

� An input space, that we denote with � ; this set con-
tains all possible inputs that may be submitted to the
system, be they legitimate or illegitimate (part of an
attack/ intrusion).

� Using space � , we define space � , which repre-
sents the set of sequences of elements of � ; we re-
fer to � as the set of input histories of the specifica-
tion. An element � of � represents an input history
of the form

)) ���) ����� �))) ���) � �) � �) �	�	�
where �
� represents the current input, � � represents
the previous input, � � represents the input before
that, etc.

� An output space � , which represents all possible
outputs of the system in question.

� A relation � from � to � that specifies for each in-
put history � (which may include intrusion/ attack
actions) which possible outputs may be considered
correct (or at least acceptable). Note that � is not
necessarily deterministic, hence there may be more
than one output for a given input history. Note also
that this relation may be different from relation �
which specifies the normal functional requirements
of the system: while � represents the desired func-
tional properties that we expect from the system,
� represents the minimal functional properties we

6

must have even if we are under attack; hence while
it is possible to let � & � , it is also possible (per-
haps even typical) to let there be a wide gap between
them.

As for representing timeliness requirements, we propose
the following model:

� The same input space � , and history space � .

� A relation from � to the set of positive real num-
bers, which represents for each input history � the
maximum response time we tolerate for this input
sequence, even in the presence of attacks. We de-
note this relation by � .

In the sequel, we discuss under what condition do we
consider that a system

�
satisfies the security require-

ments specified by the pair ��� ��� � .

4.1.2 Certifying Survivability Properties

Given a survivability requirements specification of the
form � � ��� � , we want to discuss under what condition
we consider that a program

�
that takes inputs in � and

produces outputs in � can be considered to satisfy these
survivability requirements. Space limitations preclude us
from a detailed modeling of attacks/ intrusions, hence we
will, for the purposes of this paper, use the following no-
tations:

� Given a legitimate input history � , we denote by
� � � � an input history obtained from � by inserting
an arbitrary intrusion sequence (i.e. sequence of ac-
tions that represent an intrusion into the system).

� Given an input history � (that may include intrusion
actions) we denote by

� � � � � � the response time of�
on input history � .

Using these notations, we introduce the following defini-
tion.

Definition 1 A system
�

is said to be secure with respect
to specification ��� ��� � if and only if

1. For all legitimate input history � ,

� � � � � � �6� �3��� � � � � � � � � � � � �6� � �"�)

2. For all legitimate input history � ,

� � � � � ���	� � � �
� � � � � � � � �6����� � � �)

The first clause of this definition can be interpreted as
follows: if system

�
behaves correctly with respect to �

in the absence of an intrusion, then it behaves correctly

with respect to � in the presence of an intrusion. Note
the conditional nature of this clause: we are not saying
that
�

has to satisfy � at all times, as that is a reliability
condition; nor are we saying that

�
has to satisfy � in

the presence of an intrusion, as we do not know whether
it satisfies in the absence of an intrusion (surely we do
not expect the intrusion to improve the behavior of the
system —all we hope for is that it does not degrade it).
Rather we are saying that if

�
satisfies � in the absence

of an intrusion, then it satisfies it in the presence of an
intrusion.

The second clause articulates a similar argument, per-
taining to the response time: if the response time of

�
was within the boundaries set by � in the absence of an
intrusion, then it remains within those bounds in the pres-
ence of an intrusion.

At the risk of overloading the refinement symbol (+),
we resolve to use it to represent the property that a sys-
tem 2 is secure (according to the definition above) with
respect to a survivability specification ��� ��� � . The form
of the specification, when it is explicit, resolves the am-
biguity. Hence we write

25+0� � ��� �

to mean that 2 is secure with respect to ��� ��� � .

