
ibm.com/redbooks

Front cover

Blue Gene/L: Application
Development

Gary L. Mullen-Schultz

Explore the Blue Gene/L
programming environment

Learn how to run and debug
MPI programs

Understand checkpoint and
restart, Bridge APIs, and more

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Blue Gene/L: Application Development

July 2005

ZG24-6745-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (July 2005)

This edition applies to Version 1, Release 1, Modification 0 of Blue Gene/L (product number 5733-BG1).

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author .x
Comments welcome. xi

Part 1. MPI application information. 1

Chapter 1. Application development overview. 3
1.1 MPI on Blue Gene/L . 4
1.2 Memory considerations . 4

1.2.1 Memory leaks . 4
1.2.2 Memory management . 4
1.2.3 Uninitialized pointers . 5
1.2.4 Forcing MPI to allocate too much memory . 5
1.2.5 Not waiting for MPI_Test. 6
1.2.6 Flooding of messages. 6
1.2.7 Poor choice of programming mode. 6

1.3 Other considerations . 6
1.3.1 Input/output . 7
1.3.2 Miscellaneous . 7

1.4 Include and link files . 7
1.4.1 Include files . 8
1.4.2 Static link files . 10

1.5 Compilers overview. 12
1.5.1 Programming environment overview. 12
1.5.2 GNU . 12
1.5.3 IBM XL Compilers . 13

Chapter 2. Programming modes . 15
2.1 Communication Coprocessor Mode . 16
2.2 Virtual Node Mode . 16
2.3 Which mode to use? . 17
2.4 Choosing modes . 17

Chapter 3. System calls supported by Compute Node Kernel 19
3.1 Introduction to the Compute Node Kernel . 20
3.2 System calls . 20

3.2.1 Return codes. 20
3.2.2 List of supported system calls . 20

3.3 Unsupported calls . 23

Chapter 4. Developing applications with IBM XL compilers . 25
4.1 Compiling and linking applications on Blue Gene/L . 26
4.2 Default compiler options . 26
4.3 Unsupported options . 27
4.4 Tuning your code for Blue Gene/L . 27
© Copyright IBM Corp. 2005. All rights reserved. iii

4.5 Using the compiler optimization options . 27
4.6 Structuring data in adjacent pairs . 27
4.7 Using vectorizable basic blocks . 28
4.8 Using inline functions . 29
4.9 Removing possibilities for aliasing (C/C++). 29
4.10 Structure computations in batches of five or ten . 30
4.11 Checking for data alignment . 31
4.12 Using XL built-in floating-point functions for Blue Gene/L. 33
4.13 Complex type manipulation functions . 36
4.14 Load and store functions. 38
4.15 Move functions . 40
4.16 Arithmetic functions. 41

4.16.1 Unary functions . 41
4.16.2 Binary functions . 43
4.16.3 Multiply-add functions . 44

4.17 Select functions. 51
4.18 Examples of built-in functions usage. 52

Chapter 5. Running and debugging . 53
5.1 Running applications. 54

5.1.1 mmcs_db_console . 54
5.1.2 mpirun . 54
5.1.3 LoadLeveler . 55
5.1.4 Other scheduler products . 56

5.2 Debugging applications. 56
5.2.1 GDB . 56
5.2.2 TotalView . 59

Chapter 6. Checkpoint and restart support . 61
6.1 Why use checkpoint and restart? . 62
6.2 Technical overview . 62

6.2.1 Input/output considerations. 63
6.2.2 Signal considerations . 63

6.3 Checkpoint API . 65
6.3.1 Checkpoint library API . 65

6.4 Directory and file naming conventions . 67
6.5 Restart. 67

6.5.1 Determining latest consistent global checkpoint . 67
6.5.2 Checkpoint and restart functionality . 68

Part 2. System application information . 69

Chapter 7. Control system (Bridge) APIs . 71
7.1 API support overview . 72

7.1.1 Requirements . 72
7.1.2 General comments . 72

7.2 APIs. 73
7.2.1 API to the MMCS Resource Manager. 73
7.2.2 Resource Manager Memory Allocators API . 80
7.2.3 Resource Manager Memory Deallocators API . 81
7.2.4 Messaging API . 81
7.2.5 API to the MMCS job manager . 82
7.2.6 API to the MMCS partition manager . 83
7.2.7 State diagrams for jobs and partitions. 83
iv Blue Gene/L: Application Development

7.3 Control system API return codes . 84
7.3.1 Return codes specification . 85

Part 3. Performance analysis . 93

Chapter 8. Performance guidelines and tools . 95
8.1 Tooling overview . 96

8.1.1 IBM High Performance Computing Toolkit . 96
8.2 General performance testing. 96

8.2.1 Overview of the tools that are available on pSeries . 96
8.2.2 Overview of tools ported to Blue Gene/L . 97

8.3 Message passing performance . 97
8.3.1 MPI Tracer and Profiler . 97

8.4 CPU performance . 98
8.4.1 Hardware performance monitor . 99
8.4.2 Xprofiler. 99

8.5 I/O performance . 99
8.5.1 Modular I/O . 99

8.6 Visualization and analysis . 99
8.6.1 PeekPerf . 99

8.7 MASS and MASSV libraries . 100

Chapter 9. Performance counters and PAPI . 101
9.1 Introduction to the performance counter interface . 102
9.2 bgl_perfctr library API . 102

9.2.1 API details . 102
9.2.2 Ways to access the counters . 107
9.2.3 Available counter events . 108
9.2.4 Correct API usage. 108

9.3 PAPI implementation. 110
9.3.1 linux-bgl PAPI substrate . 110
9.3.2 PAPI event mapping for Blue Gene/L . 110
9.3.3 Modifications to PAPI . 112

9.4 Examples of using HPM libraries for Blue Gene/L . 112
9.4.1 PAPI library usage examples . 112
9.4.2 bgl_perfctr usage example . 119

9.5 Conclusions. 129

Appendix A. Statement of completion . 131

Appendix B. Electromagnetic compatibility . 133

Appendix C. Blue Gene/L safety considerations . 135
Important safety notices . 136
Stability and weight . 137
Circuit breakers . 137
Ac terminal blocks . 138
Line cord retention . 138
Bulk power module bay . 138
Cover access . 138
Fan assembly/cards . 138

Appendix D. MPI environment variables . 139
Setting environment variables . 140
BGLMPI_COLLECTIVE_DISABLE . 140
 Contents v

BGLMPI_EAGER, BGLMPI_RVZ and BGLMPI_RZV . 140

Glossary . 141

Related publications . 147
IBM Redbooks . 147
Other publications . 147
Online resources . 147
How to get IBM Redbooks . 148
Help from IBM . 148

Index . 149
vi Blue Gene/L: Application Development

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2005. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
iSeries™
pSeries®
AIX 5L™
AIX®

DB2®
IBM®
LoadLeveler®
PowerPC®
POWER™

Redbooks (logo) ™
Redbooks™
Tracer™
WebSphere®

iThe following terms are trademarks of other companies:

Java, Sun, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
viii Blue Gene/L: Application Development

Preface

This IBM® Redbook is the second in a series of internal IBM publications written specifically
for the Blue Gene/L supercomputer, which was developed by IBM in collaboration with
Lawrence Livermore National Laboratory (LLNL). This redbook provides an overview of the
application development environment for Blue Gene/L.

This redbook explains the instances where Blue Gene/L is unique in its programming
environment. The book is divided into the following parts:

� Part 1, “MPI application information” on page 1
� Part 2, “System application information” on page 69
� Part 3, “Performance analysis” on page 93

Prior to reading this book, you must have a strong background in Message Passing Interface
(MPI) programming.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, Rochester Center.

Gary L. Mullen-Schultz is a Consulting IT Specialist at the ITSO, Rochester Center. He
leads the team responsible for producing Blue Gene/L documentation, and is the primary
author of this redbook. Gary also focuses on Java™ and WebSphere®. He is a Sun™
Certified Java Programmer, Developer and Architect, and has three issued patents.

Thanks to the following people for their contributions to this project:

Mark Mendell
Kara Moscoe
IBM Toronto, Canada

Ed Barnard
Todd Kelsey
Gary Lakner
James Milano
Jenifer Servais
Janet Willis
ITSO, Rochester Center

Charles Archer
Peter Bergner
Lynn Boger
Mike Brutman
Jay Bryant
Kathy Cebell
Jeff Chauvin
Roxanne Clarke
Darwin Dumonceaux
Mike Hjalmervik
Frank Ingram
© Copyright IBM Corp. 2005. All rights reserved. ix

Kerry Kaliszewski
Brant Knudson
Glenn Leckband
Dave Limpert
Chris Marroquin
Randall Massot
Curt Mathiowetz
Mark Megerian
Marv Misgen
Jose Moreira
Mike Mundy
Mike Nelson
Jeff Parker
Kurt Pinnow
Scott Plaetzer
Ruth Poole
Joan Rabe
Joseph Ratterman
Don Reed
Harold Rodakowski
Richard Shok
Brian Smith
Karl Solie
Wayne Wellik
Nancy Whetstone
Mike Woiwood
IBM Rochester

Tamar Domany
Edi Shmueli
IBM Israel

Gary Sutherland
Ed Varella
IBM Poughkeepsie

Gheorghe Almasi
Bob Walkup
IBM T.J. Watson Research Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
x Blue Gene/L: Application Development

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829
 Preface xi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xii Blue Gene/L: Application Development

Part 1 MPI application
information

This part provide details about application programming interfaces (APIs) and other
constructs that would be of interest to an application programmer writing a Message Passing
Interface (MPI) application for the Blue Gene/L system. This part encompasses the following
chapters:

� Chapter 1, “Application development overview” on page 3
� Chapter 2, “Programming modes” on page 15
� Chapter 3, “System calls supported by Compute Node Kernel” on page 19
� Chapter 4, “Developing applications with IBM XL compilers” on page 25
� Chapter 5, “Running and debugging” on page 53
� Chapter 6, “Checkpoint and restart support” on page 61

Part 1
© Copyright IBM Corp. 2005. All rights reserved. 1

2 Blue Gene/L: Application Development

Chapter 1. Application development
overview

This chapter provides an overview of the programming environment on Blue Gene/L. It
discusses general items of interest to an application developer, while answering the following
questions:

� What is the Message Passing Interface (MPI) implementation on Blue Gene/L?

� What are the major concerns an application developer should keep in mind when writing
applications for Blue Gene/L?

� Where are the supporting files (compilers, include and link files) located, and what
versions are they?

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 MPI on Blue Gene/L
The implementation of MPI on Blue Gene/L is the MPICH2 standard developed by Argonne
National Labs. For more information about MPICH2, see:

http://www-unix.mcs.anl.gov/mpi/

Some important attributes of the MPI 1.2 standard that are supported by Blue Gene/L
include:

� There is no one-sided communication. Only point-to-point is supported. That is, an
MPI_Send operation must be matched in another node (rank) by an MPI_Recv.

� No spawning of other processes is allowed.

� The thread model supported is MPI_THREAD_SINGLE, which means that threads cannot
be created.

1.2 Memory considerations
Give careful consideration to memory when writing applications for Blue Gene/L. It is
important to remember that each compute node has 512 Mb of memory. Of that memory,
some is used by the Compute Node Kernel (CNK), and some is used by communications
buffers. The following sections cover some points to remember when writing your MPI
application.

You can use the Linux® size command to gain an idea of the memory size of the program.
However, this command does not provide any information about the runtime memory usage
of the application.

1.2.1 Memory leaks
Given that there is no virtual paging on Blue Gene/L, any memory leaks in your application
can quickly consume available memory. When writing applications for Blue Gene/L, you must
be especially diligent that you release all memory that you allocate.

1.2.2 Memory management
The Blue Gene/L computer implements a 32-bit memory model. It does not support a 64-bit
memory model, but provides large file support and 64-bit integers.

The Blue Gene/L computer uses memory distributed across the nodes and uses networks to
provide high bandwidth and low-latency communication. If the memory requirement per MPI
task is greater than 256 MB in virtual node mode or greater than 512 MB in coprocessor
mode, then the application will not run on Blue Gene/L. The application will only work if you
take steps to reduce the memory footprint.

In some cases, you can reduce the memory requirement by distributing data that was
replicated in the original code. In this case, additional communication might be needed. It
might also be possible to reduce the memory footprint by being more careful about memory
management in the application.
4 Blue Gene/L: Application Development

http://www-unix.mcs.anl.gov/mpi/

1.2.3 Uninitialized pointers
Blue Gene/L applications run in the same address space as the Compute Node Kernel and
the communications buffers. You can create a pointer that doesn’t reference your own
application’s data, but rather the area used for communications. CNK itself is well protected
from rogue pointers.

The results can range from inserting malformed packets into the torus, causing spurious and
unpredictable errors, to hanging the node. The main message here is to be extremely careful
with pointers and strings in your application.

1.2.4 Forcing MPI to allocate too much memory
Forcing MPI to allocate too much memory is relatively easy to do with innocent-looking code.
For example, the snippets of legal MPI code shown in Example 1-1 and Example 1-2 run the
risk of forcing the MPI support to allocate too much memory, resulting in failure, as it forces
excessive buffering of messages.

Example 1-1 CPU1 MPI code that can cause excessive memory allocation

MPI_ISend(cpu2, tag1);
MPI_ISend(cpu2, tag2);
...
MPI_ISend(cpu2, tagn);

Example 1-2 CPU2 MPI code that can cause excessive memory allocation

MPI_Recv(cpu1, tagn);
MPI_Recv(cpu1, tagn-1);
...
MPI_Recv(cpu1, tag1);

You can accomplish the same goal and avoid memory allocation issues by recoding as shown
in Example 1-3 and Example 1-4.

Example 1-3 CPU1 MPI code that can avoid excessive memory allocation

MPI_ISend(cpu2, tag1);
MPI_ISend(cpu2, tag2);
...
MPI_ISend(cpu2, tagn);

Torus network: In a torus network, each processor is directly connected to six other
processors: two in the “X” dimension, two in the “Y” dimension, and two in the “Z”
dimension. An easy way to picture a torus is to think of a 3-D “cube” of processors, where
every processor on an edge has “wraparound” connections to link to other similar edge
processors. To learn more about the torus network, see Blue Gene/L: Hardware Overview
and Planning, SG24-6742.
Chapter 1. Application development overview 5

Example 1-4 CPU2 MPI code that can avoid excessive memory allocation

MPI_Recv(cpu1, tag1);
MPI_Recv(cpu1, tag2);
...
MPI_Recv(cpu1, tagn);

1.2.5 Not waiting for MPI_Test
According to the MPI standard, an application must either wait or continue testing until
MPI_Test returns true. Not doing so causes small memory leaks, which may accumulate over
time and cause a memory overrun. This code displays the problem shown in Example 1-5.

Example 1-5 Potential memory overrun caused by not waiting for MPI_Test

req = MPI_Isend(...);
MPI_Test (req);
... do something else; forget about req ...

Remember to wait, or test, for MPI_Test to return true.

1.2.6 Flooding of messages
The code shown in Example 1-6, while legal, floods the network with messages. It can cause
CPU 0 to run out of memory. Even though it may work, it does not prove to be scalable.

Example 1-6 Flood of messages resulting in possible memory overrun

CPU 1 to n-1 code:
MPI_Send(cpu0);

CPU 0 code:
for (i=1; i<n; i++)
 MPI_Recv(cpu[i]);

1.2.7 Poor choice of programming mode
When you choose to run in Virtual Node Mode, your application only has half the memory
(and cache) available. If your application is memory intensive, either in calculation or
communication, you can easily run out of available memory.

Before you try Virtual Node Mode, make sure your application runs well in Communication
Coprocessor Mode.

1.3 Other considerations
It is important to understand that the operating system present on the Compute Node, the
kernel (CNK), is not a full-fledged version of Linux. Because of this, there are a few areas in
which you must use care when writing applications for Blue Gene/L. For a full list of supported
system calls, see Chapter 3, “System calls supported by Compute Node Kernel” on page 19.
6 Blue Gene/L: Application Development

1.3.1 Input/output
Input/output (I/O) is an area where you need to pay special attention in your application.

File I/O
A limited set of file I/O is supported. Do not attempt to use asynchronous file I/O, because it
will result in runtime errors.

You can find a full list of supported file I/O calls in 3.2.2, “List of supported system calls” on
page 20.

Standard input (stdin)
Standard input (stdin) is not supported on Blue Gene/L. If you need to pass input to your
application, you need to do so by using file I/O.

Sockets calls
Sockets client-side system calls, such as send(), recv(), and socket(), are supported.
However, server-side sockets calls, such as accept(), bind(), and listen(), are not supported.

For a full list of supported sockets calls, see 3.2.2, “List of supported system calls” on
page 20.

1.3.2 Miscellaneous
You must also keep in mind the considerations presented in the following sections.

Linking
Dynamic linking is not supported on Blue Gene/L. You must statically link all code into your
application.

Read-only memory
There is no true read-only memory in the Compute Node Kernel. This means that no
segmentation violation will be signalled if an application attempts to write to a variable
designated as a “const.”

1.4 Include and link files
Include and link files are found under the main system path under
/bgl/BlueLight/ppcfloor/bglsys/.
Chapter 1. Application development overview 7

1.4.1 Include files
Include files for Blue Gene/L are found in the /bgl/BlueLight/ppcfloor/bglsys/include directory.
Table 1-1 lists the include files.

Table 1-1 Include files on Blue Gene/L

File name Description

BGLGi.h

BGLML.h

BGLMLLog.h

BGLML_Lockbox.h

BGLML_Message.h

BGLMP_1P.h

BGLMP_Adaptive.h

BGLMP_Alltoall.h

BGLMP_Eager.h

BGLMP_RectAllreduce.h

BGLMP_RectAllreduce1P.h

BGLMP_RectBarrier.h

BGLMP_RectBcast.h

BGLMP_RectCommunicator.h

BGLMP_RectReduce.h

BGLMP_Rendezvous.h

BGLMP_SimplePut.h

BGLMP_VNMode.h

IntHash.h

MMCSranktable.h

Queue.h

attach_bgl.h Provides data structures needed for debuggers to connect to
mpirun.

bglCheckpoint.h Required when using the application programming interface (API)
for the checkpoint and restore.

bglLinkCheckApi.h Required when using the link verification function. This includes the
APIs for both link checksums as well as link CRC verification.

bgl_errors.h

bgl_perfctr.h Function header file for the universal performance counters.

bgl_perfctr_events.h Event list header file for the universal performance counters.

bglaccessmac.h
8 Blue Gene/L: Application Development

bgldcr.h

bgldcrnames.h

bgldcrprint.h

bglddrdcr.h

bglfpudcr.h

bglgi.h

bglic.h

bglicdcr.h

bglidochip.h

bgll2dcr.h

bgll3dcr.h

bgllinkchip.h

bgllinkchippersonality.h

bgllockbox.h

bgllockboxdcr.h

bglmailbox.h

bglmaldcr.h

bglmccu.h

bglmemmap.h

bglpacket.h

bglpersonality.h

bglplbdcr.h

bglsim_counters.h

bglsp_lib.h

bglsramdcr.h

bgltestdcr.h

bgltimebase.h

bgltoruscapdcr.h

bgltorusdcr.h

bgltoruspacket.h

bgltreecapdcr.h

bgltreedcr.h

bgltreepacket.h

bgluicdcr.h

File name Description
Chapter 1. Application development overview 9

1.4.2 Static link files
Link files for Blue Gene/L are in the /bgl/BlueLight/ppcfloor/bglsys/lib directory. Table 1-2 lists
the static link files.

Table 1-2 Static link files on Blue Gene/L

bglupc.h

bglupcdcr.h

idoerrors.h

idoproxy_lib.h

mpi.h Required for MPI applications.

mpicxx.h Required for C++ MPI applications.

mpif.h Required for Fortran MPI applications.

mpio.h Required for MPI applications that perform MPI I/O.

mpiof.h Required for MPI applications in Fortran that perform MPI I/O.

mpirun_common_rc.h

mpirun_io.h

mpirun_mtype.h

mpirun_protocol.h

rm_api.h

rts.h

sayMessage.h

standalone.h

File name Description

File name Description

bglbootload.a

bglsp440supt.a

lib_ido_api.a

libbgl_perfctr.rts.a Universal performance counter library.

libbglbridge.a The API set provided for an external scheduler to interact with Midplane
Management Control System (MMCS) low-level components. These
APIs can be used to interact with MMCS and create, boot, and destroy
partitions. The APIs also provide functions for gathering information
about the topology of the machine, such as base partitions, wire, and
switches.

libbglmachine.a

libbglsim_counters.440.a

libbglsim_counters.rts.a
10 Blue Gene/L: Application Development

libbglsp.a

libbglupc.rts.a

libchkpt.rts.a Contains the user-initiated checkpoint/restart bindings for parallel
applications written in C++, C or Fortran. Provides APIs to save program
state in stable storage at a synchronizing point (typically after a barrier,
assumes no messages are in transit), and restart from this point at a later
stage.

libcxxmpich.rts.a Contains the C++ bindings for MPICH. Required for C++ MPI
applications.

libdbbringup.a

libdevices.440.a

libdevices.rts.a

libfmpich.rts.a Contains the Fortran bindings for MPICH. Required for Fortran MPI
applications.

libidoproxy.a

liblinkcheck.rts.a Library to facilitate link error verification at the user level. The
link-checksum verification APIs allow users to periodically store
checksums of injected data (on stable storage), and compare it later to
ensure that there were no undetected transient faults in memory or
internal state of a node. The link-CRC verification APIs allow users to
periodically verify sent and received CRCs on network links (both torus
and tree) to detect and isolate link faults. The library is typically used for
diagnostics or debugging purposes, but users can optionally use the
APIs to build safety checks in their application.

libmpich.rts.a This is the main MPI library. Required for any MPI application.

libmpirun_secure.a

libmsglayer.rts.a Contains many of the “glue” functions (hardware<->MPICH) and
collectives. Required for any MPI application.

libpavtrace.a

libprinters.a

librts.rts.a

libstandalone.440.a

libstandalone.440sysbr.a

modules

ppc440_reset.lds

File name Description
Chapter 1. Application development overview 11

1.5 Compilers overview
Two compiler families are supported on Blue Gene/L: GNU compilers and IBM XL compilers.
You can find instructions for installation in Blue Gene/L: System Administration, ZG24-6744.

1.5.1 Programming environment overview
The following diagram provides a quick view into the software stack that supports the
execution of Blue Gene/L applications.

Figure 1-1 Software stack supporting execution of Blue Gene/L applications

1.5.2 GNU
The standard GNU version 3.2 C, C++ and Fortran77 compilers are modified during
installation to support Blue Gene/L. Currently, version 2.2.5 of GLIBC is supported.

You can find the GNU compilers in the directory
/bgl/BlueLight/ppcfloor/blrts-gnu/powerpc-bgl-blrts-gnu/bin.

GNU runtime libraries
The following libraries are linked into your application automatically by the GNU linker when
you create your application. We have separated them into the GCC libraries (Table 1-3) and
GLIBC libraries (Table 1-4).

Table 1-3 GNU GCC libraries

Application

GLIBC

Compute Node Kernel

CIO (runs on I/O Node)

GCC libs

XL libs

File name Description

libstdc++.a GNU Standard C++ library

libgcc.a GCC low-level run-time library

libg2c.a G77 run-time library
12 Blue Gene/L: Application Development

Table 1-4 GNU GLIBC libraries

1.5.3 IBM XL Compilers
The following IBM XL compilers are supported when developing Blue Gene/L applications:

� XL C/C++ Advanced Edition V7.0 for Linux
� XL Fortran Advanced Edition V9.1 for Linux

See Chapter 4, “Developing applications with IBM XL compilers” on page 25, for more
information.

The XL C compilers are in the following directories:

� Blue Gene/L version

/opt/ibmcmp/vac/7.0/bin/blrts_xlc

� Linux version

/opt/ibmcmp/vac/7.0/bin/xlc

The XL C++ compilers are in these directories:

� Blue Gene/L version

/opt/ibmcmp/vacpp/7.0/bin/blrts_xlc++

� Linux version

/opt/ibmcmp/vacpp/7.0/bin/xlc++

The XL Fortran compilers are in the following locations:

� Blue Gene/L version

/opt/ibmcmp/xlf/9.1/bin/blrts_xlf

� Linux version

/opt/ibmcmp/xlf/9.1/bin/xlf

You can find other versions of each of these compilers in the same directory as those that are
listed. For example, compilers are available for Fortran77, Fortran90, and so on.

File name or names Description

libc.a GNU C library

libm.a Math library

libieee.a IEEE floating point library

libg.a G++ runtime library

libcrypt.a Cryptography library

libnss_dns.a, libnss_files.a, libresolv.a NSS/Resolve libraries

Note: Support for creating applications targeting both Linux on (IBM Eserver pSeries®),
and Blue Gene/L is provided.
Chapter 1. Application development overview 13

MASS libraries
The complete Mathematical Acceleration Subsystem (MASS) scalar and vector libraries for
Blue Gene/L are available for free download on the Web at:

http://www.ibm.com/software/awdtools/mass/bgl/

XL runtime libraries
The libraries listed in Table 1-5 are linked into your application automatically by the XL linker
when you create your application.

Table 1-5 XL libraries

Attention: The exception to this statement is for libmassv.a file (the MASS libraries). It
must be explicitly specified on the linker command.

File name Description

libibmc++.a IBM C++ library

libxlf90.a IBM XLF runtime library

libxlfmath.a IBM XLF stubs for math routines in system library libm, for example, _sin() for
sin(), _cos() for cos(), etc.

libxlfpmt4.a IBM XLF to be used with -qautobdl=dbl4 (promote floating-point objects that are
single precision)

libxlfpad.a IBM XLF run-time routines to be used with -qautobdl=dblpad (promote
floating-point objects and pad other types if they can share storage with
promoted objects)

libxlfpmt8.a IBM XLF run-time routines to be used with -qautobdl=dbl8 (promote
floating-point objects that are double precision)

libxl.a IBM low-level runtime library

libxlopt.a IBM XL optimized intrinsic library
� Vector intrinsic functions
� BLASS routines

libmassv.a IBM XL MASSV library: Vector intrinsic functions

ibxlomp_ser.a IBM XL Open MP compatibility library
14 Blue Gene/L: Application Development

http://www.ibm.com/software/awdtools/mass/bgl/

Chapter 2. Programming modes

This chapter provides information about the way in which Message Passing Interface (MPI) is
implemented and used on Blue Gene/L.

There are two main modes in which you can use Blue Gene/L:

� Communication Coprocessor Mode
� Virtual Node Mode

This chapter explores both of these modes in detail.

2

© Copyright IBM Corp. 2005. All rights reserved. 15

2.1 Communication Coprocessor Mode
In the default mode of operation of Blue Gene/L, named Communication Coprocessor Mode,
each physical compute node executes a single compute process. The Blue Gene/L system
software treats those two processors in a compute node asymmetrically. One of the
processors (CPU 0) behaves as a main processor, running the main thread of the compute
process. The other processor (CPU 1) behaves as an offload engine (coprocessor) that only
executes specific operations.

The coprocessor is used primarily for offloading communication functions. It can also be used
for running application-level coroutines.

2.2 Virtual Node Mode
The Compute Node Kernel in the compute nodes also supports a Virtual Node Mode of
operation for the machine. In that mode, the kernel runs two separate processes in each
compute node. Node resources (primarily the memory and the torus network) are shared by
both processes.

In Virtual Node Mode, an application can use both processors in a node simply by doubling its
number of MPI tasks, without explicitly handling cache coherence issues. The now distinct
MPI tasks running in the two CPUs of a compute node have to communicate to each other.
This problem was solved by implementing a virtual torus device, serviced by a virtual packet
layer, in the scratchpad memory.

In Virtual Node Mode, the two cores of a compute node act as different processes. Each has
its own rank in the message layer. The message layer supports Virtual Node Mode by
providing a correct torus to rank mapping and first in, first out (FIFO) pinning in this mode.
The hardware FIFOs are shared equally between the processes. Torus coordinates are
expressed by quadruplets instead of triplets. In Virtual Node Mode, communication between
the two processors in a compute node cannot be done over the network hardware. Instead, it
is done via a region of memory, called the scratchpad that both processors have access to.

Virtual FIFOs make portions of the scratchpad look like a send FIFO to one of the
processors and a receive FIFO to the other. Access to the virtual FIFOs is mediated with help
from the hardware lockboxes.

From an application perspective, virtual nodes behave like physical nodes, but with less
memory. Each virtual node executes one compute process. Processes in different virtual
nodes, even those allocated in the same compute node, only communicate through
messages. Processes running in virtual node mode cannot invoke coroutines.

The Blue Gene/L MPI implementation supports Virtual Node Mode operations by sharing the
systems communications resources of a physical compute node between the two compute
processes that execute on that physical node. The low-level communications library of Blue
Gene/L, that is the message layer, virtualizes these communications resources into logical
units that each process can use independently.
16 Blue Gene/L: Application Development

2.3 Which mode to use?
Whether you choose to use Communication Coprocessor Mode or Virtual Node Mode
depends largely on the type of application you plan to execute.

I/O intensive tasks that require a relatively large amount of data interchange between
compute nodes benefit more by using Communication Coprocessor Mode. Those
applications that are primarily CPU bound, and do not have large working memory
requirements (the application only gets half of the node memory) run more quickly in Virtual
Node Mode.

2.4 Choosing modes
You choose which mode to use when booting a Blue Gene/L partition. How you do this
depends on the mechanism, such as LoadLeveler® or mpirun, that you use to perform this
function.

The default for mpirun is Communication Coprocessor Mode. To specify Virtual Node Mode,
you use the following command:

mpirun ... -mode vn ...

See Blue Gene/L: System Administration, ZG24-6744, for more information about the mpirun
command.
Chapter 2. Programming modes 17

18 Blue Gene/L: Application Development

Chapter 3. System calls supported by
Compute Node Kernel

This chapter discusses the system calls that are supported by the Compute Node Kernel
(CNK). It is important to understand which functions can be called, and perhaps more
importantly, which ones cannot be called, by your application running on Blue Gene/L.

3

© Copyright IBM Corp. 2005. All rights reserved. 19

3.1 Introduction to the Compute Node Kernel
The role of the kernel on the Compute Node is to create an environment for the execution of a
user process which is “Linux-like.” It is not a full Linux kernel implementation, but rather
implements a subset of POSIX functionality.

The CNK is a single-process operating system. It is designed to provide the services that are
needed by applications which are expected to run on Blue Gene/L, but not for all applications.
The CNK is not intended to run system administration functions from the compute node.

To achieve the best reliability, a small and simple kernel is a design goal. This enables a
simpler checkpoint function. See Chapter 6, “Checkpoint and restart support” on page 61.

The compute node application never runs as the root user. In fact, it runs as the same user
(uid) and group (gid) under which the job was submitted.

3.2 System calls
The Compute Node Kernel system calls are subdivided into the following categories:

� File I/O
� Directory operations
� Time
� Process information
� Signals
� Miscellaneous
� Sockets

3.2.1 Return codes
As is true for return codes on a standard Linux system, a return code of 0 (zero) from a
syscall indicates success. -1 (negative one) indicates failure; in this case, errno will contain
further information about exactly what caused the problem.

3.2.2 List of supported system calls
Table 3-1 lists all system calls supported on Blue Gene/L.

Important: Since the CNK is a single-process operating system, no support is provided for
an application to use multiple processes or threads. Calls to such functions as fork() return
-1, with errno set to ENOSYS.

Restriction: No shell utilities are supported in the CNK. Only the system calls listed in this
document are supported in the CNK. For example, no utility commands provided by such
shells as BASH or Bourne can be invoked by applications running in the CNK.

Important: An application can send signals only to itself. For example, an application
instance running on one node cannot directly send a signal to another node. Internode
communication should be achieved using Message Passing Interface (MPI) support.
20 Blue Gene/L: Application Development

Table 3-1 List of supported system calls

System call Category Description

access File I/O Determine accessibility of a file

brk Miscellaneous Change data segment size

chdir Directory Change working directory

chmod File I/O Change mode of a file

chown File I/O Change owner and group of a file

close File I/O Close a file descriptor

connect Sockets Connect a socket

dup File I/O Duplicate an open descriptor

dup2 File I/O Duplicate an open descriptor

exit Miscellaneous Terminate a process

fchmod File I/O Change mode of a file

fchown File I/O Change owner and group of a file

fcntl File I/O Performs the following operations (commands) on an open
file. These operations are in the <fnctl.h> include file.
� F_GETFL
� F_DUPFD
� F_GETLK
� F_SETLK
� F_SETLKW
� F_GETLK64
� F_SETLK64
� F_SETLKW64

fstat File I/O Get file status

fstat64 File I/O Get file status

fsync File I/O Synchronize changes to a file

ftruncate File I/O Truncate a file to a specified length

ftruncate64 File I/O Truncate a file to a specified length

getcwd Directory Get the path name of the current working directory

getdents Directory Get directory entries

getdents64 Directory Get directory entries

getgid Process Info Get the real group ID

getitimer Time Get the value of the interval timer

getpeername Sockets Get the name of the peer socket

getpid Process Info Get the process ID

getrusage Process Info Get information about resource utilization. All time reported
is attributed to the user application, meaning that CNK time
is included in the values returned.

getsockname Sockets Get the socket name
Chapter 3. System calls supported by Compute Node Kernel 21

gettimeofday Time Get the date and time

getuid Process Info Get the real user ID

kill Signal Send a kill command to the currently running process, for
example, to yourself

lchown File I/O Change owner and group of a symbolic link

link File I/O Link to a file

lseek File I/O Move the read/write file offset

llseek File I/O Move the read/write file offset

lstat File I/O Get symbolic link status

lstat64 File I/O Get symbolic link status

mkdir Directory Make a directory

rpen File I/O Open a file

read File I/O Read from a file

readlink File I/O Read the contents of a symbolic link

readv File I/O Read a vector

recv Sockets Receive a message from a connected socket

recvfrom Sockets Receive a message from a socket

rename File I/O Rename a file

rmdir Directory Remove a directory

send Sockets Send a message on a connected socket

sendto Sockets Send a message on a socket

setitimer Time Set value of interval timer. Only the following operations are
supported:
� ITIMER_PROF
� ITIMER_REAL
Note: An application can only set one active timer at a time.

signal Signals Signal management

sigreturn Signals Return from a signal handler

socket Sockets Open a socket

stat File I/O Get file status

stat64 File I/O Get file status

symlink File I/O Make a symbolic link to a file

time Time Get time

times Process Info Get process times. All time reported is attributed to the user
application, meaning that CNK time is included in the values
returned.

truncate File I/O Truncate a file to a specified length

System call Category Description
22 Blue Gene/L: Application Development

3.3 Unsupported calls
While there are many unsupported system calls, you must especially be aware of the
following unsupported calls:

� Blue Gene/L does not support the use of the system() function. Therefore, for example,
you can't use something like the system('chmod -w file') call.

� Blue Gene/L does not provide the same support for gethostname() and getlogin() as Linux
provides.

� Blue Gene/L does not support sigaction(). It also doesn't support calls to signal(SIGTRAP,
xl__trce) or signal(SIGNAL, xl__trbk).

� Calls to usleep() are not supported.

truncate64 File I/O Truncate a file to a specified length

umask File I/O Set and get the file mode creation mask

uname Miscellaneous Get the name of the current system, and other information
(for example, version and release).

unlink File I/O Remove a directory entry

utime File I/O Set file access and modification times

write File I/O Write to a file

writev File I/O Write a vector

System call Category Description
Chapter 3. System calls supported by Compute Node Kernel 23

24 Blue Gene/L: Application Development

Chapter 4. Developing applications with
IBM XL compilers

The IBM XL family of optimizing compilers allows you to develop C, C++ and Fortran
applications for Blue Gene/L. This family is comprised of the following products:

� XL C/C++ Advanced Edition V7.0 for Linux
� XL Fortran Advanced Edition V9.1 for Linux

The information presented in this document is Blue Gene/L specific. It does not include
general XL compiler information. For complete documentation about these compilers, see the
following Web pages:

� XL C/C++

http://www.ibm.com/software/awdtools/xlcpp/library/

� XL Fortran

http://www.ibm.com/software/awdtools/fortran/xlfortran/library/

This chapter discusses specific considerations for developing, compiling, and optimizing
C/C++ and Fortran applications for the Blue Gene/L PowerPC® 440d processor architecture
and its Double Hummer floating-point unit.

4

© Copyright IBM Corp. 2005. All rights reserved. 25

http://www.ibm.com/software/awdtools/xlcpp/library/
http://www.ibm.com/software/awdtools/fortran/xlfortran/library/

4.1 Compiling and linking applications on Blue Gene/L
This section contains information about compiling and linking applications that will run on
Blue Gene/L. For complete information about compiler and linker options, see the following
documents, available at the Web pages listed in the introduction to this chapter:

� XL Fortran User Guide
� XL C/C++ Compiler Reference

4.2 Default compiler options
Compilations most commonly occur on the Front End Node. The resulting program can run
on the Blue Gene/L system without manually copying the executable to the Service Node.
See 5.1, “Running applications” on page 54, to learn how to run programs on Blue Gene/L.

The script or make file that you use to invoke the compilers should set certain compiler
options to the following defaults:

� -qbgl: Marks the object file as stand-alone to run on Blue Gene/L.

� Architecture-specific options, which optimize processing for the Blue Gene/L 440d
processor architecture:

– -qarch=440d: Generates parallel instructions for the 440d Double Hummer dual
floating-point unit (FPU). If you encounter problems with code generation, you can
reset this option to -qarch=440. This generates code for a single FPU only, but may
give correct results if invalid code is generated by -qarch=440d.

– -qtune=440: Optimizes object code for the 440 family of processors.

– -qcache=level=1:type=i:size=32:line=32:assoc=64:cost=8: Specifies the L1
instruction cache configuration for the Blue Gene/L architecture, to allow greater
optimization with options -O4 and -O5.

– -qcache=level=1:type=d:size=32:line=32:assoc=64:cost=8: Specifies the L1 data
cache configuration for the Blue Gene/L architecture, to allow greater optimization with
options -O4 and -O5.

– -qcache=level=2:type=c:size=4096:line=128:assoc=8:cost=40: Specifies the L2
(combined data and instruction) cache configuration for the Blue Gene/L architecture,
to allow greater optimization with options -O4 and -O5.

– -qnoautoconfig: Allows code to be cross-compiled on other machines at optimization
levels -O4 or -O5, by preserving the Blue Gene/L architecture-specific options.

There are scripts already available that do much of this for you. They reside in the same bin
directory as the compiler binary. The names are listed in Table 4-1.

Table 4-1 Scripts available in the bin directory for compiling and linking

Language Script name or names

C blrts_xlc

C++ blrts_xlc++

Fortran blrts_xlf, blrts_xlf90, blrts_xlf95
26 Blue Gene/L: Application Development

4.3 Unsupported options
The following compiler options are not supported by the Blue Gene/L hardware and should
not be used:

� -qsmp: This option requires shared memory parallelism, which is not used by Blue Gene/L.
� -q64: Blue Gene/L uses a 32-bit architecture; you cannot compile in 64-bit mode.
� -qaltivec: The 440 processor does not support VMX instructions or vector data types.
� -qpic: This option controls the selection of TOC size for Position Independent Code.
� -qmkshrobj: This option creates a shared library object.

4.4 Tuning your code for Blue Gene/L
The sections that follow describe strategies that you can use to best exploit the
single-instruction-multiple-data (SIMD) capabilities of the Blue Gene/L 440d processor and
the XL compilers’ advanced instruction scheduling and register allocation algorithms.

4.5 Using the compiler optimization options
The -O3 compiler option provides a high level of optimization and automatically sets other
options that are especially useful on Blue Gene/L. The -qhot=simd option enables SIMD
vectorization of loops. It is enabled by default if you use -O4, -O5, or -qhot.

For more information about optimization options, see “Optimizing your applications” in the XL
C/C++ Programming Guide and “Optimizing XL Fortran programs” in the XL Fortran User’s
Guide (refer to the Web links provided in the introduction to this chapter).

4.6 Structuring data in adjacent pairs
The Blue Gene/L 440d processor’s dual FPU includes special instructions for parallel
computations. The compiler tries to pair adjacent single-precision or double-precision floating
point values, to operate on them in parallel. Therefore, you can speed up computations by
defining data objects that occupy adjacent memory blocks and are naturally aligned. These
include arrays or structures of floating-point values and complex data types.

Whether you use an array, a structure, or a complex scalar, the compiler searches for
sequential pairs of data for which it can generate parallel instructions. For example, the C
code in Example 4-1 allows each pair of elements in a structure to be operated on in parallel.

Important: The Double Hummer FPU does not generate exceptions. Therefore, the
-qflttrap option, which traps floating-point exceptions, is disabled by default. If you enable
this option, -qarch is automatically reset to -qarch=440.
Chapter 4. Developing applications with IBM XL compilers 27

Example 4-1 Adjacent paired data

struct quad {
double a, b, c, d;

};

struct quad x, y, z;

void foo()
{

z.a = x.a + y.a;
z.b = x.b + y.b;/* can load parallel (x.a,x.b), and (y.a, y.b), do parallel add, and

store parallel (z.a, z.b) */

z.c = x.c + y.c;
z.d = x.d + y.d;/* can load parallel (x.c,x.d), and (y.c, y.d), do parallel add, and

store parallel (z.c, z.d) */
}

The advantage of using complex types in arithmetic operations is that the compiler
automatically uses parallel add, subtract, and multiply instructions when complex types
appear as operands to addition, subtraction, and multiplication operators. Furthermore, the
data that you provide does not actually need to represent complex numbers. In fact, both
elements are represented internally as two real values. See 4.13, “Complex type
manipulation functions” on page 36, for a description of the set of built-in functions that are
available for Blue Gene/L. These functions are especially designed to efficiently manipulate
complex-type data, and include a function to convert non-complex data to complex types.

4.7 Using vectorizable basic blocks
The compiler schedules instructions most efficiently within extended basic blocks. These are
code sequences which can contain conditional branches but have no entry points other than
the first instruction. Specifically, minimize the use of branching instructions for:

� Handling special cases, such as the generation of NaN (not-a-number) values

� C/C++ error handling that sets a value for errno

To explicitly inform the compiler that none of your code will set errno, you can compile with
the -qignerrno compiler option (automatically set with -O3).

� C++ exception handlers

To explicitly inform the compiler that none of your code will throw any exceptions, and
therefore, that no exception-handling code needs to be generated, you can compile with
the -qnoeh compiler option (automatically set with -O3).

In addition, the optimal basic blocks remove dependencies between computations, so that the
compiler sees each statement as entirely independent. You can construct a basic block as a
series of independent statements, or as a loop that repeatedly computes the same basic
block with different arguments.

If you specify the -qhot=simd compilation option, along with a minimum optimization level of
-O2, the compiler can then vectorize these loops by applying various transformations, such as
unrolling and software pipelining. See 4.9, “Removing possibilities for aliasing (C/C++)” on
page 29, for additional strategies for removing data dependencies.)
28 Blue Gene/L: Application Development

4.8 Using inline functions
An inline function is expanded in any context in which it is called. This avoids the normal
performance overhead associated with the branching for a function call, and it allows
functions to be included in basic blocks. The XL C/C++ and Fortran compilers provide several
options for inlining. The following options instruct the compiler to automatically inline all
functions it deems appropriate:

� XL C/C++

– -O through -O5
– -qipa

� XL Fortran

– -O4 or -O5
– -qipa

The following options allow you to select or name functions to be inlined:

� XL C/C++

– -qinline
– -Q

� XL Fortran

– -Q

In C/C++, you can use also use the standard inline function specifier or the
__attribute__(always_inline) extension in your code to mark a function for inlining.

For more information about the various compiler options for controlling function inlining, see
the XL Fortran User Guide and XL C/C++ Compiler Reference. For information about the
different variations of the inline keyword supported by XL C and C++, as well as the inlining
function attribute extensions, see the XL C/C++ Language Reference.

4.9 Removing possibilities for aliasing (C/C++)
When you use pointers to access array data in C/C++, the compiler cannot assume that the
memory accessed by pointers will not be altered by other pointers that refer to the same
address. For example, if two pointer input parameters share memory, the instruction to store
the second parameter can overwrite the memory read from the first load instruction. This
means that after a store for a pointer variable, any load from a pointer must be reloaded.
Consider the following code example:

int i = *p;
*q = 0;
j = *p;

If *q aliases *p, then the value must be reloaded from memory. If *q does not alias *p, the old
value that is already loaded into i can be used.

To avoid the overhead of reloading values from memory every time they are referenced in the
code, and allow the compiler to simply manipulate values that are already resident in
registers, there are several strategies you can use. One approach is to assign input array

Important: Do not overuse inlining, because there are limits on how much inlining will be
done. Mark the most important functions.
Chapter 4. Developing applications with IBM XL compilers 29

element values to local variables and perform computations only on the local variables, as
shown in Example 4-2.

Example 4-2 Array parameters assigned to local variables

#include <math.h>
void reciprocal_roots (const double* x, double* f)
{

double x0 = x[0] ;
double x1 = x[1] ;
double r0 = 1.0/sqrt(x0) ;
double r1 = 1.0/sqrt(x1) ;
f[0] = r0 ;
f[1] = r1 ;

}

If you are certain that two references do not share the same memory address, another
approach is to use the #pragma disjoint directive. This directive asserts that two identifiers
do not share the same storage, within the scope of their use. Specifically, you can use the
pragma to inform the compiler that two pointer variables do not point to the same memory
address.The directive in Example 4-3 indicates to the compiler that the pointers-to-arrays of
double x and f do not share memory.

Example 4-3 #pragma disjoint directive

__inline void ten_reciprocal_roots (double* x, double* f)
{
#pragma disjoint (*x, *f)
int i;
 for (i=0; i < 10; i++)

f[i]= 1.0 / sqrt (x[i]);
}

4.10 Structure computations in batches of five or ten
Floating-point operations are pipelined in the 440 processor, so that one floating-point
calculation is performed per cycle, with a latency of five cycles. Therefore, to keep the 440
processor’s floating-point units busy, organize floating-point computations to perform
step-wise operations in batches of five; that is, arrays of five elements and loops of five
iterations. For the 440d, which has two FPUs, use batches of ten.

For example, with the 440d, at high optimization, the function in Example 4-4 should perform
ten parallel reciprocal roots in about five cycles more than a single reciprocal root. This is
because the compiler will perform two reciprocal roots in parallel and then use the “empty”
cycles to run four more parallel reciprocal roots.

Important: The correct functioning of this directive requires that the two pointers be
disjoint. If they are not, the compiled program will not run correctly.
30 Blue Gene/L: Application Development

Example 4-4 Function to calculate reciprocal roots for arrays of ten elements

__inline void ten_reciprocal_roots (double* x, double* f)
{
#pragma disjoint (*x, *f)

 int i;
 for (i=0; i < 10; i++)

f[i]= 1.0 / sqrt (x[i]);
}

The definition in Example 4-5 shows “wrapping” the inlined, optimized ten_reciprocal_roots
function, in Example 4-4, inside a function that allows you to pass in arrays of any number of
elements. This function then passes the values in batches of ten to the ten_reciprocal_roots
function and calculates the remaining operations individually.

Example 4-5 Function to pass values in batches of ten

static void unaligned_reciprocal_roots (double* x, double* f, int n)
{
#pragma disjoint (*x, *f)
 while (n >= 10) {

ten_reciprocal_roots (x, f);
x += 10;
f += 10;

 }
 /* remainder */
 while (n > 0) {

*f = 1.0 / sqrt (*x);
f++, x++;

 }
}

4.11 Checking for data alignment
The Blue Gene/L architecture allows for two double-precision values to be loaded in parallel
in a single cycle, provided that the load address is aligned so that the values that are loaded
do not cross a cache-line boundary (which is 32-bytes). If they cross this boundary, the
hardware generates an alignment trap. This trap may cause the program to crash or result in
a severe performance penalty to be fixed at run-time by the kernel.

The compiler does not generate these parallel load and store instructions unless it is sure that
is safe to do so. For non-pointer local and global variables, the compiler knows when this is
safe. To allow the compiler to generate these parallel loads and stores for accesses through
pointers, include code that tests for correct alignment and that gives the compiler hints.

To test for alignment, first create one version of a function which asserts the alignment of an
input variable at that point in the program flow. You can use the C/C++ __alignx built-in
function or the Fortran ALIGNX function to inform the compiler that the incoming data is
correctly aligned according to a specific byte boundary, so it can efficiently generate loads
and stores.

The function takes two arguments. The first argument is an integer constant expressing the
number of alignment bytes (must be a positive power of two). The second argument is the
variable name, typically a pointer to a memory address.
Chapter 4. Developing applications with IBM XL compilers 31

The C/C++ prototype for the function is:

extern
#ifdef __cplusplus
"builtin"
#endif
void __alignx (int n, const void *addr)

Here n is the number of bytes. For example, __align(16, y) specifies that the address y is
16-byte aligned.

In Fortran, the built-in subroutine is ALIGNX(K,M), where K is of type INTEGER(4), and M is a
variable of any type. When M is an integer pointer, the argument refers to the address of the
pointee.

Example 4-6 asserts that the variables x and f are aligned along 16-byte boundaries.

Example 4-6 Using the __alignx built-in function

#include <math.h>
__inline void aligned_ten_reciprocal_roots (double* x, double* f)
{
#pragma disjoint (*x, *f)
int i;
 __alignx (16, x);
 __alignx (16, f);
 for (i=0; i < 10; i++)

f[i]= 1.0 / sqrt (x[i]);
}

After you create a function to handle input variables that are correctly aligned, you can then
create a function that tests for alignment and then calls the appropriate function to perform
the calculations. The function in Example 4-7 checks to see whether the incoming values are
correctly aligned. Then it calls the “aligned” (Example 4-6) or “unaligned” (Example 4-4)
version of the function according to the result.

Example 4-7 Function to test for alignment

void reciprocal_roots (double *x, double *f, int n)
{
 /* are both x & f 16 byte aligned? */
 if (((((int) x) | ((int) f)) & 0xf) == 0) /* This could also be done as:

if (((int) x % 16 == 0) && ((int) f % 16) == 0) */
aligned_ten_reciprocal_roots (x, f, n);
else
ten_reciprocal_roots (x, f, n);

}

The alignment test in Example 4-7 provides an optimized method of testing for 16-byte
alignment by performing a bit-wise OR on the two incoming addresses and testing whether
the lowest four bits are 0 (that is, 16-byte aligned).

Important: The __alignx function does not perform any alignment. It merely informs the
compiler that the variables are aligned as specified. If the variables are not aligned
correctly, the program does not run properly.
32 Blue Gene/L: Application Development

4.12 Using XL built-in floating-point functions for Blue Gene/L
The XL C/C++ and Fortran compilers include a large set of built-in functions that are
optimized for the PowerPC architecture. For a full description of them, refer to the following
documents (available from the Web links listed at the beginning of this chapter):

� Appendix B: “Built-In Functions” in XL C/C++ Compiler Reference
� “Intrinsic Procedures” in XL Fortran Language Reference

In addition, on Blue Gene/L, the XL compilers provide a set of built-in functions that are
specifically optimized for the PowerPC 440d’s Double Hummer dual FPU. These built-in
functions provide an almost one-to-one correspondence with the Double Hummer instruction
set.

All of the C/C++ and Fortran built-in functions operate on complex data types, which have an
underlying representation of a two-element array, in which the real part represents the
primary element and the imaginary part represents the second element. The input data that
you provide does not need to represent complex numbers. In fact, both elements are
represented internally as two real values. None of the built-in functions actually performs
complex arithmetic. A set of built-in functions designed to efficiently manipulate complex-type
variables is also available.

The Blue Gene/L built-in functions perform the several types of operations as explained in the
following paragraphs.

Parallel operations perform SIMD computations on the primary and secondary elements of
one or more input operands. They store the results in the corresponding elements of the
output. As an example, Figure 4-1 illustrates how a parallel multiply operation is performed.

Figure 4-1 Parallel operations

Primary element Secondary element

Primary element Secondary element

Input
operand a

Input
operand b

Output Primary element Secondary element
Chapter 4. Developing applications with IBM XL compilers 33

Cross operations perform SIMD computations on the opposite primary and secondary
elements of one or more input operands. They store the results in the corresponding
elements in the output. As an example, Figure 4-2 illustrates how a cross multiply operation is
performed.

Figure 4-2 Cross operations

Copy-primary operations perform SIMD computation between the corresponding primary
and secondary elements of two input operands, where the primary element of the first
operand is replicated to the secondary element. As an example, Figure 4-3 illustrates how a
cross-primary multiply operation is performed.

Figure 4-3 Copy-primary operations

Primary element Secondary element

Primary element Secondary element

Input
operand b

Output

Primary element Secondary element
Input
operand a

Primary element Secondary element

Primary element Secondary element

Input
operand b

Output

Primary element Secondary element
Input
operand a
34 Blue Gene/L: Application Development

Copy-secondary operations perform SIMD computation between the corresponding primary
and secondary elements of two input operands, where the secondary element of the first
operand is replicated to the primary element. As an example, Figure 4-4 illustrates how a
cross-secondary multiply operation is performed.

Figure 4-4 Copy-secondary operations

In cross-copy operations, the compiler crosses either the primary or secondary element of the
first operand, so that copy-primary and copy-secondary operations can be used
interchangeably to achieve the same result. The operation is performed on the total value of
the first operand. As an example, Figure 4-5 illustrates the result of a cross-copy multiply
operation

Figure 4-5 Cross-copy operations

The following paragraphs describe the available built-in functions by category. For each
function, the C/C++ prototype is provided. In C, you do not need to include a header file to
obtain the prototypes. The compiler includes them automatically. In C++, you need to include
the header file builtins.h.

Fortran does not use prototypes for built-in functions. Therefore, the interfaces for the Fortran
functions are provided in textual form. The function names omit the double underscore (__) in
Fortran.

Primary element Secondary element

Primary element Secondary element

Input
operand b

Output

Primary element Secondary element
Input
operand a

Primary element Secondary element

Primary element Secondary element

Input
operand b

Output

Primary element + Secondary element
Input
operand a
Chapter 4. Developing applications with IBM XL compilers 35

All of the built-in functions, with the exception of the complex type manipulation functions,
require compilation under -qarch=440d. this is the default setting on Blue Gene/L.

To help clarify the English description of each function, the following notation is used:

element(variable)

Here element represents one of primary or secondary, and variable represents input variable
a, b, or c, and the output variable result. For example, consider the following formula :

primary(result) = primary(a) + primary(b)

This formula indicates that the primary element of input variable a is added to the primary
element of input variable b and stored in the primary element of the result.

To optimize your calls to the Blue Gene/L built-in functions, follow the guidelines provided in
4.4, “Tuning your code for Blue Gene/L” on page 27. Using the alignx built-in function
(described in 4.11, “Checking for data alignment” on page 31), and specifying the disjoint
pragma (described in 4.9, “Removing possibilities for aliasing (C/C++)” on page 29), are
recommended for code that calls any of the built-in functions.

4.13 Complex type manipulation functions
These functions, listed in Table 4-2, are useful for efficiently manipulating complex data types.
They allow you to automatically convert real floating-point data to complex types and to
extract the real (primary) and imaginary (secondary) parts of complex values.

Table 4-2 Complex type manipulation functions

Function Convert dual reals to complex (single-precision): __cmplxf

Purpose Converts two single-precision real values to a single complex value. The
real a is converted to the primary element of the return value, and the real
b is converted to the secondary element of the return value.

Formula primary(result) =a
secondary(result) = b

C/C++ prototype float _Complex __cmplxf (float a, float b);

Fortran descriptions CMPLXF(A,B)
where A is of type REAL(4)
where B is of type REAL(4)
result is of type COMPLEX(4)

Function Convert dual reals to complex (double-precision): __cmplx

Purpose Converts two double-precision real values to a single complex value. The
real a is converted to the primary element of the return value, and the real
b is converted to the secondary element of the return value.

Formula primary(result) =a
secondary(result) = b

C/C++ prototype double _Complex __cmplx (double a, double b);
long double _Complex __cmplxl (long double a, long double b);1

Fortran descriptions CMPLX(A,B)
where A is of type REAL(8)
where B is of type REAL(8)
result is of type COMPLEX(8)
36 Blue Gene/L: Application Development

Function Extract real part of complex (single-precision): __crealf

Purpose Extracts the primary part of a single-precision complex value a, and
returns the result as a single real value.

Formula result =primary(a)

C/C++ prototype float __crealf (float _Complex a);

Fortran descriptions CREALF(A)
where A is of type COMPLEX(4)
result is of type REAL(4)

Function Extract real part of complex (double-precision): __creal, __creall

Purpose Extracts the primary part of a double-precision complex value a, and
returns the result as a single real value.

Formula result =primary(a)

C/C++ prototype double __creal (double _Complex a);
long double __creall (long double _Complex a);1

Fortran descriptions CREAL(A)
where A is of type COMPLEX(8)
result is of type REAL(8)
CREALL(A)
where A is of type COMPLEX(16)
result is of type REAL(16)

Function Extract imaginary part of complex (single-precision): __cimagf

Purpose Extracts the secondary part of a single-precision complex value a, and
returns the result as a single real value.

Formula result =secondary(a)

C/C++ prototype float __cimagf (float _Complex a);

Fortran descriptions CIMAGF(A)
where A is of type COMPLEX(4)
result is of type REAL(4)

Function Extract imaginary part of complex (double-precision): __cimag,
__cimagl

Purpose Extracts the imaginary part of a double-precision complex value a, and
returns the result as a single real value.

Formula result =secondary(a)

C/C++ prototype double __cimag (double _Complex a);
long double __cimagl (long double _Complex a);1

Fortran descriptions CIMAG(A)
where A is of type COMPLEX(8)
result is of type REAL(8)
CIMAGL(A)
where A is of type COMPLEX(16)
result is of type REAL(16)

1. 128-bit C/C++ long double types are not supported on Blue Gene/L. Long doubles are treated
as regular double-precision longs.
Chapter 4. Developing applications with IBM XL compilers 37

4.14 Load and store functions
Table 4-3 lists and explains the various parallel load and store functions that are available.

Table 4-3 Load and store functions

Function Parallel load (single-precision): __lfps

Purpose Loads parallel single-precision values from the address of a, and converts
the results to double-precision. The first word in address(a) is loaded into
the primary element of the return value. The next word, at location
address(a)+4, is loaded into the secondary element of the return value.

Formula primary(result) = a[0]
secondary(result) = a[1]

C/C++ prototype double _Complex __lfps (float * a);

Fortran description LOADFP(A)
where A is of type REAL(4)
result is of type COMPLEX(8)

Function Cross load (single-precision): __lfxs

Purpose Loads single-precision values that have been converted to
double-precision, from the address of a. The first word in address(a) is
loaded into the secondary element of the return value. The next word, at
location address(a)+4, is loaded into the primary element of the return
value.

Formula primary(result) = a[1]
secondary(result) = a[0]

C/C++ prototype double _Complex __lfxs (float * a);

Fortran description LOADFX(A)
where A is of type REAL(4)
result is of type COMPLEX(8)

Function Parallel load: __lfpd

Purpose Loads parallel values from the address of a. The first word in address(a) is
loaded into the primary element of the return value. The next word, at
location address(a)+8, is loaded into the secondary element of the return
value.

Formula primary(result) = a[0]
secondary(result) = a[1]

C/C++ prototype double _Complex __lfpd(double* a);

Fortran description LOADFP(A)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross load: __lfxd

Purpose Loads values from the address of a. The first word in address(a) is loaded
into the secondary element of the return value. The next word, at location
address(a)+8, is loaded into the primary element of the return value.

Formula primary(result) = a[1]
secondary(result) = a[0]

C/C++ prototype double _Complex __lfxd (double * a);
38 Blue Gene/L: Application Development

Fortran description LOADFX(A)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Parallel store (single-precision): __stfps

Purpose Stores in parallel double-precision values that have been converted to
single-precision, into address(b). The primary element of a is converted to
single-precision and stored as the first word in address(b). The secondary
element of a is converted to single-precision and stored as the next word
at location address(b)+4.

Formula b[0] = primary(a)
b[1]= secondary(a)

C/C++ prototype void __stfps (float * b, double _Complex a);

Fortran description STOREFP(B, A)
where B is of type REAL(4)
A is of type COMPLEX(8)
result is none

Function Cross store (single-precision): __stfxs

Purpose Stores double-precision values that have been converted to
single-precision, into address(b). The secondary element of a is converted
to single-precision and stored as the first word in address(b). The primary
element of a is converted to single-precision and stored as the next word
at location address(b)+4.

Formula b[0] = secondary(a)
b[1] = primary(a)

C/C++ prototype void __stfxs (float * b, double _Complex a);

Fortran description STOREFX(B, A)
where B is of type REAL(4)
A is of type COMPLEX(8)
result is none

Function Parallel store: __stfpd

Purpose Stores in parallel values into address(b). The primary element of a is
stored as the first double word in address(b). The secondary element of a
is stored as the next double word at location address(b)+8.

Formula b[0] = primary(a)
b[1] = secondary(a)

C/C++ prototype void __stfpd (double * b, double _Complex a);

Fortran description STOREFP(B, A)
where B is of type REAL(8)
A is of type COMPLEX(8)
result is none
Chapter 4. Developing applications with IBM XL compilers 39

4.15 Move functions
Table 4-4 lists and explains the parallel move functions that are available.

Table 4-4 Move functions

Function Cross store: __stfxd

Purpose Stores values into address(b). The secondary element of a is stored as the
first double word in address(b). The primary element of a is stored as the
next double word at location address(b)+8.

Formula b[0] = secondary(a)
b[1] = primary(a)

C/C++ prototype void __stfxd (double * b, double _Complex a);

Fortran description STOREFP(B, A)
where B is of type REAL(8)
A is of type COMPLEX(8)
result is none

Function Parallel store as integer: __stfpiw

Purpose Stores in parallel floating-point double-precision values into b as integer
words. The lower-order 32 bits of the primary element of a are stored as
the first integer word in address(b). The lower-order 32 bits of the
secondary element of a are stored as the next integer word at location
address(b)+4. This function is typically preceded by a call to the __fpctiw
or __fpctiwz built-in functions, described in 4.16.1, “Unary functions” on
page 41, which perform parallel conversion of dual floating-point values to
integers.

Formula b[0] = primary(a)
b[1] = secondary(a)

C/C++ prototype void __stfpiw (int * b, double _Complex a);

Fortran description STOREFP(B, A)
where B is of type INTEGER(4)
A is of type COMPLEX(8)
result is none

Function Cross move: __fxmr

Purpose Swaps the values of the primary and secondary elements of operand a.

Formula primary(result) = secondary(a)
secondary(result) = primary(a)

C/C++ prototype double _Complex __fxmr (double _Complex a);

Fortran
description

FXMR(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
40 Blue Gene/L: Application Development

4.16 Arithmetic functions
The following sections describe all the arithmetic built-in functions, categorized by their
number of operands.