4.1.3 Integrating Survivability

The definition that we propose here is focused entirely
on effects rather than causes, and gives meaning to the
concept of survivability failure. Using this concept, we
can now quantify security by adding terms of the form

� � 20+ ��� � � � + �
���

to the mean failure cost, producing a function that quan-
tifies the expected failure cost, without distinction on
whether the failure is due to a design fault (reliability,
safety) or a an intrusion (security). In [12] Stevens et
al. present measures of security in terms of MTTD (D:
vulnerability discovery) and MTTE (E: exploitation of
discovered vulnerability). By contrast with our (re) def-
inition, these definitions are focused on causes (rather
than effect); in fairness, Stevens et al. propose them as
intruder models rather than security models. The dif-
ference between our effect-based measure and Stevens’
cause-based measure is that a vulnerability may be dis-
covered without leading to an intrusion, and an intrusion
may be launched without leading to a security failure in
the sense of our definition.

7

4.2 Modeling Integrity

4.2.1 Specifying Integrity

A requirement for integrity refers, generally, to a sys-
tem’s state, and stipulates limits within which the sys-
tem state may vary as the system is running. The system
model that we take in this section represents the system
by its state space (which we refer to as �), and oper-
ations that interact with the outside world, possibly af-
fecting and being affected by the internal state space. We
assume that the set of operations (which we refer to as �)
includes an initialization operation, which we call init.

Given this model, we submit that an integrity require-
ment is specified by providing a subset � � of � . This
subset characterizes all the internal states that we con-
sider to meet the integrity requirement.

4.2.2 Certifying Integrity

We consider a system
�

defined by a state space � and a
set of operations � . And we consider an integrity speci-
fication defined by � � .
Definition 2 We say that system

�
meets the integrity

specification � � if and only if the following conditions
are met:

1. Operation init satisfies the following condition:
��� ��������� �
	 � � ������ � � �������� � � �)

2. All other operations w in W satisfy the following
condition:
��� ����� � ��� � � � � � ������ � � ���������� � �)

This definition can be interpreted as follows: Accord-
ing to Schneider et al [11], the condition of integrity is
met if and only if integrity constraints are not violated in
an undetected manner. If the condition were simply, are
not violated, then our definition would stipulate that init
maps the system state inside � � and subsequent opera-
tions (�) keep it inductively in � � . Because Schneider et.
al. allow for violation of the condition, provided the vio-
lations are detected, our definition merely specifies that if
either the basis of induction or the induction step does not
hold, an exception (which we represent by ���������� � �) is
raised.

5 Illustration: Dependability
Queries

In the previous section we discussed how we can rep-
resent dependability claims in a unified model; in this

section, we briefly discuss how to deploy claims repre-
sented in this manner to support queries. We will first
discuss, in broad terms, some inference rules; then we
show a sample example of illustration.

5.1 Inference Rules

We envision a database in which we accumulate all the
verification claims that we obtain, from various meth-
ods, applied to various components (though typically
the whole system), against various specifications (func-
tional specifications, security specifications, etc), reflect-
ing various properties (correctness, security, recoverabil-
ity preservation, etc). Queries are submitted to this
database and inference rules allow us to determine how
to answer the query in light of available claims. We clas-
sify inference rules into a number of categories:

� Probability Rules. This category includes all the
rules that stem from probability theory, including
especially identities that pertain to conditional prob-
ability.

� Refinement Rules. This category includes all the
rules that stem from the partial order structure of
the refinement ordering. For example, if � refines
�9� , then we know, by transitivity of the refinement
ordering, that

� ��2 +(�� �9��� � �*25+ � � �9�)
� Lattice Rules. This category includes all the rules

that stem from the lattice structure of the refinement
ordering. For Example, if ��� and � � are specifica-
tions that admit a join, we have

� �*20+��*����7 ��� � �9��� � �*20+ ��� � � � ��2 +(��� �)
� Conversion Rules. This category includes the rules

that reflect relationships between the various prop-
erties that we wish to claim (correctness, recover-
ability preservation, security, etc). Examples of re-
lations that we capture by these rules include: the
fact that if 2 is correct with respect to � , it is
recoverability-preserving with respect to � ; the fact
that the security of 2 is contingent upon the cor-
rectness of the components that enforce its security
policies; etc.