4.16.1 Unary functions
Unary functions operate on a single input operand. These functions are listed in Table 4-5.

Table 4-5 Unary functions

Function Parallel convert to integer: __fpctiw

Purpose Converts in parallel the primary and secondary elements of operand a to
32-bit integers using the current rounding mode.
After a call to this function, use the __stfpiw function to store the
converted integers in parallel, as explained in 4.14, “Load and store
functions” on page 38.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++ prototype double _Complex __fpctiw (double _Complex a);

Fortran purpose FPCTIW(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel convert to integer and round to zero: __fpctiwz

Purpose Converts in parallel the primary and secondary elements of operand a to
32 bit integers and rounds the results to zero.
After a call to this function, use the __stfpiw function to store the
converted integers in parallel, as explained in 4.14, “Load and store
functions” on page 38.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++ prototype double _Complex __fpctiwz(double _Complex a);

Fortran description FPCTIWZ(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel round double-precision to single-precision: __fprsp

Purpose Rounds in parallel the primary and secondary elements of
double-precision operand a to single precision.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++ prototype double _Complex __fprsp (double _Complex a);

Fortran description FPRSP(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
Chapter 4. Developing applications with IBM XL compilers 41

Function Parallel reciprocal estimate: __fpre

Purpose Calculates in parallel double-precision estimates of the reciprocal of the
primary and secondary elements of operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++ prototype double _Complex __fpre(double _Complex a);

Fortran description FPRE(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel reciprocal square root: __fprsqrte

Purpose Calculates in parallel double-precision estimates of the reciprocals of the
square roots of the primary and secondary elements of operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++ prototype double _Complex __fprsqrte (double _Complex a);

Fortran description FPRSQRTE(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel negate: __fpneg

Purpose Calculates in parallel the negative values of the primary and secondary
elements of operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++ prototype double _Complex __fpneg (double _Complex a);

Fortran description FPNEG(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel absolute: __fpabs

Purpose Calculates in parallel the absolute values of the primary and secondary
elements of operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++ prototype double _Complex __fpabs (double _Complex a);

Fortran description FPABS(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
42 Blue Gene/L: Application Development

4.16.2 Binary functions
Binary functions operate on two input operands. The functions are listed in Table 4-6.

Table 4-6 Binary functions

Function Parallel negate absolute: __fpnabs

Purpose Calculates in parallel the negative absolute values of the primary and
secondary elements of operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++ prototype double _Complex __fpnabs (double _Complex a);

Fortran description FPNABS(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel add: __fpadd

Purpose Adds in parallel the primary and secondary elements of operands a and b.

Formula primary(result) = primary(a) + primary(b)
secondary(result) = secondary(a) + secondary(b)

C/C++ prototype double _Complex __fpadd (double _Complex a, double _Complex b);

Fortran description FPADD(A,B)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel subtract: __fpsub

Purpose Subtracts in parallel the primary and secondary elements of operand b
from the corresponding primary and secondary elements of operand a.

Formula primary(result) = primary(a) - primary(b)
secondary(result) = secondary(a) - secondary(b)

C/C++ prototype double _Complex __fpsub (double _Complex a, double _Complex b);

Fortran description FPSUB(A,B)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel multiply: __fpmul

Purpose Multiples in parallel the values of primary and secondary elements of
operands a and b.

Formula primary(result) = primary(a) × primary(b)
secondary(result) = secondary(a) × secondary(b)

C/C++ prototype double _Complex __fpmul (double _Complex a, double _Complex b);

Fortran description FPMUL(A,B)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
result is of type COMPLEX(8)
Chapter 4. Developing applications with IBM XL compilers 43

4.16.3 Multiply-add functions
Multiply-add functions take three input operands, multiply the first two, and add or subtract the
third. Table 4-7 lists these functions.

Table 4-7 Multiply-add functions

Function Cross multiply: __fxmul

Purpose The product of the secondary element of a and the primary element of b
is stored as the primary element of the return value. The product of the
primary element of a and the secondary element of b is stored as the
secondary element of the return value.

Formula primary(result) = secondary(a) x primary(b)
secondary(result) = primary(a) × secondary(b)

C/C++ prototype double _Complex __fxmul (double _Complex a, double _Complex b);

Fortran description FXMUL(A,B)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross copy multiply: _fxpmul, __fxsmul

Purpose Both of these functions can be used to achieve the same result. The
product of a and the primary element of b is stored as the primary element
of the return value. The product of a and the secondary element of b is
stored as the secondary element of the return value.

Formula primary(result) = a x primary(b)
secondary(result) = a x secondary(b)

C/C++ prototype double _Complex __fxpmul (double _Complex b, double a);
double _Complex __fxsmul (double _Complex b, double a);

Fortran description FXPMUL(B,A) or FXSMUL(B,A)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel multiply-add: __fpmadd

Purpose The sum of the product of the primary elements of a and b, added to the
primary element of c, is stored as the primary element of the return value.
The sum of the product of the secondary elements of a and b, added to the
secondary element of c, is stored as the secondary element of the return
value.

Formula primary(result) = primary(a) × primary(b) + primary(c)
secondary(result) = secondary(a) × secondary(b) + secondary(c)

C/C++ prototype double _Complex __fpmadd (double _Complex c, double _Complex b,
double _Complex a);

Fortran description FPMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
44 Blue Gene/L: Application Development

Function Parallel negative multiply-add: __fpnmadd

Purpose The sum of the product of the primary elements of a and b, added to the
primary element of c, is negated and stored as the primary element of the
return value. The sum of the product of the secondary elements of a and
b, added to the secondary element of c, is negated and stored as the
secondary element of the return value.

Formula primary(result) = -(primary(a) × primary(b) + primary(c))
secondary(result) = -(secondary(a) × secondary(b) + secondary(c))

C/C++ prototype double _Complex __fpnmadd (double _Complex c, double _Complex b,
double _Complex a);

Fortran description FPNMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel negative multiply-add: __fpnmadd

Purpose The sum of the product of the primary elements of a and b, added to the
primary element of c, is negated and stored as the primary element of the
return value. The sum of the product of the secondary elements of a and
b, added to the secondary element of c, is negated and stored as the
secondary element of the return value.

Formula primary(result) = -(primary(a) × primary(b) + primary(c))
secondary(result) = -(secondary(a) × secondary(b) + secondary(c))

C/C++ prototype double _Complex __fpnmadd (double _Complex c, double _Complex b,
double _Complex a);

Fortran description FPNMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel multiply-subtract: __fpmsub

Purpose The difference of the primary element of c, subtracted from the product of
the primary elements of a and b, is stored as the primary element of the
return value. The difference of the secondary element of c, subtracted
from the product of the secondary elements of a and b, is stored as the
secondary element of the return value.

Formula primary(result) = primary(a) × primary(b) - primary(c)
secondary(result) = secondary(a) × secondary(b) - secondary(c)

C/C++ prototype double _Complex __fpmsub (double _Complex c, double _Complex b,
double _Complex a);

Fortran description FPMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
Chapter 4. Developing applications with IBM XL compilers 45

Function Parallel negative multiply-subtract: __fpnmsub

Purpose The difference of the primary element of c, subtracted from the product of
the primary elements of a and b, is negated and stored as the primary
element of the return value. The difference of the secondary element of c,
subtracted from the product of the secondary elements of a and b, is
negated and stored as the secondary element of the return value.

Formula primary(result) = -(primary(a) × primary(b) - primary(c))
secondary(result) = -(secondary(a) × secondary(b) - secondary(c))

C/C++ prototype double _Complex __fpnmsub (double _Complex c, double _Complex b,
double _Complex a);

Fortran description FPNMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross multiply-add: __fxmadd

Purpose The sum of the product of the secondary element of a and the primary
element of b, added to the primary element of c, is stored as the primary
element of the return value. The sum of the product of the primary element
of a and the secondary b, added to the secondary element of c, is stored
as the secondary element of the return value.

Formula primary(result) = secondary(a) × primary(b) + primary(c)
secondary(result) = primary(a) × secondary(b) + secondary(c)

C/C++ prototype double _Complex __fxmadd (double _Complex c, double _Complex b,
double _Complex a);

Fortran description FXMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross negative multiply-add: __fxnmadd

Purpose The sum of the product of the secondary element of a and the primary
element of b, added to the primary element of c, is negated and stored as
the primary element of the return value. The sum of the product of the
primary element of a and the secondary element of b, added to the
secondary element of c, is negated and stored as the secondary element
of the return value.

Formula primary(result) = -(secondary(a) × primary(b) + primary(c))
secondary(result) = -(primary(a) × secondary(b) + secondary(c))

C/C++ prototype double _Complex __fxnmadd (double _Complex c, double _Complex b,
double _Complex a);

Fortran description FXNMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
46 Blue Gene/L: Application Development

Function Cross multiply-subtract: __fxmsub

Purpose The difference of the primary element of c, subtracted from the product of
the secondary element of a and the primary element of b, is stored as the
primary element of the return primary element of a and the secondary
element of b is stored as the secondary element of the return value.

Formula primary(result) = secondary(a) × primary(b) - primary(c)
secondary(result) = primary(a) × secondary(b) - secondary(c)

C/C++ prototype double _Complex __fxmsub (double _Complex c, double _Complex b,
double _Complex a);

Fortran description FXMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross negative multiply-subtract: __fxnmsub

Purpose The difference of the primary element of c, subtracted from the product of
the secondary element of a and the primary element of b, is negated and
stored as the primary element of the return value. The difference of the
secondary element of c, subtracted from the product of the primary
element of a and the secondary element of b, is negated and stored as the
secondary element of the return value.

Formula primary(result) = -(secondary(a) × primary(b) - primary(c))
secondary(result) = -(primary(a) × secondary(b) - secondary(c))

C/C++ prototype double _Complex __fxnmsub (double _Complex c, double _Complex b,
double _Complex a);

Fortran description FXNMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross copy multiply-add: __fxcpmadd, __fxcsmadd

Purpose Both of these functions can be used to achieve the same result. The sum
of the product of a and the primary element of b, added to the primary
element of c, is stored as the primary element of the return value. The sum
of the product of a and the secondary element of b, added to the
secondary element of c, is stored as the secondary element of the return
value.

Formula primary(result) = a x primary(b) + primary(c)
secondary(result) = a x secondary(b) + secondary(c)

C/C++ prototype double _Complex __fxcpmadd (double _Complex c, double _Complex b,
double a);
double _Complex __fxcsmadd (double _Complex c, double _Complex b,
double a);

Fortran description FXCPMADD(C,B,A) or FXCSMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)
Chapter 4. Developing applications with IBM XL compilers 47

Function Cross copy negative multiply-add: __fxcpnmadd, __fxcsnmadd

Purpose Both of these functions can be used to achieve the same result. The
difference of the primary element of c, subtracted from the product of a and
the primary element of b, is negated and stored as the primary element of
the return value. The difference of the secondary element of c, subtracted
from the product of a and the secondary element of b, is negated and
stored as the secondary element of the return value.

Formula primary(result) = -(a x primary(b) + primary(c))
secondary(result) = -(a x secondary(b) + secondary(c))

C/C++ prototype double _Complex __fxcpnmadd (double _Complex c, double _Complex b,
double a);
double _Complex __fxcsnmadd (double _Complex c, double _Complex b,
double a);

Fortran description FXCPNMADD(C,B,A) or FXCSNMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross copy multiply-subtract: __fxcpmsub, __fxcsmsub

Purpose Both of these functions can be used to achieve the same result. The
difference of the primary element of c, subtracted from the product of a and
the primary element of b, is stored as the primary element of the return
value. The difference of the secondary element of c, subtracted from the
product of a and the secondary element of b, is stored as the secondary
element of the return value.

Formula primary(result) = a x primary(b) - primary(c)
secondary(result) = a x secondary(b) - secondary(c)

C/C++ prototype double _Complex __fxcpmsub (double _Complex c, double _Complex b,
double a);
double _Complex __fxcsmsub (double _Complex c, double _Complex b,
double a);

Fortran description FXCPMSUB(C,B,A) or FXCSMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross copy negative multiply-subtract: __fxcpnmsub, __fxcsnmsub

Purpose Both of these functions can be used to achieve the same result. The
difference of the primary element of c, subtracted from the product of a and
the primary element of b, is negated and stored as the primary element of
the return value. The difference of the secondary element of c, subtracted
from the product of a and the secondary element of b, is negated and
stored as the secondary element of the return value.

Formula primary(result) = -(a x primary(b) - primary(c))
secondary(result) = -(a x secondary(b) - secondary(c))

C/C++ prototype double _Complex __fxcpnmsub (double _Complex c, double _Complex b,
double a);
double _Complex __fxcsnmsub (double _Complex c, double _Complex b,
double a);
48 Blue Gene/L: Application Development

Fortran description FXCPNMSUB(C,B,A) or FXCSNMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross copy sub-primary multiply-add: __fxcpnpma, __fxcsnpma

Purpose Both of these functions can be used to achieve the same result. The
difference of the primary element of c, subtracted from the product of a and
the primary element of b, is negated and stored as the primary element of
the return value. The sum of the product of a and the secondary element
of b, added to the secondary element of c, is stored as the secondary
element of the return value.

Formula primary(result) = -(a x primary(b) - primary(c))
secondary(result) = a x secondary(b) + secondary(c)

C/C++ prototype double _Complex __fxcpnpma (double _Complex c, double _Complex b,
double a);
double _Complex __fxcsnpma (double _Complex c, double _Complex b,
double a);

Fortran description FXCPNPMA(C,B,A) or FXCSNPMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross copy sub-secondary multiply-add: __fxcpnsma, __fxcsnsma

Purpose Both of these functions can be used to achieve the same result. The sum
of the product of a and the primary element of b, added to the primary
element of c, is stored as the primary element of the return value. The
difference of the secondary element of c, subtracted from the product of a
and the secondary element of b, is negated and stored as the secondary
element of the return value.

Formula primary(result) = a x primary(b) + primary(c))
secondary(result) = -(a x secondary(b) - secondary(c))

C/C++ prototype double _Complex __fxcpnsma (double _Complex c, double _Complex b,
double a);
double _Complex __fxcsnsma (double _Complex c, double _Complex b,
double a);

Fortran description FXCPNSMA(C,B,A) or FXCSNSMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)
Chapter 4. Developing applications with IBM XL compilers 49

Function Cross mixed multiply-add: __fxcxma

Purpose The sum of the product of a and the secondary element of b, added to the
primary element of c, is stored as the primary element of the return value.
The sum of the product of a and the primary element of b, added to the
secondary element of c, is stored as the secondary element of the return
value.

Formula primary(result) = a x secondary(b) + primary(c)
secondary(result) = a x primary(b) +secondary(c)

C/C++ prototype double _Complex __fxcxma (double _Complex c, double _Complex b,
double a);

Fortran description FXCXMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross mixed negative multiply-subtract: __fxcxnms

Purpose The difference of the primary element of c, subtracted from the product of
a and the secondary element of b, is negated and stored as the primary
element of the return value. The difference of the secondary element of c,
subtracted from the product of a and the primary element of b, is negated
and stored as the primary secondary of the return value.

Formula primary(result) = -(a × secondary(b) - primary(c))
secondary(result) = -(a × primary(b) - secondary(c))

C/C++ prototype double _Complex __fxcxnms (double _Complex c, double _Complex b,
double a);

Fortran description FXCXNMS(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross mixed sub-primary multiply-add: __fxcxnpma

Purpose The difference of the primary element of c, subtracted from the product of
a and the secondary element of b, is stored as the primary element of the
return value. The sum of the product of a and the primary element of b,
added to the secondary element of c, is stored as the secondary element
of the return value.

Formula primary(result) = -(a × secondary(b) - primary(c))
secondary(result) = a × primary(b) + secondary(c)

C/C++ prototype double _Complex __fxcxnpma (double _Complex c, double _Complex b,
double a);

Fortran description FXCXNPMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)
50 Blue Gene/L: Application Development

4.17 Select functions
Table 4-8 lists and explains the parallel select functions that are available.

Table 4-8 Select functions

Function Cross mixed sub-secondary multiply-add: __fxcxnsma

Purpose The sum of the product of a and the secondary element of b, added to the
primary element of c, is stored as the primary element of the return value.
The difference of the secondary element of c, subtracted from the product
of a and the primary element of b, is stored as the secondary element of
the return value.

Formula primary(result) = a x secondary(b) + primary(c))
secondary(result) = -(a x primary(b) - secondary(c))

C/C++ prototype double _Complex __fxcxnsma (double _Complex c, double _Complex b,
double a);

Fortran description FXCXNSMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Parallel select: __fpsel

Purpose The value of the primary element of a is compared to zero. If its value is
equal to or greater than zero, the primary element of c is stored in the
primary element of the return value. Otherwise the primary element of b is
stored in the primary element of the return value. The value of the
secondary element of a is compared to zero. If its value is equal to or
greater than zero, the secondary element of c is stored in the secondary
element of the return value. Otherwise, the secondary element of b is
stored in the secondary element of the return value.

Formula primary(result) = if primary(a) then primary(c); else primary(b)
secondary(result) = if secondary(a) then primary(c); else
secondary(b)

C/C++ prototype double _Complex __fpsel (double _Complex a, double _Complex b,
double _Complex c);

Fortran description FPSEL(A,B,C)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
where C is of type COMPLEX(8)
result is of type COMPLEX(8)

0≥
0≥
Chapter 4. Developing applications with IBM XL compilers 51

4.18 Examples of built-in functions usage
The following definitions create a custom parallel add function that uses the parallel load and
add built-in functions to add two double floating-point values in parallel and return the result
as a complex number. See Example 4-8 for C/C++ and Example 4-9 for Fortran.

Example 4-8 Using built-in functions: C/C++

double _Complex padd(double *x, double *y)
{
double _Complex a,b,c;
/* note possiblity of alignment trap if (((unsigned int) x) % 32) >= 17) */

a = __lfpd(x); //load x[0] to the primary part of a, x[1] to the secondary part of a
b = __lfpd(y); //load y[0] to primary part of b, y[1] to the secondary part of b
c = __fpadd(a,b); // the primary part of c = x[0] + y[0]

 /* the secondary part of c = x[1] + y[1] */
return c;

/* alternately: */
return __fpadd(__lfpd(x), __lfpd(y)); /* same code generated with optimization

enabled */
}

Example 4-9 Using built-in functions: Fortran

FUNCTION PADD (X, Y)
 COMPLEX(8) PADD
 REAL(8) X, Y
 COMPLEX(8) A, B, C

 A = LOADFP(X)
 B = LOADFP(Y)
 PADD = FPADD(A,B)

 RETURN
 END
52 Blue Gene/L: Application Development

Chapter 5. Running and debugging

This chapter explains how to run and debug applications on Blue Gene/L.

5

© Copyright IBM Corp. 2005. All rights reserved. 53

5.1 Running applications
There are several ways to run Blue Gene/L applications. We briefly discuss each and provide
references for more detailed documentation.

5.1.1 mmcs_db_console
It is possible to run applications directly from mmcs_db_console. The main drawback to using
this approach is that it requires users to have direct access to the service node, which is
undesirable from a security perspective.

When using mmcs_db_console, it is necessary to first manually select and allocate a block. At
this point, it is possible to run Blue Gene/L applications. The following set of commands from
the mmcs_db_console window shows how to accomplish this. The name of the system used is
beta18sn, the block used is BETA18, and the name of the program executed is calc_pi.

beta18sn:/ # cd /bgl/BlueLight/ppcfloor/bglsys/bin
beta18sn:/bgl/BlueLight/ppcfloor/bglsys/bin # source db2profile
beta18sn:/bgl/BlueLight/ppcfloor/bglsys/bin # ./mmcs_db_console
connecting to mmcs server
set_username root
OK
connected to mmcs server
connected to DB2
mmcs$ free BETA18
OK
mmcs$ allocate BETA18
OK
mmcs$ submitjob BETA18 /bgl/home/garymu/a.out /bgl/home/garymu/out
OK
jobId=11019
mmcs$

For more information about using mmcs_db_console, see Blue Gene/L: System Administration,
ZG24-6744.

5.1.2 mpirun
In the absence of a scheduling application, mpirun is the recommended way to run Blue
Gene/L applications. Users can access this application from the front-end node, which
provides better security protection than using mmcs_db_console.

For more complete information about using mpirun see Blue Gene/L: System Administration,
ZG24-6744.

With mpirun, you can select and allocate a block and run a Message Passing Interface (MPI)
application, all in one step. You can do this as shown in Example 5-1.

Note: Throughout this section, we use a generic Secure Shell (SSH) client to access the
various Blue Gene/L nodes.
54 Blue Gene/L: Application Development

Example 5-1 Using mpirun

beta18sn:/bgl/BlueLight/ppcfloor/bglsys/bin # source db2profile
beta18sn:/bgl/BlueLight/ppcfloor/bglsys/bin # export
BRIDGE_CONFIG_FILE=/bgl/BlueLight/ppcdriver/bglsys/bin/bridge.config
beta18sn:/bgl/BlueLight/ppcfloor/bglsys/bin # ./mpirun -partition BETA18 \
 -exe /bgl/home/garymu/calc_pi \
 -cwd /bgl/home/garymu/out \
 -verbose 1

<Jun 26 02:38:34> FE_MPI (Info) : Initializing MPIRUN
<Jun 26 02:38:34> FE_MPI (Info) : Scheduler interface library loaded
<Jun 26 02:38:36> BRIDGE (Info) : The machine serial number (alias) is BGL
<Jun 26 02:38:36> FE_MPI (Info) : Back-End invoked:
<Jun 26 02:38:36> FE_MPI (Info) : - Service Node: beta18sn.rchland.ibm.com
<Jun 26 02:38:36> FE_MPI (Info) : - Back-End pid: 28879 (on service node)
<Jun 26 02:38:36> FE_MPI (Info) : Preparing partition
<Jun 26 02:38:37> BE_MPI (Info) : Examining specified partition
<Jun 26 02:38:37> BE_MPI (Info) : Checking partition BETA18 initial state ...
<Jun 26 02:38:37> BE_MPI (Info) : Partition BETA18 initial state = READY ('I')
<Jun 26 02:38:37> BE_MPI (Info) : Checking partition owner...
<Jun 26 02:38:37> BE_MPI (Info) : Checking if the partition is busy ...
<Jun 26 02:38:38> BE_MPI (Info) : Checking partition size ...
<Jun 26 02:38:38> BE_MPI (Info) : Partition owner matches the current user
<Jun 26 02:38:38> BE_MPI (Info) : Done preparing partition
<Jun 26 02:38:38> FE_MPI (Info) : Adding job
<Jun 26 02:38:39> FE_MPI (Info) : Job added with the following id: 760498
<Jun 26 02:38:39> FE_MPI (Info) : Starting job 760498
<Jun 26 02:38:39> FE_MPI (Info) : IO listener thread successfully started. Id=1099197216
<Jun 26 02:38:40> FE_MPI (Info) : Waiting for job to terminate
<Jun 26 02:38:44> FE_MPI (Info) : IO listener thread - Got connection request
<Jun 26 02:38:45> FE_MPI (Info) : IO listener thread - Threads initialized
***** Job Output Here *****
<Jun 26 02:38:51> BE_MPI (Info) : Job 760498 switched to state TERMINATED ('T')
<Jun 26 02:38:51> BE_MPI (Info) : Job successfully terminated
<Jun 26 02:38:53> FE_MPI (Info) : BG/L job exit status = (0)
<Jun 26 02:38:53> FE_MPI (Info) : Job terminated normally
<Jun 26 02:38:54> BE_MPI (Info) : Starting cleanup sequence
<Jun 26 02:38:54> BE_MPI (Info) : BG/L Job alredy terminated / hasn't been added
<Jun 26 02:38:55> BE_MPI (Info) : Partition was supplied with READY ('I') initial state
<Jun 26 02:38:55> BE_MPI (Info) : No need to destroy the partition
<Jun 26 02:38:57> BE_MPI (Info) : == BE completed ==
<Jun 26 02:38:57> FE_MPI (Info) : == FE completed ==
<Jun 26 02:38:57> FE_MPI (Info) : == Exit status: 0 ==

All output in this example is sent to the screen. In order for this information to be sent to a file,
it is necessary to add something like the following line to the end of the mpirun command:

>/bgl/home/garymu/out/calc_pi.stdout 2>/bgl/home/garymu/out/calc_pi.stderr

This sends standard output to a file called calc_pi.stdout and standard error to a file called
calc_pi.stderr. Both files are in the /bgl/home/garymu/out directory.

5.1.3 LoadLeveler
At present, LoadLeveler support for Blue Gene/L is provided via a PRPQ. LoadLeveler is an
IBM product that is intended to manage both serial and parallel jobs over a cluster of servers.
This distributed environment consists of a pool of machines or servers, often referred to as a
LoadLeveler cluster. Machines in the pool may be of several types: desktop workstations
Chapter 5. Running and debugging 55

available for batch jobs (usually when not in use by their owner), dedicated servers, and
parallel machines.

Jobs are allocated to machines in the cluster by a scheduler. The allocation of the jobs
depends on the availability of resources within the cluster and various rules, which can be
defined by the LoadLeveler administrator. A user submits a job using a job command file. The
LoadLeveler scheduler attempts to find resources within the cluster to satisfy the
requirements of the job. At the same time, it is the job of LoadLeveler to maximize the
efficiency of the cluster. It attempts to do this by maximizing the utilization of resources, while
at the same time minimizing the job turnaround time experienced by users.

Some of the tasks that LoadLeveler can perform include:

� Choosing the next job to run
� Examining the job requirements
� Collecting available resources in its cluster
� Choosing the “best” machines for the job
� Dispatching the job to the selected machine
� Controlling running jobs

For more information about LoadLeveler support, see Blue Gene/L: System Administration,
ZG24-6744.

5.1.4 Other scheduler products
You can use custom scheduling applications to run applications on Blue Gene/L. You write
custom “glue” code between the scheduler and Blue Gene/L using the Bridge application
programming interfaces (APIs), which are described in Chapter 7, “Control system (Bridge)
APIs” on page 71.

5.2 Debugging applications
This section discusses the debuggers that are supported by Blue Gene/L.

5.2.1 GDB
GDB is the primary debugger of the GNU project. You can learn more about GDB at:

http://www.gnu.org/software/gdb/gdb.html

A great amount of documentation is available about the GDB debugger. Since we do not
discuss how to use it in this book, refer to the following Web site for details:

http://www.gnu.org/software/gdb/documentation/

Support has been added to Blue Gene/L which allows the GDB debugger to work with
applications running on Compute Nodes. Each running instance of GDB is associated with
one, and only one, Compute Node. If you need to debug an MPI application running on
multiple compute nodes, and you need to (for example) view variables associated with more
than one instance of the application, you run multiple instances of GDB. This is different from
the more sophisticated support offered by the TotalView debugger (see 5.2.2, “TotalView” on
page 59), which makes it possible for a single debug instance to control multiple Compute
Nodes simultaneously.
56 Blue Gene/L: Application Development

http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/documentation/

Prerequisite software
The GDB debugger should have been installed during the installation procedure defined in
Blue Gene/L: System Administration, ZG24-6744. You can verify the installation by seeing if
the /bgl/BlueLight/ppcfloor/ppc/linux-gnu/bin/powerpc-linux-gnu-gdb file exists on your Front
End Node.

The rest of the software support required for GDB should be installed as part of the control
programs.

Preparing your program
The MPI program that you want to debug must be compiled in a manner that allows for
debugging information (symbol tables, ties to source, etc.) to be included in the executable. In
addition, do not use compiler optimization because it make it difficult, if not impossible, to tie
object code back to source. For example, when compiling a program written in C that you
want to debug, compile the application using an invocation similar to the following example:

/opt/ibmcmp/vac/7.0/bin/blrts_xlc -g -O0 -qarch=440d -qtune=440 ...

The -g switch tells the compiler to include debug information. The -O0 (the letter capital “O”
followed by a zero) switch tells it to disable optimization.

For more information about the IBM XL compilers for Blue Gene/L, see Chapter 4,
“Developing applications with IBM XL compilers” on page 25.

Debugging
Follow these steps to start debugging your application. For the sake of this example, let’s say
that the program’s name is MyMPI.rts, and the source code file is MyMPI.c. We use a
partition (block) called BETA18.

1. Open two separate console shells.

2. Go to the first shell window.

a. Change (cd) to the directory containing your program executable.

b. Start your application (in this case, MyMPI.rts) using mpirun with a command similar to
the following example:

/bgl/BlueLight/ppcfloor/bglsys/bin/mpirun -partition BETA18 -exe
/bgl/home/garymu/MyMPI.rts -cwd /bgl/home/garymu/out/ -start_gdbserver
/bgl/BlueLight/ppcfloor/ppc/dist/sbin/gdbserver.440 -verbose 1

c. You should see messages shown in Example 5-2 in the console.

Example 5-2 Messages in the console

<Jun 26 02:59:18> FE_MPI (Info) : Initializing MPIRUN
<Jun 26 02:59:18> FE_MPI (Info) : Scheduler interface library loaded
<Jun 26 02:59:20> BRIDGE (Info) : The machine serial number (alias) is BGL
<Jun 26 02:59:20> FE_MPI (Info) : Back-End invoked:
<Jun 26 02:59:20> FE_MPI (Info) : - Service Node: beta18sn.rchland.ibm.com
<Jun 26 02:59:20> FE_MPI (Info) : - Back-End pid: 30502 (on service node)
<Jun 26 02:59:20> FE_MPI (Info) : Preparing partition
<Jun 26 02:59:21> BE_MPI (Info) : Examining specified partition
<Jun 26 02:59:21> BE_MPI (Info) : Checking partition BETA18 initial state ...
<Jun 26 02:59:21> BE_MPI (Info) : Partition BETA18 initial state = READY ('I')
<Jun 26 02:59:21> BE_MPI (Info) : Checking partition owner...

Important: Make sure that the text file containing the source for your program is located in
the same directory as the program itself and has the same file name (different extension).
Chapter 5. Running and debugging 57

<Jun 26 02:59:21> BE_MPI (Info) : Checking if the partition is busy ...
<Jun 26 02:59:21> BE_MPI (Info) : Checking partition size ...
<Jun 26 02:59:21> BE_MPI (Info) : Partition owner matches the current user
<Jun 26 02:59:21> BE_MPI (Info) : Done preparing partition
<Jun 26 02:59:22> FE_MPI (Info) : Adding job
<Jun 26 02:59:22> BE_MPI (Info) : No CWD specified ('-cwd' option)
<Jun 26 02:59:22> BE_MPI (Info) : - it will be set to '/bgl'
<Jun 26 02:59:23> FE_MPI (Info) : Job added with the following id: 760506
<Jun 26 02:59:23> FE_MPI (Info) : Loading BG/L job
<Jun 26 02:59:23> BE_MPI (Info) : Loading BG/L job 760506 ...
<Jun 26 02:59:23> BE_MPI (Info) : Job load command successful
<Jun 26 02:59:23> BE_MPI (Info) : Waiting for BG/L job (760506) to get to Loaded/Running
state ...
<Jun 26 02:59:33> BE_MPI (Info) : Job 760506 switched to state LOADED
<Jun 26 02:59:38> BE_MPI (Info) : Job loaded successfully
<Jun 26 02:59:39> FE_MPI (Info) : Starting debugger setup for job 760506
<Jun 26 02:59:39> FE_MPI (Info) : Setting debug info in the block record
<Jun 26 02:59:39> BE_MPI (Info) : Set debugger executable and arguments in block
description
<Jun 26 02:59:39> BE_MPI (Info) : Data set successfully
<Jun 26 02:59:40> FE_MPI (Info) : Query job 760506 to find MPI ranks for compute nodes
<Jun 26 02:59:40> FE_MPI (Info) : Getting proctable for the debugger
<Jun 26 02:59:41> BE_MPI (Info) : Query job completed - proctable is filled in
<Jun 26 02:59:41> FE_MPI (Info) : Starting debugger servers on I/O nodes for job 760506
<Jun 26 02:59:41> FE_MPI (Info) : Attaching debugger to the BG/L job
<Jun 26 02:59:42> BE_MPI (Info) : Debugger servers are now spawning
<Jun 26 02:59:42> FE_MPI (Info) : Notifying debugger that servers have been spawned.

Make your connections to the compute nodes now - press [Enter] when you
are ready to run the app. To see the ip connection information for a
specific compute node, enter it's MPI rank and press [Enter]. To see
all of the compute nodes, type 'dump_proctable'.
>

d. Find the IP address and port of the Compute Node that you want to debug. You can do
this by either entering the rank of the program instance that you want to debug and
pressing Enter, or by dumping the address or port of each node by typing
dump_proctable and pressing Enter.

> 2
MPI Rank 2: Connect to 172.30.255.85:7302
> 4
MPI Rank 4: Connect to 172.30.255.85:7304
>
<Jun 26 03:01:07> FE_MPI (Info) : Debug setup is complete
<Jun 26 03:01:07> FE_MPI (Info) : Waiting for BG/L job to get to Loaded state
<Jun 26 03:01:08> BE_MPI (Info) : Waiting for BG/L job (760506) to get to
Loaded/Running state ...
<Jun 26 03:01:13> BE_MPI (Info) : Job loaded successfully
<Jun 26 03:01:13> FE_MPI (Info) : Beginning job 760506
<Jun 26 03:01:14> BE_MPI (Info) : Beginning BG/L job 760506 ...
<Jun 26 03:01:14> BE_MPI (Info) : Job begin command successful
<Jun 26 03:01:14> FE_MPI (Info) : Waiting for job to terminate
58 Blue Gene/L: Application Development

3. From the second shell, follow these steps:

a. Change (cd) to the directory that contains your program executable.

b. Type the following command, using the name of your own executable instead of
MyMPI.rts:

/bgl/BlueLight/ppcfloor/linux-gnu/bin/gdb MyMPI.rts

c. Enter the following command, using the address of the compute node that you want to
debug and determined in step d:

target remote ipaddr:port

4. You are now debugging the specified application on the configured compute node. Set one
or more breakpoints (using the GDB break command). Press Enter from the first shell to
continue that application. If successful, your breakpoint should eventually be hit in the
second shell and you can use standard GDB commands to continue.

5.2.2 TotalView
TotalView is a debugger product sold by Etnus, LLC. It is a completely separate product from
Blue Gene/L. For sales and support information go to:

http://www.etnus.com
Chapter 5. Running and debugging 59

http://www.etnus.com

60 Blue Gene/L: Application Development

Chapter 6. Checkpoint and restart support

This chapter provides details about the checkpoint and restart support provided by
Blue Gene/L.

6

© Copyright IBM Corp. 2005. All rights reserved. 61

6.1 Why use checkpoint and restart?
Given the scale of the Blue Gene/L system, faults are expected to be the norm rather than the
exception. This is unfortunately inevitable, given the vast number of individual hardware
processors and other components involved in running the system.

Checkpoint and restart are one of the primary techniques for fault recovery. A special
user-level checkpoint library has been developed for Blue Gene/L applications. Using this
library, application programs can take a checkpoint of their program state at appropriate
stages and can be restarted later from their last successful checkpoint.

Why should you be interested in this support? There are numerous scenarios that indicate
that use of this support is warranted. We highlight a few in the following list:

� Your application is a very long-running one. You don’t want it to fail a long time into a run,
losing all the calculations made up until the failure. Checkpoint and restart allow you to
restart the application at the last checkpoint position, losing a much smaller slice of
processing time.

� You are given access to a Blue Gene/L system for relatively small increments of time, and
you know that your application run will take longer than your allotted amount of processing
time. Checkpoint and restart allows you to execute your application to completion in
distinct “chunks,” rather than in one continuous period of time.

These are just two of many reasons to use checkpoint and restart support in your Blue
Gene/L applications.

6.2 Technical overview
The checkpoint library is a user-level library that provides support for user-initiated
checkpoints in parallel applications. The current implementation requires application
developers to insert calls manually to checkpoint library functions at proper places in the
application code. However, the restart is transparent to the application and requires only the
user or system to set specific environment variables while launching the application.

The application is expected to make a call to the BGLCheckpointInit() function at the
beginning of the program, to initialize the checkpoint related data structures, and carry out an
automated restart when needed. The application can then make calls to the BGLCheckpoint()
function to store a snapshot of the program state in stable storage (files on a disk). The
current model assumes that, when an application needs to take a checkpoint, all of the
following points are true:

� All the processes of the application will make a call to BGLCheckpoint().

� When a process makes a call to BGLCheckpoint(), there are no outstanding messages in
the network or buffers; that is the recv corresponding to all the send calls have taken
place.

� After a process has made a call to BGLCheckpoint(), other processes do not send
messages to the process until their checkpoint is complete. Typically, applications are
expected to place calls to BGLCheckpoint() immediately after a barrier operation, such as
MPI_Barrier or after a collective operation, such as MPI_Allreduce,, when there are no
outstanding messages in the MPI buffers and the network.

BGLCheckpoint() may be called multiple times. Successive checkpoints are identified and
distinguished by a checkpoint sequence number. A program state that corresponds to
62 Blue Gene/L: Application Development

different checkpoints is stored in separate files. It is possible to safely delete the old
checkpoint files after a newer checkpoint is complete.

The data corresponding to the checkpoints is stored in a user-specified directory. A separate
checkpoint file is made for each process. This checkpoint file contains header information and
a dump of the process’s memory, including its data and stack segments, but excluding its text
segment and read-only data. It also contains information pertaining to the input/output (I/O)
state of the application, including open files and the current file positions.

For restart, the same job is launched again with the environment variables
BGL_CHKPT_RESTART_SEQNO and BGL_CHKPT_DIR_PATH set to the appropriate
values. The BGLCheckpointInit() function checks for these environment variables and, if
specified, restarts the application from the desired checkpoint.

6.2.1 Input/output considerations
All the external I/O calls made from a program are shipped to the corresponding I/O Node
using a function shipping procedure implemented in the Compute Node Kernel.

The checkpoint library intercepts calls to the five main file I/O functions: open, close, read,
write, and lseek. The function name open is a weak alias that maps to the function
_libc_open. The checkpoint library intercepts this call and provides its own implementation of
open that internally uses the function _libc_open.

The library maintains a file state table that stores the file name and current file position and
the mode of all the files that are currently open. The table also maintains a translation that
translates the file descriptors used by the Compute Node Kernel to another set of file
descriptors to be used by the application. While taking a checkpoint, the file state table is also
stored in the checkpoint file. Upon a restart, these tables are read. Also the corresponding
files are opened in the required mode, and the file pointers are positioned at the desired
locations as given in the checkpoint file.

The current design assumes that the programs either always read the file or write the files
sequentially. A read followed by an overlapping write, or a write followed by an overlapping
read, is not supported.

6.2.2 Signal considerations
Applications can register handlers for signals using the signal() function call. The checkpoint
library intercepts calls to signal() and installs its own signal handler instead. It also updates a
signal-state table that stores the address of the signal handler function (sighandler) registered
for each signal (signum). When a signal is raised, the checkpoint signal handler calls the
appropriate application handler given in the signal-state table.

While taking checkpoints, the signal-state table is also stored in the checkpoint file in its
signal-state section. At the time of restart, the signal-state table is read, and the checkpoint
signal handler is installed for all the signals listed in the signal state table. The checkpoint
handler calls the required application handlers when needed.

Signals during checkpoint
The application can potentially receive signals while the checkpoint is in progress. If the
application signal handlers are called while a checkpoint is in progress, it can change the
state of the memory being checkpointed. This may make the checkpoint inconsistent.
Therefore, the signals arriving while a checkpoint is under progress need to be handled
carefully.
Chapter 6. Checkpoint and restart support 63

For certain signals, such as SIGKILL and SIGSTOP, the action is fixed and the application
terminates without much choice. The signals without any registered handler are simply
ignored. For signals with installed handlers, there are two choices:

� Deliver the signal immediately
� Postpone the signal delivery until the checkpoint is complete

All signals are classified into one of these two categories as shown in Table 6-1. If the signal
is to be delivered immediately, the memory state of the application may change, making the
current checkpoint file inconsistent. Therefore, the current checkpoint must be aborted. The
checkpoint routine periodically checks if a signal has been delivered since the current
checkpoint began. In case a signal has been delivered, it aborts the current checkpoint and
returns to the application.

For signals that are to be postponed, the checkpoint handler simply saves the signal
information in a pending signal list. When the checkpoint is complete, the library calls
application handlers for all the signals in the pending signal list. If more than one signal of the
same type is raised while the checkpoint is in progress, the checkpoint library ensures that
the handler registered by the application will be called at-least once. However, it does not
guarantee in-order-delivery of signals.

Table 6-1 Action taken on signal

Signal name Signal type Action to be taken

SIGINT Critical Deliver

SIGXCPU Critical Deliver

SIGILL Critical Deliver

SIGABRT/SIGIOT Critical Deliver

SIGBUS Critical Deliver

SIGFPE Critical Deliver

SIGSTP Critical Deliver

SIGSEGV Critical Deliver

SIGPIPE Critical Deliver

SIGSTP Critical Deliver

SIGSTKFLT Critical Deliver

SIGTERM Critical Deliver

SIGHUP Non-critical Postpone

SIGALRM Non-critical Postpone

SIGUSR1 Non-critical Postpone

SIGUSR2 Non-critical Postpone

SIGTSTP Non-critical Postpone

SIGVTALRM Non-critical Postpone

SIGPROF Non-critical Postpone

SIGPOLL/SIGIO Non-critical Postpone
64 Blue Gene/L: Application Development

Signals during restart
The pending signal list is not stored in the checkpoint file. Therefore, if an application is
restarted from a checkpoint, the handlers for pending signals received during checkpoint are
not called. If some signals are raised while the restart is in progress, they are ignored. The
checkpoint signal handlers are installed only in the end after the memory state, I/O state, and
signal-state table have been restored. This ensures that when the application signal handlers
are called, they see a consistent memory and I/O state.

6.3 Checkpoint API
The checkpoint interface consists of:

� A set of library functions that are used by the application developer to “checkpoint enable”
the application

� A set of conventions used to name and store the checkpoint files

� A set of environment variables used to communicate with the application

The following sections describe each of these components in detail.

6.3.1 Checkpoint library API
To ensure minimal overhead, the basic interface has been kept fairly simple. Ideally, a
programmer needs to call only two functions, one at the time of initialization and the other at
the places where the application needs to be checkpointed. Restart is done transparently
using the environment variable BGL_CHKPT_RESTART_SEQNO specified at the time of job
launch. Alternatively, an explicit restart API is also provided to the programmer to manually
restart the application from a specified checkpoint. The rest of this section describes the
checkpoint API in detail.

void BGLCheckpointInit(char * ckptDirPath)
BGLCheckpointInit is a mandatory function that must be invoked at the beginning of the
program. This function initializes the data structures of the checkpoint library. In addition, this
function is used for transparent restart of the application program.

The ckptDirPath parameter specifies the location of checkpoint files. If ckptDirPath is NULL,
then the default checkpoint file location is assumed as explained in 6.4, “Directory and file
naming conventions” on page 67.

int BGLCheckpoint()
BGLCheckpoint takes a snapshot of the program state at the instant it is called. All the
processes of the application must make a call to BGLCheckpoint to take a consistent global
checkpoint.

When a process makes a call to BGLCheckpoint, there should be no outstanding messages
in the network or buffers. That is, the recv corresponding to all the send calls should have
taken place. And after a process has made a call to BGLCheckpoint, other processes must
not send messages to the process until their call to BGLCheckpoint is complete. Typically,

SIGSYS/SIGUNUSED Non-critical Postpone

SIGTRAP Non-critical Postpone

Signal name Signal type Action to be taken
Chapter 6. Checkpoint and restart support 65

applications are expected to place calls to BGLCheckpoint immediately after a barrier
operation (such as MPI_Barrier) or after a collective operation (such as MPI_Allreduce), when
there is no outstanding message in the MPI buffers and the network.

The state that corresponds to each application process is stored in a separate file. The
location of checkpoint files is specified by ckptDirPath in the call to BGLCheckpointInit. If
ckptDirPath is NULL, then the checkpoint file location is decided by the storage rules
mentioned in 6.4, “Directory and file naming conventions” on page 67.

void BGLCheckpointRestart(int restartSqNo)
BGLCheckpointRestart restarts the application from the checkpoint given by the argument
restartSqNo. The directory where the checkpoint files are searched is specified by
ckptDirPath in the call to BGLCheckpointInit. If ckptDirPath is NULL, then the checkpoint file
location is decided by the storage rules given in section 3.2.

An application developer does not need to explicitly invoke this function. BGLCheckpointInit
automatically invokes this function whenever an application is re-started. The environment
variable BGL_CHKPT_RESTART_SEQNO is set to an appropriate value. If the restartSqNo,
the environment variable BGL_CHKPT_RESTART_SEQNO, is zero, then the system picks up
the most recent consistent checkpoint files. However, the function is available for use if the
developer chooses to call it explicitly. The developer must know the implications of using this
function.

int BGLCheckpointExcludeRegion(void *addr, size_t len)
BGLCheckpointExcludeRegion marks the specified region (addr to addr + len - 1) to be
excluded from the program state, while a checkpoint is being taken. The state corresponding
to this region is not saved in the checkpoint file. Therefore, after restart the corresponding
memory region in the application is not overwritten. This facility can be used to protect critical
data that should not be restored at the time of restart such as BGLPersonality and checkpoint
data structures. This call can also be used by the application programmer to exclude a
scratch data structure that does not need to be saved at checkpoint time.

int BGLAtCheckpoint((void *) function(void *arg), void *arg)
BGLAtCheckpoint registers the functions to be called just before taking the checkpoint. This
can be used by the user to take some action at the time of checkpoint. For example, this can
be called to close all the communication state open at the time of checkpoint. The functions
registered are called in the reverse order of their registration. The argument arg is passed to
the function being called.

int BGLAtRestart((void *) function (void *arg), void *arg)
BGLAtRestart registers the functions to be called during restart after the program state has
been restored, but before jumping to the appropriate position in the application code. The
functions registered are called in the reverse order of their registration. This can be used to
resume or reinitialize functions or data structures at the time of restart. For example, in the
coprocessor mode, the coprocessor needs to be reinitialized at the time of restart. The
argument arg is passed to the function that is being called.

int BGLAtContinue((void *) function (void *arg), void *arg)
BGLAtContiue registers the functions to be called when continuing after a checkpoint. This
can be used to reinitialize or resume some functions or data structures which were closed or
stopped at the time of checkpoint. The functions registered are called in the reverse order of
their registration. The argument arg is passed to the function that is being called.
66 Blue Gene/L: Application Development

6.4 Directory and file naming conventions
By default, all the checkpoint files are stored, and retrieved during restart, in the directory
specified by ckptDirPath in the initial call to BGLCheckpointInit(). If ckptDirPath is not
specified (or is null), the directory is picked from the environment variable
BGL_CHKPT_DIR_PATH. This environment variable may be set by the job control system at
the time of job launch to specify the default location of the checkpoint files. If this variable is
not set, Blue Gene/L looks for a $(HOME)/checkpoint directory. Finally, if this directory is also
not available, $(HOME) is used to store all checkpoint files.

The checkpoint files are automatically created and named with following convention:

<ckptDirPath>/ckpt.<xxx-yyy-zzz>.<seqNo>

Note the following explanation:

� <ckptDirPath>: Name of the executable, for example, sweep3d or mg.W.2
� <xxx-yyy-zzz>: Three-dimensional torus coordinates of the process
� <seqNo>: The checkpoint sequence number

The checkpoint sequence number starts at one and is incremented after every successful
checkpoint.

6.5 Restart
A transparent restart mechanism is provided through the use of the BGLCheckpointInit()
function and the BGL_CHKPT_RESTART_SEQNO environment variable. Upon startup, an
application is expected to make a call to BGLCheckpointInit(). The BGLCheckpointInit()
function initializes the checkpoint library data structures.

Moreover the BGLCheckpointInit() function checks for the environment variable
BGL_CHKPT_RESTART_SEQNO. If the variable is not set, a job launch is assumed and the
function returns normally. In case the environment variable is set to zero, the individual
processes restart from their individual latest consistent global checkpoint. If the variable is set
to a positive integer, the application is started from the specified checkpoint sequence
number.

6.5.1 Determining latest consistent global checkpoint
Mere existence of a checkpoint file does not guarantee consistency of the checkpoint. An
application might have crashed before completely writing the program state to the file. We
have changed this by adding a checkpoint write complete flag in the header of the checkpoint
file. As soon as the checkpoint file is opened for writing, this flag is set to zero and written to
the checkpoint file. When complete checkpoint data is written to the file, the flag is set to one
indicating the consistency of the checkpoint data. The job launch subsystem can use this flag
to verify the consistency of checkpoint files and delete inconsistent checkpoint files.

During a checkpoint, some of the processes may crash while some others may complete.
This may create consistent checkpoint files for some of the processes and inconsistent or
non-existent checkpoint files for some other processes. The latest consistent global
checkpoint is determined by the latest checkpoint for which all the processes have consistent
checkpoint files.

It is the responsibility of the job launch subsystem to make sure that
BGL_CHKPT_RESTART_SEQNO corresponds to a consistent global checkpoint. In case
BGL_CHKPT_RESTART_SEQNO is set to zero, the job launch subsystem must make sure
Chapter 6. Checkpoint and restart support 67

that files with the highest checkpoint sequence number correspond to a consistent global
checkpoint. The behavior of the checkpoint library is undefined if
BGL_CHKPT_RESTART_SEQNO does not correspond to a global consistent checkpoint.

6.5.2 Checkpoint and restart functionality
It is often desirable to enable or disable the checkpoint functionality at the time of job launch.
Application developers are not required to provide two versions of their programs: one with
checkpoint enabled and another with checkpoint disabled. We have used environment
variables to transparently enable and disable the checkpoint and restart functionality.

The checkpoint library calls check for the environment variable BGL_CHKPT_ENABLED. The
checkpoint functionality is invoked only if this environment variable is set to a value of “1.”
Table 6-2 summarizes the checkpoint-related function calls.

Table 6-2 Checkpoint and restart APIs

Table 6-3 summarizes the environment variables.

Table 6-3 Checkpoint and restart environment variables

The most common environment variable settings are:

� BGL_CHKPT_ENABLED=1
� BGL_CHKPT_DIR_PATH= checkpoint directory
� BGL_CHKPT_RESTART_SEQNO=0

A combination of BGL_CHKPT_ENABLED and BGL_CHKPT_RESTART_SEQNO (as in
Table 6-3) automatically signifies that after restart, further checkpoints are taken. If the
developer wants to restart an application but disable further checkpoints, he simply needs to
unset (remove altogether) the BGL_CHKPT_ENABLED variable.

Function name Usage

BGLCheckpointInit(char *ckptDirPath) Sets the checkpoint directory to ckptDirPath. Initializes the
checkpoint library data structures. Carries out restart if
environment variable BGL_CHKPT_RESTART_SEQNO is
set.

BGLCheckpoint() Takes a checkpoint. Stores the program state in the
checkpoint directory.

BGLCheckpointRestart(int rstartSqNo) Carries out an explicit restart from the specified sequence
number.

BGLCheckpointExcludeRegion
(void *addr, size_t len)

Excludes the specified region from the checkpoint state.

Environment variables Usage

BGL_CHKPT_ENABLED Set (to 1) if checkpoints desired, else not specified.

BGL_CHKPT_DIR_PATH Default path to keep checkpoint files.

BGL_CHKPT_RESTART_SEQNO Set to a desired checkpoint sequence number from where user
wants the application to restart. If set to zero, each process
restarts from its individual latest consistent checkpoint. This
option must not be specified, if no restart is desired.
68 Blue Gene/L: Application Development

Part 2 System
application
information

This part provides details that are of interest to someone who is writing an application to help
control the Blue Gene/L system. An example of such an application is a custom program that
is intended to allow for the scheduling and controlling of jobs that are running on Blue Gene/L
using the Bridge application programming interfaces (APIs). The details are covered in
Chapter 7, “Control system (Bridge) APIs” on page 71.

To learn specifically about working with Message Passing Interface (MPI) applications, see
Part 1, “MPI application information” on page 1.

Part 2
© Copyright IBM Corp. 2005. All rights reserved. 69

70 Blue Gene/L: Application Development

Chapter 7. Control system (Bridge) APIs

This section defines a list of application programming interfaces (APIs) into the Midplane
Management Control System (MMCS) that can be used by a job management system. The
mpirun program is an example of an application that uses these APIs to manage partitions,
jobs, and other similar aspects of the Blue Gene/L system.

You can use these APIs to control Blue Gene/L job execution, as well as other similar
administrative tasks, using any application that you choose.

7

© Copyright IBM Corp. 2005. All rights reserved. 71

7.1 API support overview
The following sections provide an overview of the support provided by the APIs.

7.1.1 Requirements
There are several requirements for writing programs to the Bridge APIs as explained in the
following sections.

Operating system supported
Currently, SUSE LINUX Enterprise Server (SLES) 8 for PowerPC is the only supported
platform.

Languages supported
C and C++ are supported with the GNU gcc 3.2 level compilers. For more information and
downloads, see:

http://gcc.gnu.org/

System files
Two main files are provided that are required to compile and link code to interface with the
Bridge APIs:

� /bgl/BlueLight/ppcfloor/bglsys/include/rm_api.h
� /bgl/BlueLight/ppcfloor/bglsys/lib/bglbridge.a

These files should be available with the standard system installation procedure. They are
contained in the bglcmcs.rpm file.

7.1.2 General comments
All of the APIs that are used have some general considerations that apply to all calls. The
following list highlights some of those common features.

� All the API calls return a “status_t” indicating either a success or an error code.

� The “get” APIs that retrieve a compound structure include accessory functions to retrieve
relevant nested data.

� The “get” calls allocate new memory for the structure to be retrieved and return a pointer
to the allocated memory in the corresponding argument.

� For adding information to the MMCS, use “new” functions as well as rm_set_data(). The
“new” functions allocate memory for new data structures and the rm_set_data() is used to
fill these structures.

� For each “get” and “new” function, there is a corresponding “free” function that frees the
memory allocated by these functions. For instance, rm_get_BGL(BGL **bgl) is
complemented by rm_free_BGL(BGL *bgl).

� It is the responsibility of the caller to match the calls to the “get” and “new” allocators and
to the corresponding “free” de-allocators. Not doing this will result in memory leaks.
72 Blue Gene/L: Application Development

http://gcc.gnu.org/

7.2 APIs
The following sections describe the APIs in detail.

7.2.1 API to the MMCS Resource Manager
The Resource Manager API contains an rm_get_BGL function to retrieve updated
configuration and status information about all the physical components of Blue Gene/L from
the MMCS database. The Resource Manager API also includes a set of functions that add,
remove, or modify information on transient entities, such as jobs and partitions. These
functions do not impose side-effects on the actual machine.

The rm_get_BGL function supplies all the required information to allow partition allocation. The
information is represented by three lists: a list of base partitions (BPs), a list of wires, and a
list of switches. This representation does not contain redundant data. In general, it allows
manipulation of the retrieved data into any desired format. The information is retrieved using a
general structure called “BGL.” It includes the three lists that are accessed using iteration
functions and the various configuration parameters, for example, the size of a base partition in
c-nodes. There are additional “get” functions to retrieve information on the partitions and jobs
entities. All the data retrieved using the “get” functions can be accessed using rm_get_data()
with one of the specifications listed in Table 7-1.

The rm_add_partition() and rm_add_job() add and modify data in the MMCS. The memory
for the data structures is allocated by the “new” functions and updated using the
rm_set_data(). The specifications that can be set using the rm_set_data() are marked with
an asterisk (*) in Table 7-1.

Table 7-1 Specification for rm_get_data/rm_set_data function

Object Set using
rm_set_data()?

Specification Resulting data type Description

BGL
machine

RM_BPsize rm_size3D_t * The size of a base partition (in
c-nodes) in each dimension.

BGL
machine

RM_Msize rm_size3D_t * The size of the machine in base
partition units.

BGL
machine

RM_BPNum int * The number of base partitions in
the machine.

BGL
machine

RM_SwitchNum int * The number of switches in the
machine.

BGL
machine

RM_WireNum int * The number of wires in the
machine.

BGL
machine

RM_FirstBP rm_element_t * A pointer to the element
associated with the first base
partition in the list.

BGL
machine

RM_NextBP rm_element_t * A pointer to the element
associated with the next base
partition in the list.

BGL
machine

RM_FirstSwitch rm_element_t * The pointer to the element
associated with the first switch in
the list.
Chapter 7. Control system (Bridge) APIs 73

BGL
machine

RM_NextSwitch rm_element_t * A pointer to the element
associated with the next switch in
the list.

BGL
machine

RM_FirstWire rm_element_t * A pointer to the element
associated with the first wire in the
list.

BGL
machine

RM_NextWire rm_element_t * A pointer to the element
associated with the next wire in
the list.

Base
partition

* RM_BPID rm_BP_id_t * A pointer to the identifier of base
partition.

Base
partition

RM_BPState rm_BP_state_t * A pointer to an enum value
indicating the state of the base
partition. The state can be UP or
DOWN.

Base
partition

* RM_BPLoc rm_location_t * A pointer to a structure with the
location of the base partition in the
3D machine.

Base
partition

RM_BPPartID pm_partition_id_t * A pointer to the identifier of the
partition with which the base
partition is associated. If no
partition is associated, null is
returned.

Base
partition

RM_BPPartState rm_partition_state_t * A pointer to an enum value
indicating the state of the partition
(for more about partition states,
see Figure 7-2 on page 84).

Base
partition

RM_BPSDB boolean * A flag indicating whether this base
partition is being used by a small
partition (smaller than a base
partition).

Base
partition

RM_BPSD boolean* A flag indicating whether this base
partition is being divided into a
small (free) partition.

Switch * RM_SwitchID rm_switch_id_t * A pointer to the identifier of the
switch.

Switch RM_SwitchBPID rm_BP_id_t * A pointer to the identifier of the
base partition connected to that
switch.

Switch RM_SwitchState rm_switch_state_t * A pointer to an enum value
indicating the state of the switch.
The state can be UP or DOWN.

Switch RM_SwitchDim rm_dimension_t * A pointer to an enum representing
one of these values: RM_DIM_X,
RM_DIM_Y, RM_DIM_Z.

Object Set using
rm_set_data()?

Specification Resulting data type Description
74 Blue Gene/L: Application Development

Switch * RM_SwitchConnNum int * The number of connections in the
switch.

Switch * RM_SwitchFirst
Connection

rm_connections_t * A pointer to the first connection in
the switch connection list. A
connection is a pair of ports
connected internally in the switch.

Switch * RM_SwitchNext
Connection

rm_connections_t * A pointer to the element
associated with the next
connection in the list.

Wire RM_WireID rm_wire_id_t * A pointer to the identifier of the
wire.

Wire RM_WireState rm_wire_state_t * A pointer to an enum value
indicating the state of the wire.
The state can be UP or DOWN.

Wire RM_WireFromPort rm_element_t * A pointer to an element
associated with the wire source
port.

Wire RM_WirePortTo rm_element_t * A pointer to an element
associated with the wire
destination port.

Wire RM_WirePartID pm_partition_id_t * A pointer to the ID of the partition
with which the wire is associated.
If no partition is associated, null is
returned.

Wire RM_WirePartState rm_partition_state_t * A pointer to an enum value
indicating the state of the partition
(for more about partition states,
see Figure 7-2 on page 84).

Port RM_PortComponentID rm_component_id_t * A pointer to the ID that identifies
the base partition or the switch the
port is part of.

Port RM_PortID rm_port_id_t * A pointer to an enum value
indicating the port ID. The port ID
can be one of these enum values:
plus_x minus_x, plus_y, minus_y,
plus_z minus_z for base partitions
and s0..S5 for switches.

Partition
list

RM_PartListSize int * The number of partitions in the list.

Partition
list

RM_PartListFirstPart rm_element_t * A pointer to the first partition in the
retrieved list.

Partition
list

RM_PartListNextPart rm_element_t * A pointer to the next partition in the
retrieved list.

Partition RM_PartitionID pm_partition_id_t * A pointer to the ID of the partition.

Object Set using
rm_set_data()?

Specification Resulting data type Description
Chapter 7. Control system (Bridge) APIs 75

Partition PM_PartitionState rm_partition_state_t * A pointer to an enum value
indicating the state of the partition
(for more about partition states,
see Figure 7-2 on page 84).

Partition * RM_PartitionBPNum int * The number of base partitions in
the partition.

Partition * RM_PartitionSwitchNum int * The number of switches in the
partition.

Partition * RM_PartitionFirstBP rm_element_t * A pointer to the element
associated with the first base
partition in the list.

Partition * RM_PartitionNextBP rm_element_t * A pointer to the element
associated with the next base
partition in the list.

Partition * RM_PartitiontFirstSwitch rm_element_t * A pointer to the element
associated with the first switch in
the list.

Partition * RM_PartitiontNextSwitch rm_element_t * A pointer to the element
associated with the next switch in
the list.

Partition * RM_PartitionConnection rm_connection_
type_t *

The connection type of the
partition. Can be TORUS or
MESH.

Partition * RM_PartitionUserName char * A pointer to a string containing the
user name of the user who
submitted the job.

Partition * RM_PartitionMloaderImg char * A pointer to a string containing the
file name of the machine loader
image.

Partition * RM_PartitionBlrtsImg char * A pointer to a string containing the
file name of the compute node’s
kernel image.

Partition * RM_PartitionLinuxImg char * A pointer to a string containing the
file name of the I/O node’s Linux
image.

Partition * RM_PartitionRam
diskImg

char * A pointer to a string containing the
file name of the ramdisk image.

Partition * RM_PartitionDescription char * A pointer to a string containing a
description of the partition.

Partition * RM_PartitionSmall boolean * A flag indicating whether this
partition is a partition smaller than
the base partition.

Partition * RM_PartitionPsets
PerBP

int * The number of used PSets per BP.

Object Set using
rm_set_data()?

Specification Resulting data type Description
76 Blue Gene/L: Application Development

Partition RM_PartitionUsersNum int * The number of users of the
partition.

Partition RM_PartitionFirstUser char * A pointer to the partition’s first user
name.

Partition RM_PartitionNextUser char * A pointer to the partition’s next
user name.

Partition RM_PartitionOptions char * A pointer to a string containing the
kernel debug option.

Job list RM_JobListSize int * The size of the job list.

Job list RM_JobListFirstJob rm_element_t * A pointer to the first job in the
retrieved list.

Job list RM_JobListNextJob rm_element_t * A pointer to the next job in the
retrieved list.

Job * RM_JobID rm_job_id_t * A pointer to the job ID. This must
be unique across all jobs on the
system; if not, return code
JOB_ALREADY_DEFINED is
returned.

Job * RM_JobPartitionID pm_partition_id_t * A pointer to the partition ID
assigned for the job.

Job RM_JobState rm_job_state_t * A pointer to an enum value
indicating the state of the job (for
more about job states, see
Figure 7-1 on page 83).

Job * RM_JobExecutable char * A string with the job executable
name.

Job * RM_JobUserName char * A pointer to a string containing the
Unix user name of the user who
submitted the job.

Job RM_JobDBJobID db_job_id_t * A pointer to an integer containing
the ID given to the job by the DB.

Job * RM_JobOutFile char * A pointer to a string containing the
job output file name.

Job * RM_JobInFile char * A pointer to a string containing the
job input file name.

Job * RM_JobErrFile char * A pointer to a string containing the
job error file name.

Job * RM_JobOutDir char * A pointer to a string containing the
job output directory. This directory
contains the output files if a full
path is not given.

Job RM_JobErrText char * A pointer to a string containing the
error text returned from the control
daemons.

Object Set using
rm_set_data()?

Specification Resulting data type Description
Chapter 7. Control system (Bridge) APIs 77

The APIs other than rm_get_data and rm_set_data are explained in the following list.

� status_t rm_get_BGL(rm_BGL_t **bgl);

This function retrieves a snapshot of the Blue Gene/L machine, held in the BGL data
structure.

� status_t rm_add_partition(rm_partition_t*p);

This function adds a partition record to the database. The partition structure includes an
ID field that is filled by the resource manager.

� status_t rm_modify_partition(pm_partition_id_t,enum rm_modify_op, const void
*value);

This function makes it possible to change a set of fields in an already existing partition.
Only partitions in a FREE state can be modified. The fields that can be modified are
owner, description, kernel options, and images.

� status_t rm_get_partition(pm_partition_id_t pid, rm_partition_t**p);

This function retrieves a partition, according to its ID.

� status_t rm_set_part_owner(pm_partition_id_t pid, const char *);

This function sets the new owner to the partition. Changing the partition’s owner can be
done only to partition in a FREE state.

� status_t rm_add_part_user (pm_partition_id_t pid, const char *);

This function adds a new user to the partition. The partition’s owner can add users who
are allowed to use this partition. Adding users to the partition can be done only by the
partition owner and only to partitions in the INITIALIZE state.