5.2 A Tool Prototype

We have developed a very sketchy prototype of a tool that
stores claims and supports queries. In its current form,
the prototype includes only probability rules, hence has

8

very limited capability. Nevertheless, it allows us to dis-
cuss our vision of its function and its operation. The first
screen of the prototype offers the following options:

� Record a Reliability/ Safety Claim. Clicking on this
tab prepares the system for receiving details about
a dependability claim (reliability, safety, etc) with
respect to a functional specification. Given that such
claims have the general form:

� �*25+ �� ���'& � �
the system prompts the user to fill in fields for the
property (+), the reference (�), the assumption (�),
and the probability (�).

� Record a Security Claim. Clicking on this tab
presents an entry screen that prompts the user for
a security specification (two fields: a functional re-
quirement and an operational requirement 4.1.1), a
field for an assumption, and a field for a probabil-
ity. There is no need for a property field, since the
property is predetermined by the choice of tabs.

� Record Cost Information. As we recall, there are
two kinds of cost information that we want to
record: failure cost, and verification cost. De-
pending on the user’s selection, the system presents
a spreadsheet with four columns (Property, Refer-
ence, Cost, Unit —for failure cost), or six columns
(Property, Reference, Method, Assumption, Cost,
Unit —for verification cost). This information
is stored in tabular form to subsequently answer
queries on failure costs or verification costs.

� Record Domain Knowledge. Because dependabil-
ity claims are formulated using domain-specific no-
tations, a body of domain-specific knowledge is
required to highlight relevant properties and rela-
tionships, and to enable the inference mechanism
to process queries. This domain knowledge is
recorded by selecting the appropriate tab on the sys-
tem.

� Queries. Clicking on the tab titled Submit Query
prompts the user to select from a list of query for-
mat. The only format that is currently implemented
is titled Validity of a Claim, and its purpose is to
check the validity of a claim formulated as

� �*25+ �� ����� � �
for some property + , reference (Specification) � ,
Assumption � , and probability � . Notice that we
do not have equality, but inequality; this feature can
be used if we have taken a number of dependability

measures and wish to check whether they are suf-
ficient to allow us to claim that 2 refines � with a
greater certainty than a threshold probability � .

To answer a query, the system composes a theorem that
has the query as goal clause, and uses recorded depend-
ability claims and domain knowledge as hypotheses. The
theorem prover we have selected for this purpose is Otter
[5].

5.3 A Sample Demo

To illustrate the operation of the tool, we take a sim-
ple example. We will present, in turn, the dependability
claims that we submit to this system, then the domain
knowledge, and finally the query; this example is totally
contrived and intends only to illustrate what we mean
by composing diverse dependability claims. Also, even
though the model that we envision has inference capabil-
ities that are based on many types of rules (probabilis-
tic identities, refinement rules, lattice identities, relations
between various refinement properties, etc), in this demo
we only deploy probabilistic rules.

For the purposes of this example, we summarily in-
troduce the following notations, pertaining to a fictitious
nuclear power plant:

� Specifications. We consider a specification, which
we call SafeOp, which represents the requirement
that the operation of the reactor is safe. We also
(naively) assume that this requirement can be de-
composed into two sub-requirements, whose speci-
fications, CoreTemp and ExtRad, represent require-
ments for safe core temperatures and safe external
radiation levels.

� Assumptions. We assume (artificially) that the
claims we make about refining specifications
CoreTemp and ExtRad are contingent upon a com-
bination of conditions that involve two predicates:
FireWall, which represents the property that the sys-
tem’s firewall is operating correctly; and ITDetec-
tion, which represents the property that the system’s
Insider Threat Detection is working properly.

Using these notations, we illustrate the deployment of the
tool by briefly presenting the security claims, the domain
knowledge, then the query that we submit to it.

� Claims. Using the system’s GUI screens, we enter
the following claims, where 2 represents the reac-
tor’s control system:

� �*20+ ������� ��� � � ������� 	 � � � & �) ���)
� �*20+
������� �	� � � ��
 ���
��� 	 � � � � � ��� 	��� 	 ����� �6�

9

& �) ���)
� ��25+ ������� �	� � � ��
 ���
��� 	 � � �
 � � ��� 	��� 	 ����� �6�

& �) ���)
� ��25+���� 	 ���	� ���
��� 	 � ��� & �) ���)
� �*25+
��� 	 � �	�
 ���
��� 	 � � � & �) � �)

� Domain Knowledge. We submit the following
domain knowledge under the form of predicates,
where indep(p,q) means that events � and � are in-
dependent; one could questions whether some of the
claims of independence are well-founded, but we
make these assumptions for the sake of simplicity.