� status_t rm_remove_part_user(pm_partition_id_t pid, const char *);

This function removes a user from a partition. The partition’s owner can remove users
from the partition's user list. Removing a user from a partition can be done only by the
partition owner and only to partitions in the INITIALIZE state.

� status_t rm_get_partitions(rm_partition_state_t_flag_t flag,
rm_partition_list_t ** part_list);

This function is useful for status reports and diagnostics. It returns a list of partitions with a
specific state, as defined by the flag value (set of bits). For the set of all possible flags, see
the rm_api.h include file.

Job * RM_JobArgs char * A pointer to a string containing the
arguments for the executable.

Job * RM_JobEnvs char * A pointer to a string containing the
environment parameter needed
for the job.

Job RM_JobInHist bool * Indicates whether the job was
retrieved from the history table.

Job * RM_JobMode rm_job_mode_t * A pointer to an enum value
indicating the node mode of the
partition the values. This can be
COPROCESSOR or VIRTUAL.

Object Set using
rm_set_data()?

Specification Resulting data type Description
78 Blue Gene/L: Application Development

� status_t rm_get_partitions_info(rm_partition_state_t_flag_t flag,
rm_partition_list_t ** part_list);

This function is useful for status reports and diagnostics. It returns a list of partitions with a
specific state, as defined by the flag value (set of bits). This function returns the partition
information without their BPs. The possible flags are contained in the rm_api.h include file,
and listed in Table 7-2 for your convenience. The states are represented by the bits in
Table 7-2.

Table 7-2 Flags for partition states

� status_t rm_remove_partition(pm_partition_id_t pid);

This function removes the specified partition record from MMCS.

� status_t rm_assign_job(pm_partition_id_t pid , db_job_id_t jid);

This function assigns a job to a partition. A job can be created and simultaneously
assigned to a partition by calling rm_add_job() with a partition ID. If a job is created and
not assigned to specific partition, it can be assigned later by calling rm_assign_job().

� status_t rm_release_partition(pm_partition_id_t pid);

This function is the opposite of rm_assign_job(), because it releases the partition from all
jobs. Only jobs that are in an IDLE state have their partition reference removed.

� status_t rm_set_partition_debuginfo(partid, tv_server_exe, tv_server_args);

This function sets the debug info for the block.

� status_t rm_add_job(rm_job_t *job);

This function adds a job record to the database. The job structure includes an ID field that
will be filled by the resource manager.

� status_t rm_get_job(db_job_id_t jid, rm_job_t **job);

This function retrieves the specified job object.

� status_t rm_get_jobs(rm_job_state_flag_t flag_t, rm_job_list_t **jobs);

This functions returns a list of jobs with a specific state or states, as defined by the flag
value (set of bits). The set of all possible flags are contained in the rm_api.h include file,
and are listed in Table 7-3. The states are represented by the bits in Table 7-3.

Table 7-3 Flags for job states

Flag Value

PARTITION_FREE_FLAG 0x01

PARTITION_CONFIGURING_FLAG 0x02

PARTITION_READY_FLAG 0x04

PARTITION_BUSY_FLAG 0x08

PARTITION_DEALLOCATING_FLAG 0x10

PARTITION_ERROR_FLAG 0x20

PARTITION_ALL_FLAG 0xFF

Flag Value

JOB_IDLE_FLAG 0x001

JOB_STARTING_FLAG 0x002

JOB_RUNNING_FLAG 0x004
Chapter 7. Control system (Bridge) APIs 79

� status_t rm_query_job(jobid, **MPIR_Proctable, *MPIR_proctable_size);

This function fills the MPIR_Proctable with information about the specified job.

� status_t rm_remove_job(db_job_id_t jid);

This function removes the specified job record from MMCS.

� status_t rm_get_data(rm_element_t *rme, enum RMSpecification spec, void *
result);

This function returns the content of the requested field from a valid rm_element_t (BGL,
base partition, wire, switch, connection, port, etc.). The specifications available when
using rm_get_data() are listed in Table 7-1 on page 73 and are grouped by the querying
object.

� status_t rm_set_data(rm_element_t *rme, enum RMSpecification spec, void *
result);

This function sets the value of the requested field in the rm_element_t (BGL, base
partition, wire, switch, connection, port, etc.). The specifications available when using
rm_set_data() are listed in Table 7-1 on page 73 and marked with an *.

� status_t rm_set_serial(rm_serial_t serial);

This function sets the machine serial number to be used in all the API calls following this
call. The DB can contain more than one machine. Therefore, it is necessary to specify
which machine to work with.

� status_t rm_get_serial(rm_serial_t *serial);

This function gets the machine serial number that was set previously be rm_set_serial().

7.2.2 Resource Manager Memory Allocators API
The following APIs are used to allocate memory that is used with other API calls.

� status_t rm_new_partition(rm_partition_t**partition);
� status_t rm_new_job(rm_job_t **job);
� status_t rm_new_BP(rm_BP_t **bp);
� status_t rm_new_switch(rm_switch_t **switch);

JOB_TERMINATED_FLAG 0x008

JOB_ERROR_FLAG 0x010

JOB_DYING_FLAG 0x020

JOB_DEBUG_FLAG 0x040

JOB_LOAD_FLAG 0x080

JOB_LOADED_FLAG 0x100

JOB_BEGIN_FLAG 0x200

JOB_ATTACH_FLAG 0x400

JOB_KILLED_FLAG 0x800

Flag Value
80 Blue Gene/L: Application Development

7.2.3 Resource Manager Memory Deallocators API
The following APIs are used to deallocate memory that was allocated with the APIs listed in
the previous section.

� status_t rm_free_partition(rm_partition_t*partition);
� status_t rm_free_job(rm_job_t *job);
� status_t rm_free_BP(rm_BP_t *bp);
� status_t rm_free_switch(rm_switch_t *wire);
� status_t rm_free_BGL(rm_BGL _t*bgl);
� status_t rm_free_partition_list(rm_partition_list_t *part_list);
� status_t rm_free_job_list(rm_job_list_t *job_list);

7.2.4 Messaging API
This section describes the set of thread-safe messaging APIs. These APIs are used by the
Bridge as well as by other components of the job management system, for example,
MPIRUN. Each message is built using the following format:

<Timestamp> Component (Message type): Message text

Here is an example:

<Mar 9 04:24:30> BRIDGE (Debug): rm_get_BGL()- Completed Successfully

There are six types of messages:

� MESSAGE_ERROR: Error messages
� MESSAGE_WARNING: Warning messages
� MESSAGE_INFO: Informational messages
� MESSAGE_DEBUG1: Basic debug messages
� MESSAGE_DEBUG2: More detailed debug messages
� MESSAGE_DEBUG3: Very detailed debug messages

There are also five verbosity levels to which the messaging APIs can be configured. These
levels define the following policy:

� Level 0: Only error or warning messages are issued.
� Level 1: Level 0 messages and informational messages are issued.
� Level 2: Level 1 messages and basic debug messages are issued.
� Level 3: Level 2 messages and more debug messages are issued.
� Level 4: The highest verbosity level. All messages that will be printed are issued.

The control system (Bridge) uses only debug messages, so by default, only error and warning
messages are issued by the Bridge functions. To get basic debug messages, set the verbosity
level to 2. To obtain more debug information, the level should be 3 or 4.

� void sayPlainMessage(FILE * stream, char * format, ...);

This is a thread-safe version of fprintf(). The message is always printed, regardless of
the verbosity level that was set by the setSayMessageParams() API.

� void setSayMessageParams(FILE * stream, unsigned int level);

This function configures the sayMessage() and sayCatMessage() messaging APIs. It
defines where the messages would be printed to and what the verbosity level would be. By
default, if this function is not called, the messages are printed to stderr, and the verbosity
level is set to 0 (only errors and warnings).
Chapter 7. Control system (Bridge) APIs 81

� void sayMessage(char * component, message_type_t m_type, char * curr_func, char
* format, ...)

This function prints a formatted message to the stream that was defined by the
setSayMessageParams() function based on the message type and verbosity level.

� void sayCatMessage(char * current_func, cat_message_type_t cat_message);

This function is used to print error message of a specific type. The message types that are
defined by cat_message_type_t are:

– CAT_BP_WO_WIRES: Base partitions cannot exist without wires.

– CAT_MEM: Operation failed due to a memory allocation error.

– CAT_PARSE_XML: Error parsing XML file.

– CAT_RET_CODE: Unrecognized return code from internal function.

– CAT_COMM: A communication problem occurred while attempting to connect to the
database.

– CAT_DB_ACCESS: An error occurred while attempting to access the database.

– CAT_XML_ACCESS: Could not access (create or read) the XML file.

– CAT_DATA_NOT_FOUND: Data record or records are not found.

– CAT_SEQUENCE_ERR: A sequence error occurred.

– CAT_BAD_ID: A bad ID was used for the call.

– CAT_DUP_DATA: Attempt to insert duplicate record.

– CAT_BGL_INFO: Failed to retrieve information about Blue Gene/L.

– CAT_BAD_INPUT: Illegal input field used for the call.

– CAT_FREE_ERR: An error occurred while trying to free object.

– CAT_GENERAL_ERR: General error.

7.2.5 API to the MMCS job manager
The first three APIs (jm_start_job, jm_signal_job, and jm_cancel_job) are asynchronous.
This means that control returns to your application before the operation requested is actually
complete.

Before performing additional operations on the job, check to make sure it is in a valid state by
using the rm_get_jobs() API together with the flags for job states as listed in Table 7-3 on
page 79.

� status_t jm_start_job(db_job_id_t jid);

This function starts the job identified by the jid parameter. Note that the partition
information is referenced from the job record in MMCS.

� status_t jm_signal_job(db_job_id_t jid, rm_signal_t signal);

This function sends a request to signal the job identified by the jid parameter.

� status_t jm_cancel_job(db_job_id_t jid);

This function sends a request to cancel the job identified by the jid parameter.

� status_t jm_load_job(jobid);

This function sets the job state to LOAD.
82 Blue Gene/L: Application Development

� status_t jm_attach_job(jobid);

This function initiates the spawn of TotalView servers to a LOADED job.

� status_t jm_debug_job(jobid);

This function initiates the spawn of TotalView servers to a RUNNING job.

� status_t jm_begin_job(jobid);

This function begins a job which is already loaded.

7.2.6 API to the MMCS partition manager
These APIs are asynchronous. This means that control returns to your application before the
operation requested is actually complete.

Before performing additional operations on the partition, check to make sure it is in a valid
state by using the rm_get_partitions_info() together with the flags for partition states as
listed in Table 7-2.

� status_t pm_create_partition(pm_partition_id_t pid);

This function gets a partition ID, creates (wires) the partition, and updates the resulting
status in the database.

� status_t pm_destroy_partition(pm_partition_id_t pid);

This function destroys (unwires) an existing partition and updates the database
accordingly.

7.2.7 State diagrams for jobs and partitions
Figure 7-1 illustrates the main states tat a job goes through during its life cycle.

Figure 7-1 Job state diagram

rm_add_job() jm_start_job()

Error jm_cancel_job()Termination

QUEUED STARTING RUNNING

TERMINATED DYING

Changed by implicit call
Changed by the control system
Chapter 7. Control system (Bridge) APIs 83

Figure 7-2 describes the various partition states.

Figure 7-2 Partition state diagram

Base partitions, wires, and switches have two states, UP and DOWN, which reflect the
physical state of these components.

7.3 Control system API return codes
When a failure occurs, an API invocation returns an error code. This error code helps apply
automatic corrective actions within the job scheduling system. In addition, a failure always
generates a log message, which provides more information for the possible cause of the
problem and an optional corrective action. These log messages are used for debugging and
non-automatic recovery of failures.

The design aims at striking a balance between the number of error codes detected and the
different error paths per return code. Thus, some errors have specific return codes, while
others have more generic ones. The return codes of the Control System API are:

� STATUS_OK: Invocation completed successfully.

� PARTITION_NOT_FOUND: The required partition specified by the ID cannot be found in
the control system.

� JOB_NOT_FOUND: The required job specified by the ID cannot be found in the control
system.

� JOB_ALREADY_DEFINED: A job with the same name already exists.

� BP_NOT_FOUND: One or more of the BPs in the rm_partition_t structure do not exist.

� SWITCH_NOT_FOUND: One or more of the switches in the rm_partition_t structure do
not exist.

� INCOMPATIBLE_STATE: The state of the partition or job prohibits the specific action (see
Figure 7-1 and Figure 7-2 for state diagrams).

rm_add_partition() pm_create_partition()

Boot process
taking place

Boot error

FREE

ERROR

CONFIGURING

DEALLOCATING READY

Changed by implicit call
Changed by the control system

rm_remove_partition()

pm_destroy_partition()

pm_destroy_partition()

Cleanup process
taking place
84 Blue Gene/L: Application Development

� CONNECTION_ERROR: The connection with the control system has failed or could not
be established.

� INVALID_INPUT: The input to the API invocation is invalid. This is due to missing required
data, illegal data, etc.

� INCONSISTENT_DATA: The data retrieved from the control system is illegal or invalid.

� INTERNAL_ERROR: Errors that don't belong to any of the previously listed categories,
such as a memory allocation problem or failures during the manipulation of internal XML
files.

7.3.1 Return codes specification
The return codes for the various API functions are:

� status_t rm_get_BGL(rm_BGL_t **bgl);

This function retrieves a snapshot of the Blue Gene/L machine.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INCONSISTENT_DATA: Possibly for one of the following reasons:

• List of BPs is empty.
• Wire list is empty and the number of BPs is greater than one.
• Switch list is empty and the number of BPs is greater than one.

– INTERNAL_ERROR

� status_t rm_add_partition(rm_partition_t *p);

This function defines a partition in the control system.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT: The data in the rm_partition_t structure is invalid.

• No BP or switch list is supplied.
• BP or switches do not construct a legal partition.
• No boot images or boot image name is too long.
• No user or user name is too long.

– BP_NOT_FOUND: One or more of the BPs in the rm_partition_t structure does not
exist.

– SWITCH_NOT_FOUND: One or more of the switches in the rm_partition_t structure
does not exist.

– INTERNAL_ERROR

� status_t rm_get_partition(pm_partition_id_t pid, rm_partition_t **p);

This function retrieves a partition according to its ID.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INVALID INPUT

“pid” is null or the length exceeds the control system limitations (configuration
parameter).
Chapter 7. Control system (Bridge) APIs 85

– PARTITION_NOT_FOUND
– INCONSISTENT_DATA

BP or switch list of the partition is empty.

– INTERNAL_ERROR

� status_t rm_get_partitions(rm_partition_state_flag_t flag, rm_partition_list_t
* part_list);

This function returns a list of partitions with a specific state, defined by the flag value.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INCONSISTENT_DATA

At least one of the partitions has an empty base partition list.

– INTERNAL_ERROR

� status_t rm_get_partitions_info(rm_partition_state_t_falg_t flag,
rm_partition_list_t ** part_list);

This function is useful for status reports and diagnostics. It returns a list of partitions with a
specific state, as defined by the flag value (set of bits). This function returns the partitions
information without their BPs.

The states are represented by the following bits:

– PARTITION_FREE_FLAG 0x1
– PARTITION_CONFIGURING_FLAG 0x2
– PARTITION_READY_FLAG 0x4
– PARTITION_BUSY_FLAG 0x8
– PARTITION_DEALLOCATING_FLAG 0x10
– PARTITION_ERROR_FLAG 0x20
– PARTITION_ALL_FLAG 0xFF

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INCONSISTENT_DATA

At least one of the partitions has an empty base partition list.

– INTERNAL_ERROR

� status_t rm_remove_partition (pm_partition_id_t pid);

This function removes a partition from the control system.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INVALID INPUT

“pid” is null or the length exceeds the control system limitations (configuration
parameter).

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

The partition’s current state forbids its removal. See Figure 7-1 on page 83.

– INTERNAL_ERROR
86 Blue Gene/L: Application Development

� status_t rm_assign_job (pm_partition_id_t pid, db_job_id_t jid);

This function assigns (associates) a job with a given partition.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– PARTITION_NOT_FOUND
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

• The current state of the partition or the job prevents this assignment. See
Figure 7-1 and Figure 7-2.

• Partition and job owner do not match.

– INVALID_INPUT

“pid” is null or the length exceeds the control system limitations (configuration
parameter).

– INTERNAL_ERROR

� status_t rm_release_partition (pm_partition_id_t pid);

This function disassociates all jobs with the given partition.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INVALID INPUT

“pid” is null or the length exceeds the control system limitations (configuration
parameter).

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

The current state of some of the jobs assigned to the partition prevents this release.
See Figure 7-1 and Figure 7-2.

– INTERNAL_ERROR

� status_t rm_set_part_owner(pm_partition_id_t pid, const char *owner);

Change the partition owner.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INVALID INPUT

• “pid” is null or the length exceeds the control system limitations (configuration
parameter).

• “owner” in null or the length exceeds the control system limitations.

– INTERNAL_ERROR

� status_t rm_add_part_user(pm_partition_id_t pid, const char *user);

Add a user to a partition.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
Chapter 7. Control system (Bridge) APIs 87

– INVALID INPUT

• “pid” is null or the length exceeds the control system limitations (configuration
parameter).

• “user” in null or the length exceeds the control system limitations.

• “user” already defined as the partition’s user.

– INTERNAL_ERROR

� status_t rm_remove_part_user(pm_partition_id_t pid, const char *user);

Add a user to a partition.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INVALID INPUT

• “pid” is null or the length exceeds the control system limitations (configuration
parameter).

• “user” in null or the length exceeds the control system limitations.

• “user” already defined as the partition’s user.

– INTERNAL_ERROR

� status_t pm_create_partition (pm_partition_id_t pid);

This function requests creation of a partition.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INVALID INPUT

“pid” is null or the length exceeds control system limitations (configuration parameter).

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

The current state of the partition prohibits its creation. See Figure 7-1.

– INTERNAL_ERROR

� status_t pm_destroy_partition (pm_partition_id_t pid);

This function requests destruction of a partition.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INVALID INPUT

“pid” is null or the length exceeds the control system limitations (configuration
parameter).

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

The state of the partition prohibits its destruction. See Figure 7-1.

– INTERNAL_ERROR
88 Blue Gene/L: Application Development

� status_t rm_add_job(db_job_id_t *job);

This function defines a job in the control system.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT: Data in the rm_job_t structure is invalid.

• No job name or job name is too long.
• No user name or user name is too long.
• No executable or executable name too long.
• Output or error file name is too long.

– JOB_ALREADY_DEFINED

A job with the same name already exists.

– INTERNAL_ERROR

� status_t rm_get_job(db_job_id_t jid, rm_job_t **job);

This function retrieves a job by its ID, “jid”.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INTERNAL_ERROR

� status_t rm_get_jobs(rm_job_state_flag_t flag, rm_job_list_t *jobs);

This function returns a list of jobs with a specific state (defined by the “flag” value).

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– INTERNAL_ERROR

� status_t rm_remove_job(db_job_id_t jid);

This function removes a specific job from the control system.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

The job’s state prevents its removal. See Figure 7-2.

– INTERNAL_ERROR

� status_t jm_start_job(db_job_id_t jid);

This function requests the start of execution for a specific job.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE
Chapter 7. Control system (Bridge) APIs 89

� The job’s state prevents its execution. See Figure 7-2.

– INTERNAL_ERROR

� status_t jm_cancel_job(db_job_id_t jid);

This function requests cancellation of a job.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

The job’s state prevents it from being canceled. See Figure 7-2.

– INTERNAL_ERROR

� status_t jm_signal_job(db_job_id_t jid, rm_signal_t signal);

This function signals a job.

Return codes:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

The job’s state prevents it from being signaled.

– INTERNAL_ERROR

� status_t rm_get_data(rm_element_t *rme, enum RMSpecification spec, void *
result);

status_t rm_set_data(rm_element_t *rme, enum RMSpecification spec, void * result);

These two auxiliary functions access the requested field in an rm_element_t structure
(BGL, BP, wire, switch, connections, port).

Return codes:

– STATUS_OK
– INVALID INPUT

• The specification “spec” is unknown.
• The specification “spec” is illegal (per the “rme” element).

– INTERNAL_ERROR

� status_t rm_set_serial(rm_serial_t serial);

This function sets the machine serial number to be used in the following API calls.

Return codes:

– STATUS_OK
– INVALID INPUT

• The machine serial number “serial” is null.
• The machine serial number is too long.

� status_t rm_set_serial(rm_serial_t *serial);

This function retrieves the machine serial used with the APIs.

Return codes:

– STATUS_OK
– INTERNAL_ERROR
90 Blue Gene/L: Application Development

� status_t rm_new_< partition, job, BP, switch>

This auxiliary function allocates memory for an rm_element object.

Return codes:

– STATUS_OK
– INTERNAL_ERROR

� status_t rm_free_<BGL, partition, job, BP, switch, partition_list, job_list>

This auxiliary function frees the memory allocated by the rm_new.. or rm_get.. APIs.

Return codes:

– STATUS_OK
– INTERNAL_ERROR
Chapter 7. Control system (Bridge) APIs 91

92 Blue Gene/L: Application Development

Part 3 Performance
analysis

Several tools and techniques are available to analyze system and application performance on
Blue Gene/L. This part examines some of these items in the following chapters:

� Chapter 8, “Performance guidelines and tools” on page 95
� Chapter 9, “Performance counters and PAPI” on page 101

Part 3
© Copyright IBM Corp. 2005. All rights reserved. 93

94 Blue Gene/L: Application Development

Chapter 8. Performance guidelines and
tools

This chapter describes the process of using tools to analyze system and application
performance.

8

© Copyright IBM Corp. 2005. All rights reserved. 95

8.1 Tooling overview
A variety of tools are available to help understand your application’s performance when
running on Blue Gene/L. Some of these tools are written by IBM, others are written by
independent software vendors (ISVs), and still others are open source efforts.

Some tools have been ported to Blue Gene/L, and more are moving over every month.
However, almost all tools work against the pSeries systems. At times it is advantageous to
run your application on pSeries and profile it there if the particular tool you are interested in
using does not yet support Blue Gene/L.

This section first discusses IBM’s main tool suite. Then, it examines the tools that you can use
on pSeries to help understand Blue Gene/L performance. Finally, it looks at tools that run
natively with applications on Blue Gene/L.

8.1.1 IBM High Performance Computing Toolkit
The Advanced Computing Technology Center (ACTC), part of IBM Research in Yorktown
Heights, New York, conducts research on the performance behavior of scientific and technical
computing applications. Its role in IBM is to provide strategic technical direction for the
research and development of server platforms to advance the state of the art in high
performance computing offerings and solutions for IBM Clients in computationally intensive
industries. Such industries include automotive, aerospace, petroleum, meteorology, and life
science.

IBM offers the IBM High Performance Computing Toolkit, a suite of performance-related tools
and libraries to assist in application tuning. This toolkit is an integrated environment for
performance analysis of sequential and parallel applications using the Message Passing
Interface (MPI) and OpenMP paradigms. It provides a common framework for IBM’s
mid-range server offerings, including IBM Eserver pSeries and iSeries™ servers and Blue
Gene/L systems, on both AIX® and Linux.

8.2 General performance testing
IBM recommends testing an application on a pSeries system before running it on a
Blue Gene/L system if possible. Use a memory size per compute node that is compatible with
the Blue Gene/L architecture. For more information, see 1.2, “Memory considerations” on
page 4. This approach makes it possible to check both memory utilization and performance
issues. Both pSeries and the Blue Gene/L supercomputer use IBM XL compilers, which aids
portability between the two systems.

8.2.1 Overview of the tools that are available on pSeries
For the best performance, it is good practice to obtain a performance profile for your
application. IBM is porting its comprehensive performance analysis tools, the High
Performance Computing Toolkit, to the Blue Gene/L supercomputer. In the meantime, we
recommend that you perform profiling on a similar system, such as pSeries. Most
computational performance issues are the same on Blue Gene/L as on other reduced
instruction set computer (RISC) processors, so this method usually identifies the main issues.

For parallel performance, several MPI profiling tools are available, including the ones listed in
the following sections.
96 Blue Gene/L: Application Development

IBM High Performance Computing Toolkit
The IBM High Performance Computing Toolkit is the foundation for all performance tools for
Blue Gene/L and other IBM Eserver systems. The tools provide source code traceback of
the performance data to help the user quickly identify any bottlenecks in the code. The toolkit
includes low-overhead measurement of time spent in MPI routines for applications written in
any mixture of Fortran, C, and C++.

The tools include Xprofiler, MPI_tracer, MPI_Profiler, and PeekPerf. The toolkit provides a text
summary and an optional graphical display.

Paraver
Paraver is a graphical user interface (GUI)-based performance visualization and analysis tool
that you can use to analyze parallel programs. It lets you obtain detailed information from raw
performance traces. To learn more about Paraver, go to:

http://www.cepba.upc.es/paraver/

MPE/jumpshot
MPICH2 has extensions for profiling MPI applications, and the MPE extensions have been
ported to Blue Gene/L. For more information, see the following Web site:

http://www-unix.mcs.anl.gov/mpi/mpich/

8.2.2 Overview of tools ported to Blue Gene/L
The following tools have been ported to the Blue Gene/L platform.

� KOJAK

Kit for Objective Judgement and Knowledge (KOJAK)-based detection of performance
bottlenecks

http://www.fz-juelich.de/zam/kojak/

� TAU

Tuning and Analysis Utilities

http://www.cs.uoregon.edu/research/paracomp/tau/tautools/

8.3 Message passing performance
Measuring the performance of message passing (MPI) in an application can quickly help
identify trouble areas. MPI Tracer™ and Profiler consist of a set of libraries that collect
profiling and tracing data for MPI programs. Performance metrics, such as the time used by
MPI function calls and message sizes, are reported.

These tools are available from the IBM ACTC. For more information about these and other
tools that this organization provides, see:

http://www.research.ibm.com/actc/

8.3.1 MPI Tracer and Profiler
MPI Tracer and Profiler consists of a set of libraries that collect profiling and tracing data for
MPI programs. Performance metrics, such as the time used by MPI function calls and
message sizes, are reported.
Chapter 8. Performance guidelines and tools 97

http://www.fz-juelich.de/zam/kojak/
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.research.ibm.com/actc/
http://www.cepba.upc.es/paraver/
http://www-unix.mcs.anl.gov/mpi/mpich/

MPI tracer works with the visualization tools PeekPerf and PeekView to better help users
identify performance bottlenecks. PeekPerf maps performance metrics back to the source
codes. PeekView gives a visual representation of the overall computation and communication
pattern of the system.

MPI Profiler captures summary data for MPI calls. By this we mean that it does not show you
the specifics of an individual call to, for example MPI_Send, but rather the combined data for
all calls made to that routine during the profile period. See Figure 8-1 for an example.

Figure 8-1 MPI Profiler summary data

No changes to your source code are required to use the MPI Profiler function. However, you
must compile using the debug (-g) flag.

8.4 CPU performance
The CPU performance tools are from the IBM ACTC. For more information about these and
other tools they provide, see

http://www.research.ibm.com/actc/

Important: It is vital that you call MPI_Finalize in your application for the profiling function
to correctly gather data.
98 Blue Gene/L: Application Development

http://FIXME

8.4.1 Hardware performance monitor
Hardware performance counter monitor module provides comprehensive reports of events
that are critical to performance on IBM systems. In addition to the usual timing information,
the hardware performance monitor (HPM) can gather critical hardware performance metrics.
These may include the number of misses on all cache levels, the number of floating point
instructions executed, and the number of instruction loads that cause TLB misses, that help
the algorithm designer or programmer identify and eliminate performance bottlenecks.

8.4.2 Xprofiler
Xprofiler is among a set of CPU profiling tools, such as grof, pprof, pprof, and tprof, that are
provided on AIX. You can use them to profile both serial and parallel applications.

Xprofiler uses procedure-profiling information to construct a graphical display of the functions
within an application. It provides quick access to the profiled data and helps users identify the
functions that are the most CPU-intensive. With the GUI, it is easy to find the application’s
performance-critical areas.

8.5 I/O performance
Understanding input/output (I/O) performance is just as important as understanding
application and CPU performance issues.

8.5.1 Modular I/O
Modular I/O (MIO) is not yet officially supported on Blue Gene/L. MIO addresses the need of
application-level optimization for I/O. For I/O-intensive applications, the MIO libraries provide
a means to analyze the I/O behavior of applications and tune I/O at the application level for
optimal performance. For example, when an application exhibits the I/O pattern of sequential
reading of large files, MIO detects the behavior and invokes its asynchronous prefetching
module to prefetch user data.

Tests with the AIX JFS file system demonstrates significant improvement over system
throughput when using MIO.

8.6 Visualization and analysis
The PeekPer tools is from the IBM ACTC. For more information about this and other tools that
they provide, see:

http://www.research.ibm.com/actc/

8.6.1 PeekPerf
PeekPerf visualizes the performance trace information generated by the performance
analysis tools. PeekPerf also maps the collected performance data back to the source code,
which makes it easier for users to find bottlenecks and points for optimizations. PeekPerf is
available on several UNIX® derivations (AIX, Linux) and Microsoft® Windows®.
Chapter 8. Performance guidelines and tools 99

http://www.research.ibm.com/actc/

8.7 MASS and MASSV libraries
The MASS and MASSV libraries consist of a set of mathematical functions for C, C++, and
Fortran-language applications that are tuned for specific POWER™ architectures. You can
learn more about these libraries at:

http://www.ibm.com/software/awdtools/mass/support/

Both scalar (libmass.a) and vector (libmassv.a) intrinsic routines are tuned for the
Blue Gene/L computer. In many situations, using these libraries has been shown to result in
significant code performance improvement.

Such routines as sin, cos, exp, log, and so forth from these libraries are significantly faster
than the standard routines from GNU libm.a. For example, a sqrt() call costs about 106
cycles with libm.a, about 46 cycles for libmass.a, and 8 to 10 cycles per evaluation for a vector
of sqrt() calls in libmassv.a. To link with libmass.a, include the following option on the link
line:

-Wl,--allow-multiple-definition.
100 Blue Gene/L: Application Development

http://www.ibm.com/software/awdtools/mass/support/

Chapter 9. Performance counters and PAPI

This chapter provides details about the performance counters feature of Blue Gene/L. This is
a Blue Gene/L-specific function that allows a user to determine how many times a certain,
configurable event occurs during the course of an application run.

We also provide information about Performance Application Programming Interface (PAPI)
support that is provided on Blue Gene/L. For more information about PAPI in general, see:

http://icl.cs.utk.edu/papi/index.html

9

© Copyright IBM Corp. 2005. All rights reserved. 101

http://icl.cs.utk.edu/papi/index.html

9.1 Introduction to the performance counter interface
The Blue Gene/L performance counter (bgl_perfctr) interface to the Compute Node Kernel
(CNK) provides a uniform application programming interface (API) for all universal
performance counter (UPC) and floating point unit (FPU) counters. All counters are
programmed and accessed using the same calling sequence. Mnemonics and descriptive
information for all available events are provided by the API. The interface handles counter
register allocation and provides the user a full specification of possible events to counter
mappings.

The PAPI implementation described in this document exposes the bgl_perfctr to the user
through the PAPI standard interface. PAPI is a well established de facto standard for
user-level hardware counter access and is available on all major computational platforms in
use today.

9.2 bgl_perfctr library API
The bgl_perfctr interface is a user-level API that provides access to the UPC and FPU
counters. The bgl_perfctr presents the user with a set of 52 virtual 64-bit counters that map
to the underlying hardware counters. The first 48 counters map to the UPC counters on the
chip, while the last four counters map to the two counters in each of the FPU units.

The user instantiates counters by requesting to register a certain event. All possible events
are available as mnemonics. Given a request to register an event, the library interface locates
an available hardware counter capable of registering the particular event. If this search is
successful, the event is registered as an event pending to be added. If there is no available
hardware counter for the event, an error code is returned to the user.

The counters pending to be added are invoked through the user initiating a call to
bgl_perfctr_commit(). At this point, all pending changes to the counter setup are performed,
and the counter map is updated. A call to bgl_perfctr_revoke() clears all pending changes
and leaves the hardware counters untouched.

The virtual counters in the bgl_perfctr interface are updated from the actual hardware
counters by calling bgl_perfctr_update() directly. Also, calling any of the functions
bgl_perfctr_copy_counters(), bgl_perfctr_copy_state(), or bgl_perfctr_get_counters()
implicitly call bgl_perfctr_update(). The virtual counter update reads all active hardware
counters and updates the corresponding virtual counter with the number of counts
aggregated since the latest read. The configured UPC counters are read through the memory
map interface while FPU counters are read through DCR access.

At library initialization, which is explicitly made by the user, the user can set up the library to
periodically call bgl_perfctr_update() by means of a periodic timer interrupt. This interrupt
occurs with an interval of approximately six seconds (on a 700 MHz system), which guards
against any 32-bit counter overflowing more than once between updates to the virtual
counters. By default, this interval timer is set up after synchronization between all nodes in the
partition. This reduces the impact on a parallel running application from the periodic virtual
counter updates.

9.2.1 API details
A list of the first 100 defined event mnemonics is provided in Table 9-1 to illustrate the naming
scheme.
102 Blue Gene/L: Application Development

Table 9-1 Example event mnemonics (event numbers)

BGL_FPU_ARITH_ADD_SUBTRACT BGL_FPU_ARITH_MULT_DIV

BGL_FPU_ARITH_OEDIPUS_OP BGL_FPU_ARITH_TRINARY_OP

BGL_FPU_LDST_DBL_LD BGL_FPU_LDST_DBL_ST

BGL_FPU_LDST_QUAD_LD BGL_FPU_LDST_QUAD_ST

BGL_2NDFPU_ARITH_ADD_SUBTRACT BGL_2NDFPU_ARITH_MULT_DIV

BGL_2NDFPU_ARITH_OEDIPUS_OP BGL_2NDFPU_ARITH_TRINARY_OP

BGL_2NDFPU_LDST_DBL_LD BGL_2NDFPU_LDST_DBL_ST

BGL_2NDFPU_LDST_QUAD_LD BGL_2NDFPU_LDST_QUAD_ST

BGL_UPC_L3_CACHE_HIT BGL_UPC_L3_CACHE_MISS_DATA_ALRDY_WAY_DDR

BGL_UPC_L3_CACHE_MISS_DATA_WILL_BE_REQED_
DDR

BGL_UPC_L3_EDRAM_ACCESS_CYCLE

BGL_UPC_L3_EDRAM_RFR_CYCLE BGL_UPC_L3_LINE_STARTS_EVICT_LINE_NUM_
PRESSURE

BGL_UPC_L3_MISS_DIR_SET_DISBL BGL_UPC_L3_MISS_NO_WAY_SET_AVAIL

BGL_UPC_L3_MISS_REQUIRING_CASTOUT BGL_UPC_L3_MISS_REQUIRING_REFILL_NO_WR_
ALLOC

BGL_UPC_L3_MSHNDLR_TOOK_REQ BGL_UPC_L3_MSHNDLR_TOOK_REQ_PLB_RDQ

BGL_UPC_L3_MSHNDLR_TOOK_REQ_RDQ0 BGL_UPC_L3_MSHNDLR_TOOK_REQ_RDQ1

BGL_UPC_L3_MSHNDLR_TOOK_REQ_WRBUF BGL_UPC_L3_PAGE_CLOSE

BGL_UPC_L3_PAGE_OPEN BGL_UPC_L3_PLB_WRQ_DEP_DBUF

BGL_UPC_L3_PLB_WRQ_DEP_DBUF_HIT BGL_UPC_L3_PREF_REINS_PULL_OUT_NEXT_LINE

BGL_UPC_L3_PREF_REQ_ACC_BY_PREF_UNIT BGL_UPC_L3_RD_BURST_1024B_LINE_RD

BGL_UPC_L3_RD_EDR__ALL_KINDS_OF_RD BGL_UPC_L3_RD_MODIFY_WR_CYCLE_EDR

BGL_UPC_L3_REQ_TKN_CACHE_INHIB_RD_REQ BGL_UPC_L3_REQ_TKN_CACHE_INHIB_WR

BGL_UPC_L3_REQ_TKN_NEEDS_CASTOUT BGL_UPC_L3_REQ_TKN_NEEDS_REFILL

BGL_UPC_L3_WRBUF_LINE_ALLOC BGL_UPC_L3_WRQ0_DEP_DBUF

BGL_UPC_L3_WRQ0_DEP_DBUF_HIT BGL_UPC_L3_WRQ1_DEP_DBUF

BGL_UPC_L3_WRQ1_DEP_DBUF_HIT BGL_UPC_L3_WR_EDRAM__INCLUDING_RMW

BGL_UPC_PU0_DCURD_1_RD_PEND BGL_UPC_PU0_DCURD_2_RD_PEND

BGL_UPC_PU0_DCURD_3_RD_PEND BGL_UPC_PU0_DCURD_BLIND_REQ

BGL_UPC_PU0_DCURD_COHERENCY_STALL_WAR BGL_UPC_PU0_DCURD_L3_REQ

BGL_UPC_PU0_DCURD_L3_REQ_PEND BGL_UPC_PU0_DCURD_LINK_REQ

BGL_UPC_PU0_DCURD_LINK_REQ_PEND BGL_UPC_PU0_DCURD_LOCK_REQ

BGL_UPC_PU0_DCURD_LOCK_REQ_PEND BGL_UPC_PU0_DCURD_PLB_REQ

BGL_UPC_PU0_DCURD_PLB_REQ_PEND BGL_UPC_PU0_DCURD_RD_REQ
Chapter 9. Performance counters and PAPI 103

These mnemonics define an enumerated data type that is used to identify the events in
bgl_perfctr. A full event descriptor is a structure with two components: the event mnemonic
and the edge or state to monitor.

Example 9-1 shows the definition of the event descriptor together with an example of its use.

Example 9-1 bgl_perfctr event descriptor (from bgl_perfctr_events.h)

typedef struct BGL_PERFCTR_event {
 BGL_PERFCTR_event_num_t num;
 unsigned int edge;
} BGL_PERFCTR_event_t;

#define BGL_PERFCTR_UPC_EDGE_HI 0x0
#define BGL_PERFCTR_UPC_EDGE_RISE 0x1
#define BGL_PERFCTR_UPC_EDGE_FALL 0x2
#define BGL_PERFCTR_UPC_EDGE_LOW 0x3

Example of use of the event descriptor

BGL_PERFCTR_event_t fpu_example={ BGL_FPU_ARITH_MULT_DIV, 0};
BGL_PERFCTR_event_t upc_example={ BGL_UPC_PU0_DCURD_3_RD_PEND,
 BGL_PERFCTR_UPC_EDGE_HI};

BGL_UPC_PU0_DCURD_SRAM_REQ BGL_UPC_PU0_DCURD_SRAM_REQ_PEND

BGL_UPC_PU0_DCURD_WAIT_L3 BGL_UPC_PU0_DCURD_WAIT_LINK

BGL_UPC_PU0_DCURD_WAIT_LOCK BGL_UPC_PU0_DCURD_WAIT_PLB

BGL_UPC_PU0_DCURD_WAIT_SRAM BGL_UPC_PU0_PREF_FILTER_HIT

BGL_UPC_PU0_PREF_PREF_PEND BGL_UPC_PU0_PREF_REQ_VALID

BGL_UPC_PU0_PREF_SELF_HIT BGL_UPC_PU0_PREF_SNOOP_HIT_OTHER

BGL_UPC_PU0_PREF_SNOOP_HIT_PLB BGL_UPC_PU0_PREF_SNOOP_HIT_SAME

BGL_UPC_PU0_PREF_STREAM_HIT BGL_UPC_PU1_DCURD_1_RD_PEND

BGL_UPC_PU1_DCURD_2_RD_PEND BGL_UPC_PU1_DCURD_3_RD_PEND

BGL_UPC_PU1_DCURD_BLIND_REQ BGL_UPC_PU1_DCURD_COHERENCY_STALL_WAR

BGL_UPC_PU1_DCURD_L3_REQ BGL_UPC_PU1_DCURD_L3_REQ_PEND

BGL_UPC_PU1_DCURD_LINK_REQ BGL_UPC_PU1_DCURD_LINK_REQ_PEND

BGL_UPC_PU1_DCURD_LOCK_REQ BGL_UPC_PU1_DCURD_LOCK_REQ_PEND

BGL_UPC_PU1_DCURD_PLB_REQ BGL_UPC_PU1_DCURD_PLB_REQ_PEND

BGL_UPC_PU1_DCURD_RD_REQ BGL_UPC_PU1_DCURD_SRAM_REQ

BGL_UPC_PU1_DCURD_SRAM_REQ_PEND BGL_UPC_PU1_DCURD_WAIT_L3

BGL_UPC_PU1_DCURD_WAIT_LINK BGL_UPC_PU1_DCURD_WAIT_LOCK

BGL_UPC_PU1_DCURD_WAIT_PLB BGL_UPC_PU1_DCURD_WAIT_SRAM

BGL_UPC_PU1_PREF_FILTER_HIT BGL_UPC_PU1_PREF_PREF_PEND

BGL_UPC_PU1_PREF_REQ_VALID BGL_UPC_PU1_PREF_SELF_HIT

BGL_FPU_ARITH_ADD_SUBTRACT BGL_FPU_ARITH_MULT_DIV
104 Blue Gene/L: Application Development

UPC events need to specify both an event type and an edge type to be complete. For FPU
events, the edge selector is not used and should always be set to zero. In Example 9-2, two
examples of events are shown. The first event counts, multiplies, and divides in FPU0 while
the second event counts the duration in UPC cycles (CLOCKx2 cycles) where there were
three outstanding read requests in CPU core 0. All durations are in the unit of UPC cycles,
which is equal to two CPU cycles.

The internal data structures of the counter control substrate are instantiated at the time of
application launch.

The hardware counter is a shared resource on the Blue Gene/L compute node. For this
reason, any event programmed for a counter on one of the cores is also seen on the second
core of the node. This behavior is present in virtual node mode as well as in coprocessor
mode.

The major part of the internal data structure consists of a control structure. This structure
contains the complete state of the virtual counters and is shown in Example 9-2.

Example 9-2 bgl_perfctr structure

typedef struct bgl_perfctr_control {
 /* Bit pattern (one bit per counter register) */
 unsigned long long in_use;
 /* Bit pattern (one bit per counter control register */
 unsigned long long modified;
 unsigned long long virtual[BGL_PERFCTR_NUM_COUNTERS];
 unsigned int ctrl[BGL_PERFCTR_NUM_CTRL];
 unsigned int last[BGL_PERFCTR_NUM_COUNTERS];
 int nmapped;
 bgl_perfctr_control_map_t map[BGL_PERFCTR_NUM_COUNTERS];
 volatile unsigned long long last_updated;
} bgl_perfctr_control_t;

struct bgl_perfctr_control_map {
 BGL_PERFCTR_event_t event;
 int counter_register;
 int cntrl_register;
 int ref_count;
 int new_count;
} bgl_perfctr_control_map_t;

The 52 available counters are internally enumerated from 0 to 51. The structure sets the
corresponding bit (starting to count from the least significant bit) in the in_use component for
each counter in use. Counters with pending changes are marked in the modified bit map.
After a bgl_perfctr_commit() or bgl_perfctr_revoke(), this bit map is reset to 0.

The latest value recorded in the virtual counters is available in the virtual component. Virtual
counter k is the virtualization of physical hardware counter k. The ctrl component contains
the value for the different control registers for the counters. The last component is the
content of the physical counter register at the latest read. The last_updated component is
updated with the current value of the time base register at the onset and completion of each
virtual counter update.

At each point in time, there are N counting registers in use. To facilitate a simple read out of
counter values, there is an array of length N in the bgl_perfctr control structure. This array
shows the use of each counter. The map is sorted in ascending order according to the
bgl_perfctr event descriptor enumerator. The number of active events, N, is stored in the
Chapter 9. Performance counters and PAPI 105

component nmapped. The virtual and physical counter map[k].counter_register, where
k<nmapped, is counting the event described by map[k].event.

The complete bgl_perfctr API consists of the following 14 functions.

� bgl_perfctr_init: Initializes the library. This function is equivalent to
bgl_perfctr_init_synch(BGL_PERFCTR_MODE_LOCAL). On success, zero is returned. On
failure a negative value is returned.

� bgl_perfctr_init_synch: An alternative initialization routine that allows the user to control
the amount of synchronization between the tasks in Blue Gene/L. Possible values are:

– BGL_PERFCTR_MODE_LOCAL, which provides no synchronization and no counter
overflow protection

– BGL_PERFCTR_MODE_ASYNC, which starts a local timer that initiates counter reads
at approximately every 6 seconds to prevent counter overflow

– BGL_PERFCTR_MODE_SYNC, which also provides overflow protection using the
local timer

BGL_PERFCTR_MODE_SYNC differs from BGL_PERFCTR_MODE_ASYNC in that the
previous mode starts the timers after a global barrier to allow for synchronous counter
updates across the application. The return value indicates the synchronization mode
accomplished. This is equal to or lower than the supplied mode.

� bgl_perfctr_shutdown: Stops local timed interrupts on the local core; if there is no core
using the counters, clears the internal state and stops all counters.

� bgl_perfctr_add_event: Attempts to schedule an event to be added to the running set of
counters.

� bgl_perfctr_remove_event: Attempts to schedule an event to be removed from the
running set of counters.

� int bgl_perfctr_commit: Commits all pending changes to the running set of counters.

� int bgl_perfctr_revoke: Removes all pending changes and restores the internal state of
the library to the running set of counters.

� int bgl_perfctr_update: Updates the virtual counters with the current value of the
hardware counters.

� int bgl_perfctr_copy_counters: Updates the virtual counters with the current value of
the counters, and provides a copy of the virtual counter values in the supplied buffer.

� int bgl_perfctr_copy_hwstate: Updates the virtual counters with the current value of the
counters, and provides a copy of the complete internal state of the library in the supplied
buffer. This dump includes the information of all configured counters as well as the value
of the virtual counters after the update.

� int bgl_perfctr_dump_state: Dumps the complete state of the library to a provided file
handle. This function is mainly intended for debugging code that uses the bgl_perfctr
interface.

� bgl_perfctr_control_t* bgl_perfctr_hwstate: Gets a pointer to the internal state of the
bgl_perfctr interface.

� int bgl_perfctr_get_counters: Takes the lock on the internal virtual counters and
updates the virtual counters with the current value of the hardware counters. The function
returns without releasing the lock.

� int bgl_perfctr_release_counters: Releases the lock taken by
bgl_perfctr_get_counters().
106 Blue Gene/L: Application Development

The end user is typically not interested in accessing the content of the control registers in the
bgl_perfctr control structure, but the information is available. For asymmetric counters
where read and write bit patterns are not the same, bgl_perfctr uses the write pattern. That
is, any time bgl_perfctr reads a counter control register state from the hardware, it is
translated into its corresponding write bit-order in the library layer.

9.2.2 Ways to access the counters
Because the counters are a shared resource, you must use care when accessing the virtual
counters. Under normal conditions, the use of the library interface is straightforward. When
multiple agents are involved in accessing the counter, substrate application code must take
this into account or results may appear confusing.

Since the virtual counters may be updated by either of the cores and by interval timer
controlled interrupts, the value of the virtual counters may change between a user induced
counter update and a subsequent access to the memory location of the virtual counter.
Depending on the degree of control users of the library need on this behavior, you can use
any of the calling sequences in the following sections.

Counter update and copy-out
A call to the bgl_perfctr_copy_counters()function updates the internal virtual counters and
copies their updated values to the user-provided memory buffer. The update and copy are
made within a lock of the virtual counters to guarantee coherence.

Counter update and immediate access
In cases where the user knows that no other agent will access the counters in between an
initiated virtual counter update and a read-out of the counter values, or if such updates have
negligible influence on the results, he can use the bgl_perfctr_update() function. After the
update, the user can read the current values of the virtual counters from the SRAM memory
region. The memory address of the virtual counters are given by
bgl_perfctr_hwstat()->virtual.

There should be only a short code path between the call to the update function and the
readout of the counters. Further updates to the counters may occur if user code on the other
core executes the update function or if the timed update feature sets in. With a short code
path, such updates produce low amount of update increments to the virtual counters.

Counter update and lock
Advanced users who want complete control of the behavior of the library between the counter
update and counter readout without taking the overhead of the bgl_pefctr_copy_counters()
function can use the acquire-and-lock function provided in bgl_perfctr_get_counters(). This
call acquires a lock of the virtual counters and then updates their content with the current
value of the hardware counters.

While the lock is held, timed interrupt updates of the counters from any core are automatically
disabled. Also access to the virtual counters from the other CPU core is blocked. Application
code can read the content of the virtual counter content as explained in the previous section.
It is essential that the lock of the virtual counters is released by the
bgl_perfctr_release_counters() function.
Chapter 9. Performance counters and PAPI 107

9.2.3 Available counter events
bgl_perfctr provides a static array, BGL_PERFCTR_event_table[] (Example 9-3), with one
entry per hardware event on the Blue Gene/L compute node.

Example 9-3 Event information table BGL_PERFCTR_event_table

BGL_PERFCTR_event_encoding {
 unsigned int group; /* Which counter group to use */
 unsigned int counter; /* Which counter {A,B,C} to use */
 unsigned int code; /* Which hw-counter code */
} BGL_PERFCTR_event_encoding_t;

typedef const struct BGL_PERFCTR_event_descr {
 BGL_PERFCTR_event_num_t event_num;
 int num_encodings;
 u_int64_t mapping;
 BGL_PERFCTR_event_encoding_t encoding[BGL_PERFCTR_MAX_ENCODINGS];
 const char *event_name;
 const char *event_descr;
} BGL_PERFCTR_event_descr_t;

BGL_PERFCTR_event_descr_t
 BGL_PERFCTR_event_table[BGL_PERFCTR_NUMEVENTS];

This table is indexed using a C enumerated type and the event number. It can be used to
learn all details about the event. For each event, the num_encodings field denotes in how
many different locations of the hardware the event can be located. For each such location, the
encoding[] field lists the counter group, the counter number within the group, and the actual
code used to program the event in that location.

The event table also provides fields for the mnemonic name of the event and a description of
the event to facilitate event number to descriptive string translations. This table provides easy
and accurate access to information about possible counter allocations and event descriptions.
It does not need to be used by the user.

9.2.4 Correct API usage
The bgl_perfctr library and its API are an abstraction of the underlying hardware. In such, it
shares some of the properties of the physical counters. This becomes important when used
by advanced users in a multithreaded fashion. Predictable behavior is the result when the
recommendations listed in the following sections are honored.

Using the second CPU
Calls to the bgl_perfctr library can be made from either CPU on the compute node. The library
does the necessary locking internally to guarantee coherency of the virtual counters with the
hardware counters.

Calls that modify counter control register content can be used on either CPU core.
bgl_perfctr_add_event(), bgl_perfctr_remove_event(), bgl_perfctr_revoke() work
transparently by the internal use of the reference count in the library. Thus, if the same event
is added by both cores, this results in the reference count of that event to be two. The event
starts counting at the first time the bgl_perfctr_commit() function is called after the event is
added. The event does not disappear from the configured counters until the reference count
drops to zero and a subsequent commit operation is performed by any core.
108 Blue Gene/L: Application Development

Library initialization is either a local or global operation, depending on the mode selected.
Initializing the user level counters using the bgl_perfctr_init() function is equivalent to
bgl_perfctr_init_synch with an argument of BGL_PERFCTR_MODE_LOCAL. In this mode
as well as in the other modes, the virtual counter structure is a shared resource between the
CPU cores on the compute node. In local mode, it is the responsibility of the user to make
sure that calls to bgl_perfctr_update() are performed frequently enough to ensure that the
32-bit hardware counters do not collect more than 232–1 events in-between calls.
Bgl_perfctr_update() can be called directly, but also indirectly using the
bgl_perfctr_copy_counters() and bgl_perfctr_copy_state() functions.

Automatic prevention of counter overflow can be achieved by providing the argument
BGL_PERFCTR_MODE_ASYNC or BGL_PERFCTR_MODE_SYNC to
bgl_perfctr_init_synch(). In this mode, a user level timed interrupt is installed that
executes a virtual counter update within the passing of 232 CPU cycles.

The two modes differ in their global synchronization behavior. The synchronous mode
executes a global barrier using the global barrier network together with local synchronization
within the node using the CPU lockbox. The asynchronous mode does not perform this
synchronization before starting the interval timer interrupts. A safety timeout of five seconds is
used in the global barrier to safe-guard for the cases when the global barrier is not available,
for example, when not all nodes on a partition have user code loaded.

The core synchronization on the local node is performed on all nodes that have two user
applications loaded. This means that virtual node mode can use the synchronous mode
successfully in all cases where there is at least one process running on each node. Any
nodes with two processes on them take appropriate action to guarantee synchronization
within the chip in parallel to the internode synchronization.

Counter start, stop, and reset
In bgl_perfctr, there is no explicit start, stop, or reset of a counter. The underlying hardware
counter starts incrementing at the moment the control word is written into the counter group
control register. Start, stop, and reset of counters is accomplished by means of the update
function or functions calls that have an update of the virtual counters as a side effect. This
function call establishes a baseline for the virtual counters to which later returned values from
the same function can be compared.

The PAPI library, which is implemented using bgl_perfctr, provides an API with full start,
stop, and reset functionality.

Locking semantics of bgl_perfctr
The bgl_perfctr interface uses two locks internally to guarantee a coherent view of the
counter state. One lock protects updates of the control data of the library, while the other lock
is exclusively used to protect the virtual counters against incoherent updates. These two locks
are allocated from the set of 64 user-level locks that are available to user code on
Blue Gene/L.

Updates of the virtual counters can take place without acquiring a lock of the control structure.
Likewise, in most cases, modifications to the counter control registers can take place
independently of acquiring a lock of the virtual counters.

The interval timer controlled update of the virtual counters use the virtual counter lock as
explained in the following words. When the interrupt handler is called, it attempts to get hold
of the counter lock. If locking is successful, it updates the counters and releases the lock. If
the handler fails in acquiring the lock, it is because user level code, or an interrupt handler on
Chapter 9. Performance counters and PAPI 109

the other CPU core, is performing an update. In this case, this instance of the handler
immediately exits since no further virtual counter update is necessary.

9.3 PAPI implementation
The PAPI implementation on Blue Gene/L is based on the 2.3.4 release available at the time
when the work was initiated. The PAPI library consists of two parts: the common library API
and a substrate interface. The substrate interface (often called substrate) contains all the
platform-specific code in a PAPI implementation, while the main code is identical among all
platform implementations. This particular port of PAPI to the Blue Gene/L CNK conforms to
this with a few minor modifications as detailed in 9.3.3, “Modifications to PAPI” on page 112.

9.3.1 linux-bgl PAPI substrate
The PAPI substrate for the Blue Gene/L CNK is located in a subdirectory of the PAPI
distribution named linux-bgl. The substrate is built in top of bgl_perfctr and uses this API
for all hardware counter manipulation. The substrate enables a fully functional PAPI v2 library,
including overlapping counters.

Due to lack of operating system support and the nature of the intended use of the Blue
Gene/L machine, the PAPI_overflow() function is unimplemented. Also a call to this function
returns PAPI_ESBSTR according to library convention.

There is no notion of virtual CPU time in the CNK. For this reason, both PAPI_get_real_cyc()
and PAPI_get_virt_cyc() are mapped to the CPU time base register. By the same reason,
PAPI_get_real_usec() and PAPI_get_virt_usec() report the same amount of elapsed time.

9.3.2 PAPI event mapping for Blue Gene/L
The Blue Gene/L substrate for PAPI includes a default mapping of standard PAPI events to
available counters in the Blue Gene/L hardware counter infrastructure. Due to the nature of
the application-specific integrated circuit (ASIC) design of Blue Gene/L, many events
available on commodity machines are not available on this platform. This typically includes
events that are only detectable inside the PPC cores of the ASIC. Examples of such events
are L1 cache events, branch prediction events, and instruction counts. The ASIC design of
Blue Gene/L makes available to the user a complete new set of events that relate to states in
the network controllers on the chip.

Through the PAPI native event mechanism, any event available in the UPC or FPU counters
can be programmed and controlled through PAPI. A native event is handled in the same way
as the PAPI predefined events and passed through the same API calls. The difference is that
instead of passing a PAPI predefined event name, a bit pattern corresponding to the event
code and, where applicable, an edge detection mask is used. This is shown in Example 9-4.
110 Blue Gene/L: Application Development

Example 9-4 PAPI native event format for Blue Gene/L

#include "papi.h"
include "bgl_perfctr.h"

int eventFPU, eventUPC;

/* Code initializing PAPI not shown here */
. . .

/* Encode a BG/L native event for PAPI */
eventFPU= BGL_2NDFPU_TRINARY_OP & 0x3FF;
eventUPC= BGL_UPC_L3_PAGE_OPEN & 0x3FF |
 BGL_PERFCTR_UPC_EDGE_RISE << 10;

retval=PAPI_add_event(&evset,eventFPU);
retval=PAPI_add_event(&evset,eventUPC);

To simplify the usage of some of the communication-related events and to encourage the
usage of these counters, the standard PAPI event mapping has been expanded with several
new presets designed for Blue Gene/L. Example 9-5 shows the full set of new events.

Example 9-5 New PAPI nonstandard predefined events on Blue Gene/L

PAPI_BGL_OED Oedipus operations
The event is a convenience name for:
 {BGL_FPU_ARITH_OEDIPUS_OP,0,0}

PAPI_BGL_TS_32B Torus 32B chunks sent
The event is the sum of the following 6 events:
 {BGL_UPC_TS_XM_32B_CHUNKS,BGL_PERFCTR_UPC_EDGE_RISE,0}
 and similarly for _XP_, _YM_, _YP_, _ZM_ and _ZP_

PAPI_BGL_TS_FULL Torus no token UPC cycles
The event is the sum of the following 6 events:
 {BGL_UPC_TS_XM_LINK_AVAIL_NO_VCD0_VCD_VCBN_TOKENS,
 BGL_PERFCTR_UPC_EDGE_HI,0},
 and similarly for _XP_, _YM_, _YP_, _ZM_ and _ZP_

PAPI_BGL_TR_DPKT Tree 256 byte packets
The event is the sum of the following 6 events:
 {BGL_UPC_TR_SNDR_0_VC0_DPKTS_SENT,
 BGL_PERFCTR_UPC_EDGE_RISE,0},
 {BGL_UPC_TR_SNDR_0_VC1_DPKTS_SENT,
 BGL_PERFCTR_UPC_EDGE_RISE,0},
 and similarly for SNDR_1_ and SNDR_2_

PAPI_BGL_TR_FULL UPC cycles (CLOCKx2) tree rcv is full
The event is the sum of the following 6 events:
 {BGL_UPC_TR_RCV_0_VC0_FULL,BGL_PERFCTR_UPC_EDGE_HI,0},
 {BGL_UPC_TR_RCV_0_VC1_FULL,BGL_PERFCTR_UPC_EDGE_HI,0},
 and similarly for RCV_1_ and RCV_2_

The communication events are designed to provide easy aggregated counts of the traffic
occurring at each node. The PAPI_BGL_TS_32B event counts the number of all 32 byte data
chunks that have been sent from the node. This includes traffic injected at the node and traffic
cutting through the network controller. The same holds true for the PAPI_BGL_TR_DPKT
event that reports tree network traffic.
Chapter 9. Performance counters and PAPI 111

For the two duration count events defined, PAPI_BGL_TS_FULL and PAPI_BGL_TR_FULL,
the count at each UPC cycle is effectively multiplied by the number of channels experiencing
the condition. That is, if both the X-minus and the Y-plus FIFOs experience the condition of no
to-kens available, both contribute with one count each UPC clock cycle (every second CPU
cycle) until sufficient token acknowledgements are received.

9.3.3 Modifications to PAPI
The standard PAPI distribution, excluding the Blue Gene/L specific substrate, is unchanged
from the official release version but for the following modifications.

� A set of new predefined events were added to the existing set of events. These events are:

– PAPI_BGL_OED (Oedipus operations in FPU0)
– PAPI_BGL_TS_32B (No. 32 byte packets sent on torus network)
– PAPI_BGL_TS_FULL (No. UPC cycles × torus links with no available tokens)
– PAPI_BGL_TR_DPKT (No. packets sent on the tree network)
– PAPI_BGL_TR_FULL (UPC cycles × No. full tree receivers)

� The semantics of PAPI_library_init() is changed from the standard distribution. In Blue
Gene/L, PAPI_library_init() is a synchronizing call that should be executed by all
processes on the partition. It uses the global barrier with a pre-set time-out to initiate the
periodic timers that prevent counter overflows. This assures that these interrupts are
localized in time over the set of allocated nodes. In virtual node mode, this means that
PAPI_library_init should be called by all processes, including the processes running on
CPU1 on each node.

� When PAPI_library_init() is called on a partition where not all nodes are participating in
the call, a global barrier time-out occurs and no global synchronization is achieved.

9.4 Examples of using HPM libraries for Blue Gene/L
This section provides some examples of how the Hardware Performance Monitor (HPM) on
Blue Gene/L.

9.4.1 PAPI library usage examples
Example 9-6 shows an example program using the PAPI library API. This examples illustrates
the configuration of five counters into an event set as well as, start, stop, read and reset of this
event set. Measurements are taken over the fpmaddv subroutine, which is a naïve
implementation of a FMA-like operation on three input vectors and one output vector using
the Blue Gene/L specific FPMA operation.

In the experiment, five counters are set up. The counters used are the time base register and
the four floating point unit registers. The order of the events when printed out is:

1. PAPI_TOT_CYC
2. BGL_FPU_ARITH_OEDIPUS_OP
3. BGL_2NDFPU_ARITH_OEDIPUS_OP
4. BGL_FPU_LDST_QUAD_LD
5. BGL_2NDFPU_LDST_QUAD_LD

The counters are started, some load operations are performed, and then the vectorized FMA
routine is called. After this, the counters are read, but left running. Before repeating the call to
the FMA routine, the running counters are reset to zero, without stopping or re-starting. The
FMA routine is called and the counters are stopped.
112 Blue Gene/L: Application Development

To illustrate the effect of using both floating point units, the code is run both in coprocessor
mode and virtual node mode. As expected, the registered number of counts is zero in the
second floating point unit when run in co-processor mode. In virtual node, mode counts are
registered in both units, since both units are active. This illustrates the property of the
counters that the hardware counters are a shared resource between the two processes on
the node in virtual node mode. The example also illustrates that the library interface itself
resolves the multiple accesses to the hardware as well as the virtualized counters. Although
both processes create an event set and add counters to it, the library recognizes that the
same hardware counter can be reused. Similarly, when a process releases a counter, the
underlying hardware counter may remain allocated, if it is used by the other processor.