�
�� � � � ���
��� 	 � �6� � � ��� 	��� 	 ����� �)
�
�� � � �*2 +
������� ��� � � � 2 +
��� 	 � �	� �)

2 + � ��� ��� ��� �*25+ ������� ��� � � � 2 +���� 	 ���	� �)
� Query. We submit the query whether the following

claim � �*20+ � �	� ��� � �9��� �) � � �
is valid, where � is the assumption that the proba-
bility of FireWall is 0.90 and the probability of IT-
Detection is 0.80.

The system generates a theorem and submits it to Otter;
then it analyzes the output file to determine if a proof was
produced. The claim is deemed to be valid.

6 Conclusion

In this paper we have considered past work that attempts
to compose eclectic verification claims and decompose
aggregate verification goals, and have attempted to ex-
tend it. We have attempted to extend it by encompassing
more dimensions of dependability, acknowledging the
probabilistic nature of claims and goals, integrating fail-
ure and verification costs, and highlighting relationships
between diverse dimensions of dependability. Also, we
have defined two aspects of security, namely survivabil-
ity and integrity, and explored how these definitions al-
low us to integrate security concerns within the broader
refinement based model of dependability. We envision to
continue this work by modeling other aspects of security,
and by exploring how a computational approach, based
on observed security attributes (rather than hypothesized
causes) may lead in practice to better security manage-
ment. A prototype that we have developed to illustrate
our approach shows how we can store various depend-
ability claims, stemming presumably from distinct vali-
dation efforts, into a database, then query the database to
see if the available claims warrant specific properties we
are interested in.

References

[1] E.N. Adams. Optimizing preventive service of soft-
ware products. IBM Journal of Research and De-
velopment, 28(1):2–14, 1984.

[2] N. Boudriga, F. Elloumi, and A. Mili. The lat-
tice of specifications: Applications to a specifica-
tion methodology. Formal Aspects of Computing,
4:544–571, 1992.

[3] R.J. Ellison, D.A. Fisher, R.C. Linger, H.F. Lipson,
T. Longstaff, and N.R. Mead. Survivable network
systems: An emerging discipline. Technical Report
CMU/SEI-97-TR-013, CMU Software Engineering
Institute, november 1997.

[4] R.C. Linger. Cleanroom process model. IEEE Soft-
ware, 11(2):50–58, 1994.

[5] William McCune. Otter 3.3 reference manual.
Technical Report Technical Memorandum No 263,
Argonne National Laboratory, August 2003.

[6] A. Mili, B. Cukic, T. Xia, and R. Ben Ayed. Com-
bining fault avoidance, fault removal and fault tol-
erance: An integrated model. In Proceedings, 14th
IEEE International Conference on Automated Soft-
ware Engineering, pages 137–146, Cocoa Beach,
FL, October 1999. IEEE Computer Society.

[7] H.D. Mills and M. Dyer et al. Cleanroom software
engineering. IEEE Software, 4(5):19–25, 1987.

[8] David M. Nicol, William H. Sanders, and Kishor S.
Trivedi. Model based evaluation: From dependabil-
ity to security. IEEE Transactions on Dependable
Computing, 1(1):48–65, 2004.

[9] S.J. Prowell, C.J. Trammell, R.C. Linger, and J.H.
Poore. Cleanroom Software Engineering: Technol-
ogy and Process. SEI Series in Software Engineer-
ing. Addison Wesley, 1999.

[10] YanSong Ren, Rick Buskens, and Oscar Gonzales.
Dependable initialization of large scale distributed
software. Technical report, AT& T Bell Labs, De-
cember 2004.

[11] F.B. Schneider, editor. Trust in Cyberspace. Na-
tional Academy Press, 1998.

[12] Fabrice Stevens, Tod Courtney, Sankalp Singh, Ad-
nan Agbaria, John F Meyer, William H Sanders,
and Partha Pal. Model based validation of an intru-
sion tolerant information system. In Proceedings,
SRDS, pages 184–194, 2004.

10