Example 9-6 PAPI example code

#include <stdio.h>
#include <stdlib.h>
#include "papi.h"
#include "bgl_perfctr_events.h"

#define N 8
#define NCOUNTS 5

int main(int argc, char* argv[]) {
 double v1[N], v2[N], v3[N], r1[N], r2[N];
 double a=1.01,b=1.02,c=1.03,t=0.0,t2=0.0;
 int i, rank;
 int perr, ev_set;
 int encoding;
 long_long counts[NCOUNTS];

#include "bglpersonality.h"
#include "rts.h"

 if(PAPI_VER_CURRENT!=
 (perr=PAPI_library_init(PAPI_VER_CURRENT)))
 printf("\nPAPI_library_init failed. %s\n",PAPI_strerror(perr));

 {
 BGLPersonality me;
 rts_get_personality(&me,sizeof(me));
 if(me.xCoord != 0) goto fine;
 if(me.yCoord != 0) goto fine;
 if(me.zCoord != 0) goto fine;
 }
 for(i=0;i<N;i++) {
 v1[i]=1.01+0.01*i;
 v2[i]=2.01+0.01*i;
 v3[i]=3.01+0.01*i;
 r1[i]=v1[i]*v2[i]+v3[i];
 }
if((perr=PAPI_create_eventset(&ev_set)))
 printf("\nPAPI_create_eventset failed. %s\n",PAPI_strerror(perr));

 /*
 encoding=(BGL_FPU_ARITH_MULT_DIV & 0x3FF);
 encoding=(BGL_FPU_ARITH_ADD_SUBTRACT & 0x3FF);
 encoding=(BGL_FPU_ARITH_TRINARY_OP & 0x3FF);
 */

 if((perr=PAPI_add_event(&ev_set,PAPI_TOT_CYC)))
Chapter 9. Performance counters and PAPI 113

 printf("PAPI_add_event failed. %s\n",PAPI_strerror(perr));

 encoding=(BGL_FPU_ARITH_OEDIPUS_OP & 0x3FF);
 if((perr=PAPI_add_event(&ev_set,encoding)))
 printf("\nPAPI_add_event failed. %s\n",PAPI_strerror(perr));

 encoding=(BGL_2NDFPU_ARITH_OEDIPUS_OP & 0x3FF);
 if((perr=PAPI_add_event(&ev_set,encoding)))
 printf("\nPAPI_add_event failed. %s\n",PAPI_strerror(perr));

 encoding=(BGL_FPU_LDST_QUAD_LD & 0x3FF);
 if((perr=PAPI_add_event(&ev_set,encoding)))
 printf("\nPAPI_add_event failed. %s\n",PAPI_strerror(perr));

 encoding=(BGL_2NDFPU_LDST_QUAD_LD & 0x3FF);
 if((perr=PAPI_add_event(&ev_set,encoding)))
 printf("\nPAPI_add_event failed. %s\n",PAPI_strerror(perr));

printf("\nAssigning a vector of length %1d and computing "
 "A()=B()*C()+D().\n",N);

if((perr=PAPI_start(ev_set)))
 printf("\nPAPI_start_event failed. %s\n",PAPI_strerror(perr));

 for(i=0;i<N;i++) r2[i]=-1.001;
 fpmaddv(N,v1,v2,v3,r2);

 if((perr=PAPI_read(ev_set,counts)))
 printf("PAPI_read failed. %s\n",PAPI_strerror(perr));

 printf("Counts registered: ");
 for(i=0;i<NCOUNTS;i++) printf(" %12llu",counts[i]);
 printf("\n");

for(i=0;i<N;i++) {
 printf(" %g * %g + % g = %g (%g)\n",

 v1[i],v2[i],v3[i],r2[i],r1[i]);
 }

 for(i=0;i<N;i++) r2[i]=-1.001;

 printf("\nResetting the running counter and com-puting "
 "A(1:%1d)=B()*C()+D().\n",N);

 if((perr=PAPI_reset(ev_set)))
 printf("\nPAPI_reset failed. %s\n",PAPI_strerror(perr));

 fpmaddv(N,v1,v2,v3,r2);

if((perr=PAPI_stop(ev_set,counts)))
printf("PAPI_stop failed. %s\n",PAPI_strerror(perr));

 for(i=0;i<N;i++) {
 printf(" %g * %g + % g = %g (%g)\n",

 v1[i],v2[i],v3[i],r2[i],v1[i]*v2[i]+v3[i]);
 }

 printf("Testing to read stopped counters\n");
 if((perr=PAPI_read(ev_set,counts)))
 printf("PAPI_read failed. %s\n",PAPI_strerror(perr));

114 Blue Gene/L: Application Development

 printf("Counts registered: ");
 for(i=0;i<NCOUNTS;i++) printf(" %12llu",counts[i]);
 printf("\n");

 fine:
 PAPI_shutdown();
 return 0

When looking at the output generated by the program, when executed in co-processor mode
(Example 9-7), there are no surprises. When run in virtual node mode (Example 9-8) the
output has been compressed somewhat to make the results fit onto one page. In the virtual
node mode case, the two processes (and the two cores) are running with no synchronization
between the cores after the initial synchronization at PAPI library initialization. At each core,
vectors of length eight are processed. This is the reason for detecting four double operations
on the local FPU.

The experiment illustrates that the counter reads are naturally only synchronized with the
local program activity in the local core, unless specifically programmed to do so. In the
illustrated output, process 0 and process 32, which ran on the same node with process 0 on
core 0, apparently did not execute the first section of the test example simultaneously. That’s
because no counts were generated in the non-local FPU during the execution of the local
floating point activity. The reason behind this is the serialization introduced by printouts to
stdout from the processes. In the second part of the experiment, core1 did its local counter
reset and reads so that it saw the events generated in FPU0.

Example 9-7 shows sample output from the application shown in Example 9-6, running in
coprocessor mode.

Example 9-7 Running the PAPI example code in coprocessor mode

program is loading...ok
program is running

stdout[0]:
stdout[0]: Assigning a vector of length 8 and computing A()=B()*C()+D().
stdout[0]: Counts registered: 9572 4 0 140
0
stdout[0]: 1.01 * 2.01 + 3.01 = 5.0401 (5.0401)
stdout[0]: 1.02 * 2.02 + 3.02 = 5.0804 (5.0804)
stdout[0]: 1.03 * 2.03 + 3.03 = 5.1209 (5.1209)
stdout[0]: 1.04 * 2.04 + 3.04 = 5.1616 (5.1616)
stdout[0]: 1.05 * 2.05 + 3.05 = 5.2025 (5.2025)
stdout[0]: 1.06 * 2.06 + 3.06 = 5.2436 (5.2436)
stdout[0]: 1.07 * 2.07 + 3.07 = 5.2849 (5.2849)
stdout[0]: 1.08 * 2.08 + 3.08 = 5.3264 (5.3264)
stdout[0]:
stdout[0]: Resetting the running counter and computing A(1:8)=B()*C()+D().
stdout[0]: 1.01 * 2.01 + 3.01 = 5.0401 (5.0401)
stdout[0]: 1.02 * 2.02 + 3.02 = 5.0804 (5.0804)
stdout[0]: 1.03 * 2.03 + 3.03 = 5.1209 (5.1209)
stdout[0]: 1.04 * 2.04 + 3.04 = 5.1616 (5.1616)
stdout[0]: 1.05 * 2.05 + 3.05 = 5.2025 (5.2025)
stdout[0]: 1.06 * 2.06 + 3.06 = 5.2436 (5.2436)
stdout[0]: 1.07 * 2.07 + 3.07 = 5.2849 (5.2849)
stdout[0]: 1.08 * 2.08 + 3.08 = 5.3264 (5.3264)
stdout[0]: Testing to read stopped counters
Chapter 9. Performance counters and PAPI 115

stdout[0]: Counts registered: 8486 4 0 140
0
Checking status

program terminated successfully

Example 9-8 shows output from the same application, but this time running in virtual node
mode.

Example 9-8 Running the PAPI example in virtual node mode

program is running

stdout[32]:
stdout[0]:
stdout[32]: Assigning a vector of length 8 and computing A()=B()*C()+D().
stdout[0]: Assigning a vector of length 8 and computing A()=B()*C()+D().
stdout[32]: Counts registered: 9776 0 4 0
140
stdout[0]: Counts registered: 9664 4 0 140
0
stdout[32]: 1.01 * 2.01 + 3.01 = 5.0401 (5.0401)
stdout[0]: 1.01 * 2.01 + 3.01 = 5.0401 (5.0401)

 …
stdout[32]: 1.08 * 2.08 + 3.08 = 5.3264 (5.3264)
stdout[0]: 1.08 * 2.08 + 3.08 = 5.3264 (5.3264)
stdout[32]:
stdout[0]:
stdout[32]: Resetting the running counter and computing A(1:8)=B()*C()+D().
stdout[0]: Resetting the running counter and computing A(1:8)=B()*C()+D().
stdout[32]: 1.01 * 2.01 + 3.01 = 5.0401 (5.0401)
stdout[0]: 1.01 * 2.01 + 3.01 = 5.0401 (5.0401)

 …
stdout[32]: 1.08 * 2.08 + 3.08 = 5.3264 (5.3264)
stdout[0]: 1.08 * 2.08 + 3.08 = 5.3264 (5.3264)
stdout[32]: Testing to read stopped counters
stdout[0]: Testing to read stopped counters
stdout[32]: Counts registered: 8474 4 4 188
140
stdout[0]: Counts registered: 9638 4 0 140
128
Checking status

program terminated successfully

A second test example is included here as well. In this example, a similar code (Example 9-9)
is used, but a much larger number of counts is generated. This example illustrates the
transparent 32-bit overflow protection in the performance counter API. In contrast to the
previous example, the computation routine used here utilizes a standard FMA instruction and
not the Blue Gene/L-specific FPMA instruction.

The counters used in this experiment are the time base register and the four floating point unit
registers. The order of the events when printed out is:

1. PAPI_TOT_CYC
2. BGL_FPU_ARITH_TRINARY_OP
3. BGL_2NDFPU_ARITH_TRINARY_OP
116 Blue Gene/L: Application Development

4. BGL_FPU_LDST_QUAD_LD
5. BGL_2NDFPU_LDST_QUAD_LD

The experiment is set up to perform 4.4·109 trinary operations, which exceeds 232 as shown
in the generated output in co-processor mode (Example 9-10 on page 118) as well as in
virtual node mode (Example 9-11 on page 119). The output illustrates that the library
correctly protects against 32-bit convolution errors.

Example 9-9 PAPI example code exercising 32-bit overflow protection

#include <stdio.h>
#include <stdlib.h>
#include "papi.h"
#include "bgl_perfctr_events.h"

#undef FPMA // Use the FPM version of the com-putation

#define N 4000000
#define NITER 1100
#define NCOUNTS 5

int main(int argc, char* argv[]) {
 double v1[N], v2[N], v3[N], r1[N], r2[N];
 double a=1.01,b=1.02,c=1.03,t=0.0,t2=0.0;
 int i, rank, iter;
 int perr, ev_set;
 int encoding;
 long_long counts[NCOUNTS];

#include "bglpersonality.h"
#include "rts.h"

 if(PAPI_VER_CURRENT!=(perr=PAPI_library_init(PAPI_VER_CURRENT)))
 printf("PAPI_library_init failed. %s\n",PAPI_strerror(perr));

 {
 BGLPersonality me;
 rts_get_personality(&me,sizeof(me));
 if(me.xCoord != 0) goto fine;
 if(me.yCoord != 0) goto fine;
 if(me.zCoord != 0) goto fine;
for(i=0;i<N;i++) {
 v1[i]=1.01+0.01*i;
 v2[i]=2.01+0.01*i;
 v3[i]=3.01+0.01*i;
 r1[i]=v1[i]*v2[i]+v3[i];
 }

 for(i=0;i<N;i++) r2[i]=-1.001;

 if((perr=PAPI_create_eventset(&ev_set)))
 printf("PAPI_create_eventset failed. %s\n",PAPI_strerror(perr));

 if((perr=PAPI_add_event(&ev_set,PAPI_TOT_CYC)))
 printf("PAPI_add_event failed. %s\n",PAPI_strerror(perr));

 encoding=(BGL_FPU_ARITH_TRINARY_OP & 0x3FF);
 if((perr=PAPI_add_event(&ev_set,encoding)))
 printf("\nPAPI_add_event failed. %s\n",PAPI_strerror(perr));
Chapter 9. Performance counters and PAPI 117

 encoding=(BGL_2NDFPU_ARITH_TRINARY_OP & 0x3FF);
 if((perr=PAPI_add_event(&ev_set,encoding)))
 printf("\nPAPI_add_event failed. %s\n",PAPI_strerror(perr));

 encoding=(BGL_FPU_LDST_DBL_LD & 0x3FF);
 if((perr=PAPI_add_event(&ev_set,encoding)))
 printf("\nPAPI_add_event failed. %s\n",PAPI_strerror(perr));

 encoding=(BGL_2NDFPU_LDST_DBL_LD & 0x3FF);
 if((perr=PAPI_add_event(&ev_set,encoding)))
 printf("\nPAPI_add_event failed. %s\n",PAPI_strerror(perr));
if((perr=PAPI_start(ev_set)))
 printf("PAPI_start_event failed. %s\n",PAPI_strerror(perr));

 printf("\n\nPerforming %d iterations of vector operations for\n"
 "a total of %lld (0x%llx) number of FMAs\n",
 NITER,((long long)NITER)*N,((long long)NITER)*N);

 for(iter=0;iter<NITER;iter++) {

 if(iter%100==0)
 printf("\t---- Iteration %4.4d of %4.4d ----\n",iter,NITER);

#ifdef FPMA
 fpmaddv(N,v1,v2,v3,r2);
#else
 fmaddv(N,v1,v2,v3,r2);
#endif

 }

 if((perr=PAPI_stop(ev_set,counts)))
 printf("PAPI_stop failed. %s\n",PAPI_strerror(perr));

 printf("Counts registered: ");
 for(i=0;i<NCOUNTS;i++) printf(" %12llu",counts[i]);
 printf("\n");

 fine:
 PAPI_shutdown();
 return 0;
}

Example 9-10 Running the PAPI overflowing example code in coprocessor mode

program is running

stdout[0]:
stdout[0]:
stdout[0]: Performing 1100 iterations of vector operations for
stdout[0]: a total of 4400000000 (0x10642ac00) number of FMAs
stdout[0]: Time base: 915546797451
stdout[0]: ---- Iteration 0000 of 1100 ----
stdout[0]: ---- Iteration 0100 of 1100 ----
stdout[0]: ---- Iteration 0200 of 1100 ----
stdout[0]: ---- Iteration 0300 of 1100 ----
118 Blue Gene/L: Application Development

stdout[0]: ---- Iteration 0400 of 1100 ----
stdout[0]: ---- Iteration 0500 of 1100 ----
stdout[0]: ---- Iteration 0600 of 1100 ----
stdout[0]: ---- Iteration 0700 of 1100 ----
stdout[0]: ---- Iteration 0800 of 1100 ----
stdout[0]: ---- Iteration 0900 of 1100 ----
stdout[0]: ---- Iteration 1000 of 1100 ----
stdout[0]: Counts registered: 85820449687 4400000000 0 13200000232
0
Checking status

program terminated successfully

Example 9-11 Running the PAPI overflowing example code in virtual node mode

program is running

stdout[0]:
stdout[32]:
stdout[0]:
stdout[32]:
stdout[0]: Performing 1100 iterations of vector operations for
stdout[32]: Performing 1100 iterations of vector operations for
stdout[0]: a total of 4400000000 (0x10642ac00) number of FMAs
stdout[32]: a total of 4400000000 (0x10642ac00) number of FMAs
stdout[0]: ---- Iteration 0000 of 1100 ----
stdout[32]: ---- Iteration 0000 of 1100 ----
stdout[0]: ---- Iteration 0100 of 1100 ----
stdout[32]: ---- Iteration 0100 of 1100 ----
 …
stdout[32]: ---- Iteration 1000 of 1100 ----
stdout[0]: ---- Iteration 1000 of 1100 ----
stdout[32]: Counts registered: 109898564159 4400000000 4400000000 13200000137
13200000174
stdout[0]: Counts registered: 109898570635 4400000000 4400000000 13200000246
13200000235
Checking status

program terminated successfully

9.4.2 bgl_perfctr usage example
Example 9-12 illustrates the usage of the lower-level substrate. To make visible the behavior
of the internals of the library to different function calls, heavy use of the
bgl_perfctr_dump_state() function is used. In normal operation, this function is not used, but
it is helpful to illustrate the changes in the internal state of the control structure.

The code in Example 9-12 performs the following operations at the time of each counter state
dump.

1. Initializing the library
2. Scheduling an event for addition
3. Scheduling a second event for addition
4. Committing pending configuration changes
5. Scheduling an event for removal
6. Revoking pending changes
Chapter 9. Performance counters and PAPI 119

7. Updating a virtual counter to establish a counter baseline
8. Updating a second virtual counter to see how many counts were aggregated
9. Updating a third virtual counter to increment the virtual counters with events since the last

update

Example 9-12 bgl_perfctr example code

#include <stdio.h>
#include <stdlib.h>
#include "bgl_perfctr.h"
#include "bgl_perfctr_events.h"
#define EV1 BGL_UPC_L3_CACHE_HIT
#define EV2 BGL_UPC_L3_CACHE_MISS_DATA_WILL_BE_REQED_DDR
//#define EV1 BGL_UPC_L3_CACHE_MISS_DATA_ALRDY_WAY_DDR
//#define EV2 BGL_UPC_L3_EDRAM_ACCESS_CYCLE

int main() {

 bgl_perfctr_control_t *hwctrs;
 BGL_PERFCTR_event_t ev;
 int i,n,err,rank;
 int *memarea;

#include "bglpersonality.h"
#include "rts.h"
 {
 BGLPersonality me;
 rts_get_personality(&me,sizeof(me));
 if(me.xCoord != 0) goto fine;
 if(me.yCoord != 0) goto fine;
 if(me.zCoord != 0) goto fine;
 }

 if(bgl_perfctr_init())
 abort();

 bgl_perfctr_dump_state(stdout);
ev.edge=0x1;
 ev.num=EV1;
 err=bgl_perfctr_add_event(ev);
 if(err) {
 printf("Add event line %d failed.\n",__LINE__-2);
 exit(1);
 } else printf("One event added. %s\n",BGL_PERFCTR_event_table[EV1].event_name);

 bgl_perfctr_dump_state(stdout);

 ev.num=EV2;
 err=bgl_perfctr_add_event(ev);
 if(err) {
 printf("Add event line %d failed.\n",__LINE__-2);
 exit(1);
 } else printf("One more event added. %s\n",BGL_PERFCTR_event_table[EV2].event_name);

 bgl_perfctr_dump_state(stdout);

 err=bgl_perfctr_commit();
 if(err) {
 printf("Commit %d failed.\n",__LINE__-2);
 exit(1);
120 Blue Gene/L: Application Development

 } else printf("Commit successful.\n");

 bgl_perfctr_dump_state(stdout);

 ev.num=EV1;
 err=bgl_perfctr_remove_event(ev);
 if(err) {
 printf("Remove %d failed.\n",__LINE__-2);
 exit(1);
 } else printf("Remove successful.\n");

 bgl_perfctr_dump_state(stdout);
err=bgl_perfctr_revoke();
 if(err) {
 printf("Commit %d failed.\n",__LINE__-2);
 exit(1);
 } else printf("Commit successful.\n");

 bgl_perfctr_dump_state(stdout);

 printf("\n\n----------------------\n\n");

 printf("\n bgl_perfctr_update \n");
 bgl_perfctr_update();
 bgl_perfctr_dump_state(stdout);

 n=1024*1024;
 memarea=(int *) malloc(1024*1024*sizeof(int));
 for(i=0;i<n;i++)
 memarea[i]=n-1;

 printf("\n bgl_perfctr_update again after loop\n");
 bgl_perfctr_update();
 bgl_perfctr_dump_state(stdout);

 for(i=0;i<n;i++)
 memarea[i]-=1;

 printf("\n bgl_perfctr_update again after loop\n");
 bgl_perfctr_update();
 bgl_perfctr_dump_state(stdout);

 if(bgl_perfctr_shutdown())
 abort();

fine:

 return 0;
Chapter 9. Performance counters and PAPI 121

Example 9-13 shows the output from running the program in Example 9-12.

Example 9-13 Running the bgl_perfctr example code

program is running

stdout[0]: -------- bgl_perfctr_dump_state -------
stdout[0]: 0 defined events. in_use=0x00000000 modified=0x00000000
stdout[0]: Id code - Interpretation
stdout[0]: UPC events A: edge code IRQ | B: edge code IRQ | C: edge code IRQ
stdout[0]: 0: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 1: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 2: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 3: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 4: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 5: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 6: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 7: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 8: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 9: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 10: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 11: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 12: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 13: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 14: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 15: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: FPU Hummer ARITH: Act Code | LD/ST: Act Code
stdout[0]: 16: 0x00000000 - 0 0 | 0 0
stdout[0]: FPU Hummer CPU2 ARITH: Act Code | LD/ST: Act Code
stdout[0]: 17: 0x00000000 - 0 0 | 0 0
stdout[0]: Id Event H/W CtrlReg RefCount NewCount
stdout[0]: Current cached values in the active counters
stdout[0]: Last Virtual
stdout[0]: One event added. BGL_UPC_L3_CACHE_MISS_DATA_ALRDY_WAY_DDR
stdout[0]: -------- bgl_perfctr_dump_state -------
stdout[0]: 1 defined events. in_use=0x00000000 modified=0x00000010
stdout[0]: Id code - Interpretation
stdout[0]: UPC events A: edge code IRQ | B: edge code IRQ | C: edge code IRQ
stdout[0]: 0: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 1: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 2: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
122 Blue Gene/L: Application Development

stdout[0]: 3: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 4: 0x00081000 M 0 0 - | 1 1 - | 0 0 -
c-mode=0
stdout[0]: 5: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 6: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 7: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 8: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 9: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 10: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 11: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 12: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 13: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 14: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 15: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: FPU Hummer ARITH: Act Code | LD/ST: Act Code
stdout[0]: 16: 0x00000000 - 0 0 | 0 0
stdout[0]: FPU Hummer CPU2 ARITH: Act Code | LD/ST: Act Code
stdout[0]: 17: 0x00000000 - 0 0 | 0 0
stdout[0]: Id Event H/W CtrlReg RefCount NewCount
stdout[0]: 0: 17 13 4 0 1
(BGL_UPC_L3_CACHE_MISS_DATA_ALRDY_WAY_DDR)
stdout[0]: Current cached values in the active counters
stdout[0]: Last Virtual
stdout[0]: One more event added. BGL_UPC_PU0_DCURD_WAIT_L3
stdout[0]: -------- bgl_perfctr_dump_state -------
stdout[0]: 2 defined events. in_use=0x00000000 modified=0x00000050
stdout[0]: Id code - Interpretation
stdout[0]: UPC events A: edge code IRQ | B: edge code IRQ | C: edge code IRQ
stdout[0]: 0: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 1: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 2: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 3: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 4: 0x00081000 M 0 0 - | 1 1 - | 0 0 -
c-mode=0
stdout[0]: 5: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 6: 0x00005000 M 0 0 - | 0 5 - | 0 0 -
c-mode=0
stdout[0]: 7: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 8: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 9: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
Chapter 9. Performance counters and PAPI 123

stdout[0]: 10: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 11: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 12: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 13: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 14: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 15: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: FPU Hummer ARITH: Act Code | LD/ST: Act Code
stdout[0]: 16: 0x00000000 - 0 0 | 0 0
stdout[0]: FPU Hummer CPU2 ARITH: Act Code | LD/ST: Act Code
stdout[0]: 17: 0x00000000 - 0 0 | 0 0
stdout[0]: Id Event H/W CtrlReg RefCount NewCount
stdout[0]: 0: 17 13 4 0 1
(BGL_UPC_L3_CACHE_MISS_DATA_ALRDY_WAY_DDR)
stdout[0]: 1: 66 19 6 0 1 (BGL_UPC_PU0_DCURD_WAIT_L3)
stdout[0]: Current cached values in the active counters
stdout[0]: Last Virtual
stdout[0]: Commit successful.
stdout[0]: -------- bgl_perfctr_dump_state -------
stdout[0]: 2 defined events. in_use=0x00082000 modified=0x00000000
stdout[0]: Id code - Interpretation
stdout[0]: UPC events A: edge code IRQ | B: edge code IRQ | C: edge code IRQ
stdout[0]: 0: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 1: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 2: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 3: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 4: 0x00081000 - 0 0 - | 1 1 - | 0 0 -
c-mode=0
stdout[0]: 5: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 6: 0x00005000 - 0 0 - | 0 5 - | 0 0 -
c-mode=0
stdout[0]: 7: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 8: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 9: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 10: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 11: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 12: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 13: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 14: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 15: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: FPU Hummer ARITH: Act Code | LD/ST: Act Code
124 Blue Gene/L: Application Development

stdout[0]: 16: 0x00000000 - 0 0 | 0 0
stdout[0]: FPU Hummer CPU2 ARITH: Act Code | LD/ST: Act Code
stdout[0]: 17: 0x00000000 - 0 0 | 0 0
stdout[0]: Id Event H/W CtrlReg RefCount NewCount
stdout[0]: 0: 17 13 4 1 1
(BGL_UPC_L3_CACHE_MISS_DATA_ALRDY_WAY_DDR)
stdout[0]: 1: 66 19 6 1 1 (BGL_UPC_PU0_DCURD_WAIT_L3)
stdout[0]: Current cached values in the active counters
stdout[0]: Last Virtual
stdout[0]: 13: 0 0
stdout[0]: 19: 0 0
stdout[0]: Remove successful.
stdout[0]: -------- bgl_perfctr_dump_state -------
stdout[0]: 2 defined events. in_use=0x00082000 modified=0x00000000
stdout[0]: Id code - Interpretation
stdout[0]: UPC events A: edge code IRQ | B: edge code IRQ | C: edge code IRQ
stdout[0]: 0: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 1: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 2: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 3: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 4: 0x00081000 - 0 0 - | 1 1 - | 0 0 -
c-mode=0
stdout[0]: 5: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 6: 0x00005000 - 0 0 - | 0 5 - | 0 0 -
c-mode=0
stdout[0]: 7: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 8: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 9: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 10: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 11: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 12: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 13: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 14: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 15: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: FPU Hummer ARITH: Act Code | LD/ST: Act Code
stdout[0]: 16: 0x00000000 - 0 0 | 0 0
stdout[0]: FPU Hummer CPU2 ARITH: Act Code | LD/ST: Act Code
stdout[0]: 17: 0x00000000 - 0 0 | 0 0
stdout[0]: Id Event H/W CtrlReg RefCount NewCount
stdout[0]: 0: 17 13 4 1 0
(BGL_UPC_L3_CACHE_MISS_DATA_ALRDY_WAY_DDR)
stdout[0]: 1: 66 19 6 1 1 (BGL_UPC_PU0_DCURD_WAIT_L3)
stdout[0]: Current cached values in the active counters
stdout[0]: Last Virtual
stdout[0]: 13: 0 0
stdout[0]: 19: 0 0
Chapter 9. Performance counters and PAPI 125

stdout[0]: Revoke successful.
stdout[0]: -------- bgl_perfctr_dump_state -------
stdout[0]: 2 defined events. in_use=0x00082000 modified=0x00000000
stdout[0]: Id code - Interpretation
stdout[0]: UPC events A: edge code IRQ | B: edge code IRQ | C: edge code IRQ
stdout[0]: 0: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 1: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 2: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 3: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 4: 0x00081000 - 0 0 - | 1 1 - | 0 0 -
c-mode=0
stdout[0]: 5: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 6: 0x00005000 - 0 0 - | 0 5 - | 0 0 -
c-mode=0
stdout[0]: 7: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 8: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 9: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 10: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 11: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 12: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 13: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 14: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 15: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: FPU Hummer ARITH: Act Code | LD/ST: Act Code
stdout[0]: 16: 0x00000000 - 0 0 | 0 0
stdout[0]: FPU Hummer CPU2 ARITH: Act Code | LD/ST: Act Code
stdout[0]: 17: 0x00000000 - 0 0 | 0 0
stdout[0]: Id Event H/W CtrlReg RefCount NewCount
stdout[0]: 0: 17 13 4 1 1
(BGL_UPC_L3_CACHE_MISS_DATA_ALRDY_WAY_DDR)
stdout[0]: 1: 66 19 6 1 1 (BGL_UPC_PU0_DCURD_WAIT_L3)
stdout[0]: Current cached values in the active counters
stdout[0]: Last Virtual
stdout[0]: 13: 0 0
stdout[0]: 19: 0 0
stdout[0]:
stdout[0]: bgl_perfctr_update
stdout[0]: -------- bgl_perfctr_dump_state -------
stdout[0]: 2 defined events. in_use=0x00082000 modified=0x00000000
stdout[0]: Id code - Interpretation
stdout[0]: UPC events A: edge code IRQ | B: edge code IRQ | C: edge code IRQ
stdout[0]: 0: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 1: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
126 Blue Gene/L: Application Development

stdout[0]: 2: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 3: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 4: 0x00081000 - 0 0 - | 1 1 - | 0 0 -
c-mode=0
stdout[0]: 5: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 6: 0x00005000 - 0 0 - | 0 5 - | 0 0 -
c-mode=0
stdout[0]: 7: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 8: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 9: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 10: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 11: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 12: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 13: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 14: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 15: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: FPU Hummer ARITH: Act Code | LD/ST: Act Code
stdout[0]: 16: 0x00000000 - 0 0 | 0 0
stdout[0]: FPU Hummer CPU2 ARITH: Act Code | LD/ST: Act Code
stdout[0]: 17: 0x00000000 - 0 0 | 0 0
stdout[0]: Id Event H/W CtrlReg RefCount NewCount
stdout[0]: 0: 17 13 4 1 1
(BGL_UPC_L3_CACHE_MISS_DATA_ALRDY_WAY_DDR)
stdout[0]: 1: 66 19 6 1 1 (BGL_UPC_PU0_DCURD_WAIT_L3)
stdout[0]: Current cached values in the active counters
stdout[0]: Last Virtual
stdout[0]: 13: 8318 8318
stdout[0]: 19: 231293 231293
stdout[0]:
stdout[0]: bgl_perfctr_update again after loop
stdout[0]: -------- bgl_perfctr_dump_state -------
stdout[0]: 2 defined events. in_use=0x00082000 modified=0x00000000
stdout[0]: Id code - Interpretation
stdout[0]: UPC events A: edge code IRQ | B: edge code IRQ | C: edge code IRQ
stdout[0]: 0: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 1: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 2: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 3: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 4: 0x00081000 - 0 0 - | 1 1 - | 0 0 -
c-mode=0
stdout[0]: 5: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 6: 0x00005000 - 0 0 - | 0 5 - | 0 0 -
c-mode=0
Chapter 9. Performance counters and PAPI 127

stdout[0]: 7: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 8: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 9: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 10: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 11: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 12: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 13: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 14: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 15: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: FPU Hummer ARITH: Act Code | LD/ST: Act Code
stdout[0]: 16: 0x00000000 - 0 0 | 0 0
stdout[0]: FPU Hummer CPU2 ARITH: Act Code | LD/ST: Act Code
stdout[0]: 17: 0x00000000 - 0 0 | 0 0
stdout[0]: Id Event H/W CtrlReg RefCount NewCount
stdout[0]: 0: 17 13 4 1 1
(BGL_UPC_L3_CACHE_MISS_DATA_ALRDY_WAY_DDR)
stdout[0]: 1: 66 19 6 1 1 (BGL_UPC_PU0_DCURD_WAIT_L3)
stdout[0]: Current cached values in the active counters
stdout[0]: Last Virtual
stdout[0]: 13: 133235 133235
stdout[0]: 19: 1727334 1727334
stdout[0]:
stdout[0]: bgl_perfctr_update again after loop
stdout[0]: -------- bgl_perfctr_dump_state -------
stdout[0]: 2 defined events. in_use=0x00082000 modified=0x00000000
stdout[0]: Id code - Interpretation
stdout[0]: UPC events A: edge code IRQ | B: edge code IRQ | C: edge code IRQ
stdout[0]: 0: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 1: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 2: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 3: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 4: 0x00081000 - 0 0 - | 1 1 - | 0 0 -
c-mode=0
stdout[0]: 5: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 6: 0x00005000 - 0 0 - | 0 5 - | 0 0 -
c-mode=0
stdout[0]: 7: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 8: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 9: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 10: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 11: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
128 Blue Gene/L: Application Development

stdout[0]: 12: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 13: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 14: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: 15: 0x00000000 - 0 0 - | 0 0 - | 0 0 -
c-mode=0
stdout[0]: FPU Hummer ARITH: Act Code | LD/ST: Act Code
stdout[0]: 16: 0x00000000 - 0 0 | 0 0
stdout[0]: FPU Hummer CPU2 ARITH: Act Code | LD/ST: Act Code
stdout[0]: 17: 0x00000000 - 0 0 | 0 0
stdout[0]: Id Event H/W CtrlReg RefCount NewCount
stdout[0]: 0: 17 13 4 1 1
(BGL_UPC_L3_CACHE_MISS_DATA_ALRDY_WAY_DDR)
stdout[0]: 1: 66 19 6 1 1 (BGL_UPC_PU0_DCURD_WAIT_L3)
stdout[0]: Current cached values in the active counters
stdout[0]: Last Virtual
stdout[0]: 13: 170127 170127
stdout[0]: 19: 2064954 2064954

Checking status

program terminated successfully

9.5 Conclusions
This chapter detailed the implementation of the user APIs to access and control hardware
performance counters on Blue Gene/L. The APIs consist of two libraries: bgl_perfctr and
PAPI.

Bgl_perfctr is a low-level abstraction that unifies the behavior of the different counter sources
into a single abstraction and which takes care of 64-bit virtualization and automatic overflow
protection of virtual event counters. The bgl_perfctr is intended to reflect the hardware
implementation of performance counters in a user-friendly way, without hiding the details of
this hardware implementation API. Examples in 9.4, “Examples of using HPM libraries for
Blue Gene/L” on page 112, illustrate the virtualization to 64-bit counters and the 32-bit
overflow protection.

PAPI is a higher-level abstraction which aims to make hardware counter access uniform
between different computer platforms using different CPU architectures and from different
vendors. This chapter presented specific details about PAPI when implemented on Blue
Gene/L including newly introduced PAPI preset events for Blue Gene/L and minor changes to
library behavior that are pertinent to Blue Gene/L. In 9.4, “Examples of using HPM libraries for
Blue Gene/L” on page 112, shows demonstrations of start, stop, read and reset of 64-bit
virtual counters as well as the ability to correctly register events in excess of 232.
Chapter 9. Performance counters and PAPI 129

130 Blue Gene/L: Application Development

Appendix A. Statement of completion

IBM considers installation and integration services complete when the following activities
have taken place:

� Service Node powers on and off and reports the system status.

� Rack and system diagnostic runs have completed.

� The ability of the Front End Node to submit the Linpack application to a target 512
Compute Node partition has been demonstrated.

� Linpack has run on a maximum system partition.

� The ability to submit multiple Linpack jobs to multiple partitions simultaneously has been
demonstrated.

� The ability to route Ethernet traffic to a destination TCP/IP has been demonstrated.

A

© Copyright IBM Corp. 2005. All rights reserved. 131

132 Blue Gene/L: Application Development

Appendix B. Electromagnetic compatibility

B

European Union
Electromagnetic
Compatibility
Directive

This product is in conformity with the protection requirements of EU Council
Directive 89/336/EEC on the approximation of the laws of the Member States
relating to electromagnetic compatibility.
IBM cannot accept responsibility for any failure to satisfy the protection
requirements resulting from a non-recommended modification of the product,
including the fitting of non-IBM option cards.

Canada This Class A digital apparatus complies with Canadian ICES-003.
Cet appareil numérique de la classe A est conform à la norme NMB-003 du
Canada.

European Union -
Class A

Attention: This is a Class A product. In a domestic environment this product may
cause radio interference in which case the user may be required to take adequate
measures.

This product has been tested and found to comply with the limits for Class A
Information Technology Equipment according to European Standard EN 55022.
The limits for Class A equipment were derived for commercial and industrial
environments to provide reasonable protection against interference with licensed
communication equipment.

Properly shielded and grounded cables and connectors must be used in order to
reduce the potential for causing interference to radio and TV communications and
to other electrical or electronic equipment. IBM cannot accept responsibility for
any interference caused by using other than recommended cables and
connectors.

Japan - VCCI
Class A
© Copyright IBM Corp. 2005. All rights reserved. 133

United States -
FCC class A

Federal Communications Commission (FCC) Statement:
This equipment has been tested and found to comply with the limits for a Class A
digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to
provide reasonable protection against harmful interference when the equipment
is operated in a commercial environment. This equipment generates, uses, and
can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio
communications. Operation of this equipment in a residential area is likely to
cause harmful interference in which case the user will be required to correct the
interference at his own expense. Properly shielded and grounded cables and
connectors must be used in order to meet FCC emission limits. IBM is not
responsible for any radio or television interference caused by using other than
recommended cables and connectors or by unauthorized changes or
modifications to this equipment. Unauthorized changes or modifications could
void the user's authority to operate the equipment. This device complies with Part
15 of the FCC Rules. Operation is subject to the following two conditions: (1) this
device may not cause harmful interference, and (2) this device must accept any
interference received, including interference that may cause undesired operation.
134 Blue Gene/L: Application Development

Appendix C. Blue Gene/L safety
considerations

This appendix describes important safety considerations that you must follow when installing
and using the Blue Gene/L system.

C

© Copyright IBM Corp. 2005. All rights reserved. 135

Important safety notices
Here are some important general comments about the Blue Gene/L system regarding safety.

� CAUTION
This equipment must be installed by trained service personnel in a restricted access
location as defined by the NEC (U.S. National Electric Code) and IEC 60950, The
Standard for Safety of Information Technology Equipment. (C033)

� CAUTION
The doors and covers to the product are to be closed at all times except for service by
trained service personnel. All covers must be replaced and doors locked at the conclusion
of the service operation. (C013)

� CAUTION
Servicing of this product or unit is to be performed by trained service personnel only.
(C032)

� CAUTION
This product is equipped with a 4 wire (three-phase and ground) power cable. Use this
power cable with a properly grounded electrical outlet to avoid electrical shock. (C019)

� DANGER
To prevent a possible electric shock from touching two surfaces with different protective
ground (earth), use one hand, when possible, to connect or disconnect signal cables.
(D001)

� DANGER
An electrical outlet that is not correctly wired could place hazardous voltage on the metal
parts of the system or the devices that attach to the system. It is the responsibility of the
customer to ensure that the outlet is correctly wired and grounded to prevent an electrical
shock. (D004)

� CAUTION
Ensure the building power circuit breakers are turned off before you connect the power
cord(s) to the building power. (C023)

This system relies on branch circuit protection in the building installation for protection against
short circuits and earth faults. All protection should comply with local and national electrical
codes.

The client’s room emergency power off (EPO) can disconnect power for the entire system
(including Front End Node and Service Nodes). The unplugging of the power plug from the
mains power receptacle provides a means to remove power from each individual rack. The
system power supply circuit breakers can remove power from an individual rack, but they do
not remove power to the input terminal blocks.

Blue Gene/L is designed for restricted access locations.

� Only specifically trained personnel should be granted access to the system.

� Access should be controlled via key lock (located on the front and back covers) and only
granted by the authority responsible for the installation location.
136 Blue Gene/L: Application Development

Stability and weight
Service personnel working on or around this equipment should be aware of the following
guidelines:

� Total system weight is between 1000 and 1650 pounds (lb.). Exercise caution when
transporting or moving the system, when repositioning the system, or when working on or
around the system.

� The system has four full swivel casters for mobility. For maximum stability, the system
should only be pushed or rolled in a front to back or back to front direction except during
final positioning.

� Exercise caution when moving or rolling the system around raised floor cutouts and other
obstructions.

� Ensure all four leveling feet are lowered after final positioning to prevent system from
rolling on its casters.

� Plenums and end caps weigh approximately 115 lb. each.

� Bulk power modules (BPM) weigh approximately 16 lb. each and are positioned at a
height of six feet when installed in the system (overhead). Ensure proper handling
methods and or equipment are used when removing or replacing a BPM.

� Front and back covers weigh approximately 33 lb. each.

Circuit breakers
The circuit breaker switch located on the front of the systems bulk power enclosure is used to
shut down power to the system but does not remove power to the ac terminal blocks where
the mains power connects to the bulk power enclosure. To remove all power from the system,
disconnect the power cord plug from the mains power source (receptacle).

CAUTION
The weight of this part or unit is between 32 and 55 kg (70.5 and 121.2 lb.). It takes
three persons to lift this part or unit. (C010)

CAUTION
This part or unit is heavy, but has a weight of less than 18 kg (39.7 lb.). Use care when
lifting, removing, or installing this part or unit. (C008)

CAUTION
This part or unit is heavy, but has a weight of less than 18 kg (39.7 lb.). Use care when
lifting, removing, or installing this part or unit. (C008)
Appendix C. Blue Gene/L safety considerations 137

Ac terminal blocks
The system operates on 208V 3P 100A power source.

Ensure all wiring is securely connected to the terminal block and the terminal block shield is
securely in place prior to connecting the power cord plug to the mains power source.

Line cord retention
Ensure proper tightening of the ac line cord strain relief prior to securing the ac terminal block
shield.

Bulk power module bay
Limit any action to BPM removal or replacement only.

Hazardous voltage and energy are present in the bulk power enclosure (BPE) through the
BPM bay (48 V dc, hazardous energy, 208 V 3P power).

Do not access, probe, or attempt to fix anything beyond the front BPM opening.

Cover access
In general, hazardous energy may be present when the front or back system cover is opened.

Fan assembly/cards
Hazardous energy may be present (48 V dc, 2.5 V dc, 1.5 V dc hazardous energy) on cards
and midplane.

Do not reach beyond the front of the opening for the fans or for the Service, Node or Link
cards.

DANGER
High voltage present. (L004)

DANGER
High voltage present. (L004)

CAUTION
High energy present. (L005)

CAUTION
High energy present. (L005)
138 Blue Gene/L: Application Development

Appendix D. MPI environment variables

This appendix documents several environment variable that the end user can change to affect
the runtime characteristics of Message Passing Interface (MPI) for the application being
executed. Usually this is done in an attempt to improve performance, although on occasion
the goal is to modify functional attributes of the application.

D

© Copyright IBM Corp. 2005. All rights reserved. 139

Setting environment variables
The easiest and most convenient way to set these variables is by passing them in on the
command line when running the mpirun script. For example, if you want to set environment
variable “XYZ” to value “ABC,” you can call mpirun as follows:

mpirun -env "XYZ=ABC" -partition R03 -exe /home/garymu/cpi.rts -cwd /home/garymu/out/

Multiple environment variables can be passed by separating them by a space, for example:

mpirun -env "XYZ=ABC DEF=123" -partition R03 -exe /home/garymu/cpi.rts -cwd
/home/garymu/out/

There are other ways to pass environment variables with mpirun. For more information, see
Blue Gene/L: System Administration, ZG24-6744.

BGLMPI_COLLECTIVE_DISABLE
The BGLMPI_COLLECTIVE_DISABLE variable makes it possible to specify whether the
optimized collective routines are used, or whether the MPICH code is employed. You usually
turn on this variable if unexpected application errors occur that seem to be related to
collective operations. Disabling the optimized algorithms and forcing usage of the “safe”
MPICH routines may help to determine where the problem lies.

To disable the optimized collective operations, set the BGLMPI_COLLECTIVE_DISABLE
environment variable to a value of “1”, for example:

mpirun -env "BGLMPI_COLLECTIVE_DISABLE=1" ...

Make sure that you remove this environment variable after you solve the problem to ensure
optimal performance for your application.

BGLMPI_EAGER, BGLMPI_RVZ and BGLMPI_RZV
BGLMPI_EAGER, BGLMPI_RVZ, and BGLMPI_RZV are all treated exactly the same by Blue
Gene/L. From this point forward, we use only BGLMPI_EAGER to refer to any of the three
names.

This variable can be set to an integer that specifies a number of bytes. This value specifies
the size of message (in bytes) above which the rendezvous protocol is used. Currently, the
default value for this is 1000 bytes. Any message that is less than or equal to 1000 bytes is
sent by using the eager protocol. Messages that are 1001 bytes or greater are sent using the
rendezvous protocol.

The eager protocol involves sending the data immediately to the destination, in a more
asynchronous manner. With the rendezvous protocol, data is only sent to the destination
upon request. In general, the eager protocol is faster but can result in more problems, such
as memory issues and link contention.

To better understand the difference between these two protocols, see the following page from
the Argonne National Laboratory Web site:

http://www-unix.mcs.anl.gov/mpi/mpich/papers/mpicharticle/node23.html
140 Blue Gene/L: Application Development

http://www-unix.mcs.anl.gov/mpi/mpich/papers/mpicharticle/node23.html

Glossary

32b executable Executable binaries (user applications)
with 32b (4B) virtual memory addressing. Note that this is
independent of the number of bytes (4 or 8) used for
floating-point number representation and arithmetic.

32b floating-point arithmetic Executable binaries
(user applications) with 32b (4B) floating-point number
representation and arithmetic. Note that this is
independent of the number of bytes (4 or 8) used for
memory reference addressing.

32b virtual memory addressing All virtual memory
addresses in a user application are 32b (4B) integers.
Note that this is independent of the type of floating-point
number representation and arithmetic.

64b executable Executable binaries (user applications)
with 64b (8B) virtual memory addressing. Note that this is
independent of the number of bytes (4 or 8) used for
floating-point number representation and arithmetic. Also,
all user applications should be compiled, loaded with
subcontractor-supplied libraries, and executed with 64b
virtual memory addressing by default.

64b floating-point arithmetic Executable binaries
(user applications) with 64b (8B) floating-point number
representation and arithmetic. Note that this is
independent of the number of bytes (4 or 8) used for
memory reference addressing.

64b virtual memory addressing All virtual memory
addresses in a user application are 64b (8B) integers.
Note that this is independent of the type of floating-point
number representation and arithmetic. Also all user
applications should be compiled, loaded with
subcontractor-supplied libraries, and executed with 64b
virtual memory addressing by default.

Advanced Simulation and Computing Program
(ASCI) Administered by Department of Energy
(DOE)/National Nuclear Security Agency (NNSA).

API See application programming interface.

application programming interface (API) Defines the
syntax and semantics for invoking services from within an
executing application. All APIs shall be available to both
Fortran and C programs, although implementation issues,
such as whether the Fortran routines are simply wrappers
for calling C routines, are up to the supplier.

Application Specific Integrated Circuit
(ASIC) Includes two 32-bit PowerPC (PPC) cores (the
440) that was developed by IBM for embedded
applications.
© Copyright IBM Corp. 2005. All rights reserved.
ASCI See Advanced Simulation and Computing
Program.

ASIC See Application Specific Integrated Circuit.

BGL See Blue Gene/L.

BGL8K The Phase 1 build of Blue Gene/L, which
contains 8192 Compute Nodes (CN), 128 I/O Nodes,
one-eighth of the I/O subsystem and the all of the Front
End Nodes.

BGL Compute ASIC (BLC) This high-function Blue
Gene/L ASCI is the basis of the Compute Nodes and I/O
Nodes.

BGL Link (BLL) ASIC This high-function Blue Gene/L
ASCI is responsible for redriving communication signals
between midplanes and is used to repartition Blue
Gene/L.

bit (b) A single, indivisible binary unit of electronic
information.

BLC See BGL Compute ASIC.

BLL BGL Link.

Blue Gene/L (BGL) The name given to the collection of
Compute Nodes, I/O Nodes, Front End Nodes (FEN), file
systems, and interconnecting networks that is the subject
of this statement of work.

byte (B) A collection of eight bits.

central processing unit (CPU) or processor A VLSI
chip that constitutes the computational core (integer,
floating point, and branch units), registers, and memory
interface (virtual memory translation, TLB and bus
controller).

cluster A set of nodes connected via a scalable network
technology.

Cluster Monitoring and Control System (CMCS)

Cluster Wide File System (CWFS) The file system that
is visible from every node in the system with scalable
performance.

CMCS Cluster Monitoring and Control System.

CMN See Control and Management Network.

CN See Compute Node.
 141

compute card One of the field replaceable units (FRUs)
of Blue Gene/L. Contains two complete Compute Nodes,
and is plugged into a node card.

Compute Node (CN) The element of Blue Gene/L that
supplies the primary computational resource for execution
of a user application.

Control and Management Network (CMN) Provides a
command and control path to Blue Gene/L for functions
such as health status monitoring, repartitioning, and
booting.

Core Subcontractor delivered hardware and software.
The Blue Gene/L Core consists of the Blue Gene/L
Compute Main Section, Front End Node, Service Node
(SN), and a control and management Ethernet.

CPU See central processing unit.

current standard (as applied to system software and
tools) Applies when an API is not “frozen” on a particular
version of a standard, but shall be upgraded automatically
by the subcontractor as new specifications are released.
For example, MPI version 2.0 refers to the standard in
effect at the time of writing this document, while current
version of MPI refers to further versions that take effect
during the lifetime of this contract.

CWFS See Cluster Wide File System.

DDR See Double Data Rate.

Double Data Rate (DDR) A technique for doubling the
switching rate of a circuit by triggering on both the rising
edge and falling edge of a clock signal.

EDRAM See enhanced dynamic random access
memory.

enhanced dynamic random access memory
(EDRAM) Dynamic random access memory that
includes a small amount of static random access memory
(SRAM) inside a larger amount of DRAM. Performance is
enhanced by organizing so that many memory accesses
are to the faster SRAM.

ETH The ETH is a high-function Blue Gene/L ASIC that
is responsible for Ethernet-to-JTAG conversion and other
control functions.

FEN See Front End Node.

FGES See Federated Gigabit-Ethernet Switch.

Front End Node (FEN) Is responsible, in part, for
interactive access to Blue Gene/L.

Federated Gigabit-Ethernet Switch (FGES) Connects
the I/O Nodes of Blue Gene/L to external resources, such
as the FEN and the CWFS.

Field Replaceable Unit (FRU)

Floating Point Operation (FLOP or OP) Plural is
FLOPS or OPS.

FLOP or OP See Floating Point Operation.

FLOP/s or OP/s Floating Point Operation per second.

FRU Field Replaceable Unit.

fully supported (as applied to system software and
tools) Refers to product-quality implementation,
documented and maintained by the HPC machine
supplier or an affiliated software supplier.

gibibyte (GiB) A billion base 2 bytes. This is typically
used in terms of RAM and is 230 (or 1073741824) bytes.
For a complete description of SI units for prefixing binary
multiples, see:
http://physics.nist.gov/cuu/Units/binary.html

gigabyte (GB) A billion base 10 bytes. This is typically
used in every context except for RAM size and is 109 (or
1000000000) bytes.

GFLOP/s, GOP/s, gigaFLOP/s A billion (109 =
1000000000) 64-bit floating point operations per second.

host complex Includes the Front End Node and Service
Node.

Hot Spare Node (HSN)

HSN Hot Spare Node.

Internet Protocol (IP) The method by which data is sent
from one computer to another on the Internet.

IP Internet Protocol.

job A cluster wide abstraction similar to a POSIX
session, with certain characteristics and attributes.
Commands shall be available to manipulate a job as a
single entity (including kill, modify, query characteristics,
and query state).

input/output (I/O) Describes any operation, program, or
device that transfers data to or from a computer.

I/O card One of the FRUs of Blue Gene/L. An I/O card
contains two complete I/O Nodes and is plugged into a
node card.

I/O Node (ION) Are responsible, in part, for providing I/O
services to Compute Nodes.

International Business Machines Corporation (IBM)

ION See I/O Node
142 Blue Gene/L: Application Development

http://physics.nist.gov/cuu/Units/binary.html

limited availability Represents an intermediate
operational level of major computing systems at LLNL.
Limited availability is characterized by system access
limited to a select set of users, with reduced system
functionality.

LINPACK A collection of Fortran subroutines that
analyze and solve linear equations and linear
least-squares problems.

Linux A free UNIX-like operating system originally
created by Linus Torvalds with the assistance of
developers around the world. Developed under the GNU
General Public License, the source code for Linux is freely
available to everyone.

Mean Time Between Failure (MTBF) A measurement
of the expected reliability of the system or component.
The MTBF figure can be developed as the result of
intensive testing, based on actual product experience, or
predicted by analyzing known factors. See:
http://www.t-cubed.com/faq_mtbf.htm

mebibyte (MiB) A million base 2 bytes. This is typically
used in terms of Random Access Memory and is 220 (or
1048576) bytes. For a complete description of SI units for
prefixing binary multiples, see:
http://physics.nist.gov/cuu/Units/binary.html

megabyte (MB) A million base 10 bytes. This is typically
used in every context except for RAM size and is 106 (or
1000000) bytes.

Message Passing Interface (MPI)

midplane An intermediate packaging component of
Blue Gene/L. Multiple node cards plug into a midplane to
form the basic scalable unit of Blue Gene/L.

MFLOP/s, MOP/s, or megaFLOP/s A million (106 =
1000000) 64-bit floating point operations per second.

MPI See Message Passing Interface.

MPICH2 MPICH is an implementation of the MPI
standard available from Argonne National Laboratory.

MTBF See Mean Time Between Failure.

node Operates under a single instance of an
operating-system image and is an independent
operating-system partition.

node card An intermediate packaging component of
Blue Gene/L. FRUs (compute cards and I/O cards) are
plugged into a node card. Multiple node cards plug into a
midplane to form the basic scalable unit of Blue Gene/L.

OCF See Open Computing Facility.

Open Computing Facility (OCF) The unclassified
partition of Livermore Computing, the main scientific
computing complex at LLNL.

OpenMP A portable, scalable model that gives
shared-memory parallel programmers a simple and
flexible interface for developing parallel applications.

peak rate The maximum number of 64-bit floating point
instructions (add, subtract, multiply or divide) per second
that can conceivably be retired by the system. For RISC
CPUs, the peak rate is calculated as the maximum
number of floating point instructions retired per clock
times the clock rate.

PTRACE A facility that allows a parent process to control
the execution of a child process. Its primary use is for the
implementation of breakpoint debugging.

published (as applied to APIs) Refers to the situation
where an API is not required to be consistent across
platforms. A “published” API refers to the fact that the API
shall be documented and supported, although it by a
subcontractor or platform specific.

Purple ASCI Purple is the fourth generation of ASCI
platforms.

RAID See redundant array of independent disks.

RAM See random access memory.

random access memory (RAM) Computer memory in
which any storage location can be accessed directly.

RAS See reliability, availability, and serviceability.

redundant array of independent disks (RAID) A
collection of two or more disk physical drives that present
to the host an image of one or more logical disk drives. In
the event of a single physical device failure, the data can
be read or regenerated from the other disk drives in the
array due to data redundancy.

reliability, availability, and serviceability (RAS)
Include those aspects of hardware and software design
and development, solution design and delivery,
manufacturing quality, technical support service and other
services which contribute to assuring that the IBM offering
will be available when the client wants to use it; that it will
reliably perform the job; that if failures do occur, they will
be nondisruptive and be repaired rapidly and that after
repair the user may resume operations with a minimum of
inconvenience.

SAN See storage area network.
 Glossary 143

http://physics.nist.gov/cuu/Units/binary.html
http://www.t-cubed.com/faq_mtbf.htm

scalable A system attribute that increases in
performance or size as some function of the peak rating of
the system. The scaling regime of interest is at least within
the range of 1 teraflop/s to 60.0 (and possibly to 120.0)
teraflop/s peak rate.

SDRAM See synchronous, dynamic random access
memory.

Service Node Is responsible, in part, for management
and control of Blue Gene/L.

service representative On-site hardware expert who
performs hardware maintenance with DOE Q-clearance.

single-point control (as applied to tool interfaces) The
ability to control or acquire information about all processes
or PEs using a single command or operation.

Single Program Multiple Data (SPMD) A programming
model wherein multiple instances of a single program
operate on multiple data.

SMFS See System Management File System.

SMP See symmetric multiprocessor.

SNL See Sandia National Laboratories.

SOW See Statement of Work.

SPMD See Single Program Multiple Data.

sPPM This is a benchmark that solves a 3D gas
dynamics problem on a uniform Cartesian mesh, using a
simplified version of the Piecewise Parabolic Method
(PPM) code.

SRAM static random access memory.

standard (as applied to APIs) Where an API is required
to be consistent across platforms, the reference standard
is named as part of the capability. The implementation
shall include all routines defined by that standard, even if
some simply result in no-ops on a given platform.

Statement of Work (SOW) This document is a
statement of work. A document prepared by a Project
Manager (PM) as a response to a Request for Service
from a client. The project SOW is the technical solution
proposal, and it should describe the deliverables and
identify all Global Services risks and impacts,
infrastructure investments, capacity, cost elements,
assumptions and dependencies.

static random access memory (SRAM)

storage area network (SAN) A high-speed subnetwork
of storage devices.

symmetric multiprocessor (SMP) A computing node in
which multiple functional units operate under the control of
a single operating-system image.

synchronous, dynamic random access memory
(SDRAM) A type of dynamic random access memory
(DRAM) with features that make it faster than standard
DRAM.

System Management File System (SMFS) Provides a
single, central location for administrative information
about Blue Gene/L.

TCP/IP See Transmission Control Protocol/Internet
Protocol.

tebibyte (TiB) A trillion bytes base 2 bytes. This is
typically used in terms of Random Access Memory and is
240 (or 1099511627776) bytes. For a complete
description of SI units for prefixing binary multiples, see:
http://physics.nist.gov/cuu/Units/binary.html

terabyte (TB) A trillion base 10 bytes. This is typically
used in every context except for Random Access Memory
size and is 1012 (or 1000000000000) bytes.

teraflop/s (TFLOP/s) A trillion (1012 =
1000000000000) 64-bit floating point operations per
second.

tori The plural form of the word torus.

torus network Each processor is directly connected to
six other processors: two in the “X” dimension, two in the
“Y” dimension, and two in the “Z” dimension. One of the
easiest ways to picture a torus is to think of a 3-D “cube”
of processors, where every processor on an edge has
“wraparound” connections to link to other similar edge
processors.

TotalView A parallel debugger from Etnus LLC, Natick,
MA.

Transmission Control Protocol/Internet Protocol
(TCP/IP) The suite of communications protocols used to
connect hosts on the Internet.

Tri-Lab Includes Los Alamos National Laboratory,
Lawrence Livermore National Laboratory, and Sandia
National Laboratories.

UMT2000 The UMT benchmark is a 3D, deterministic,
multigroup, photon transport code for unstructured
meshes.

University Alliances Members of the Academic
Strategic Alliances Program (ASAP) of ASCI, academic
institutions engaged in accelerating simulation science.
144 Blue Gene/L: Application Development

http://physics.nist.gov/cuu/Units/binary.html

Unified Parallel C (UPC) A programming language with
parallel extensions to ANSI C. For an example, see:
http://upc.gwu.edu/

UPC See Unified Parallel C.

XXX-compatible (as applied to system software and tool
definitions) Requires that a capability be compatible, at
the interface level, with the referenced standard, although
the lower-level implementation details will differ
substantially. For example, NFSv4-compatible means that
the distributed file system shall be capable of handling
standard NFSv4 requests, but need not conform to NFSv4
implementation specifics.
 Glossary 145

http://upc.gwu.edu/
http://upc.gwu.edu/

146 Blue Gene/L: Application Development

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 148. Note that some of the documents referenced here may be available in softcopy
only.

� Workload Management with LoadLeveler, SG24-6038

� Linux Clustering with CSM and GPFS, SG24-6601

� Blue Gene/L: Hardware Overview and Planning, SG24-6742

� Blue Gene/L: Hardware Installation and Serviceability, ZG24-6743
(available by August 2005)

� Blue Gene/L: System Administration, ZG24-6744 (available by August 2005)

Other publications
These publications are also relevant as further information sources:

� General Parallel File System (GPFS) for Clusters: Concepts, Planning, and Installation,
GA22-7968

� IBM General Information Manual, Installation Manual-Physical Planning, GC22-7072

� LoadLeveler for AIX 5L and Linux V3.2 Using and Administering, SA22-7881

Online resources
These Web sites and URLs are also relevant as further information sources:

� MPI-2 Reference

http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/mpi2-report.htm

� Etnus TotalView

http://www.etnus.com/

� GDB: The GNU Project Debugger

http://www.gnu.org/software/gdb/

� SUSE LINUX Enterprise Server

http://www.novell.com/products/linuxenterpriseserver/
© Copyright IBM Corp. 2005. All rights reserved. 147

http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/mpi2-report.htm
http://www.etnus.com/
http://www.gnu.org/software/gdb/
http://www.novell.com/linux/suse/index.html
http://www.novell.com/products/linuxenterpriseserver/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
148 Blue Gene/L: Application Development

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Numerics
440 141

A
access 136
Advanced Computing Technology Center 96
allocate block 54
applications

communications intensive 6
memory intensive 6

Argonne National Labs 4
asynchronous file I/O 7
available counter events 108

B
BASH 20
bgl_perfctr 102
bgl_perfctr structure 105
bgl_perfctr usage example 119
bgl_perfctr_add_event 106
bgl_perfctr_commit 106
bgl_perfctr_control_t 106
bgl_perfctr_copy_counters 102, 106
bgl_perfctr_copy_hwstate 106
bgl_perfctr_copy_state 102
bgl_perfctr_dump_state 106
bgl_perfctr_get_counters 102, 106
bgl_perfctr_init 106
bgl_perfctr_init_synch 106
bgl_perfctr_release_counters 106
bgl_perfctr_remove_event 106
bgl_perfctr_revoke 106
bgl_perfctr_shutdown 106
bgl_perfctr_update 102, 106
BGLMPI_COLLECTIVE_DISABLE 140
BGLMPI_EAGER 140
BGLMPI_RVZ 140
BGLMPI_RZV 140
bit 105
blrts_xlc 26
blrts_xlc++ 26
blrts_xlf 26
blrts_xlf90 26
blrts_xlf95 26
Bourne 20

C
checkpoint and restart

API 65
BGLAtCheckpoint 66
BGLAtContinue 66
BGLAtRestart 66
© Copyright IBM Corp. 2005. All rights reserved.
BGLCheckpoint 65
BGLCheckpointExcludeRegion 66
BGLCheckpointInit 65
BGLCheckpointRestart 66
directory and file naming conventions 67
I/O considerations 63
restarting application 67
signal considerations 63
support 61
technical overview 62

checkpoint library 62
checkpoint write complete flag 67
circuit breaker switch 137
Communication Coprocessor Mode 6, 15–16
compilers 12

GNU 12
Compute Node Kernel 4

system calls supported 19
const variables 7
Control System (Bridge) APIs 71
Control System APIs

Base Partition 74
BGL Machine 73
jm_attach_job 83
jm_begin_job 83
jm_cancel_job 82, 90
jm_debug_job 83
jm_load_job 82
jm_signal_job 82, 90
jm_start_job 82, 89
Job 77
Job List 77
job manager 82
job state flags 79
message types 81
message verbosity levels 81
messaging API 81
Partition 75
Partition List 75
partition manager 83
partition state flags 79
pm_create_partition 83, 88
pm_destroy_partition 83, 88
Port 75
requirements 72
return codes 84
rm_add_job 79, 89
rm_add_part_user 78, 87
rm_add_partition 78, 85
rm_assign_job 79, 87
rm_free_ 91
rm_free_BGL 81
rm_free_BP 81
rm_free_job 81
rm_free_job_list 81
 149

rm_free_partition 81
rm_free_partition_list 81
rm_free_switch 81
rm_get_BGL 78, 85
rm_get_data 73, 80, 90
rm_get_job 79, 89
rm_get_jobs 79, 89
rm_get_partition 78, 85
rm_get_partitions 78, 86
rm_get_partitions_info 79
rm_get_serial 80
rm_new_ 91
rm_new_BP 80
rm_new_job 80
rm_new_partition 80
rm_new_switch 80
rm_query_job 80
rm_release_partition 79, 87
rm_remove_job 80, 89
rm_remove_part_user 78, 88
rm_remove_partition 79, 86
rm_set_data 73, 80, 90
rm_set_part_owner 78, 87
rm_set_partition_debuginfo 79
rm_set_serial 80, 90
sayCatMessage 82
sayMessage 82
sayPlainMessage 81
setSayMessageParams 81
state diagrams for jobs and partitions 83
Switch 74
Wire 75

copy-primary operations 34
copy-secondary operations 35
Counter update and copy-out 107
Counter update and immediate access 107
Counter update and lock 107
cross operations 34
cross-copy operations 35

D
debugging applications 56
Double Hummer dual floating-point unit 26
Double Hummer dual FPU 33
Double Hummer floating-point unit 25
dynamic linking 7

E
eager protocol 140
emergency power off 136
ENOSYS 20
errno 20

F
fault recovery - see checkpoint/restart 62
floating point unit counters 102
flood of messages 6

G
GDB 56
gid 20
GLIBC 12
GNU

3.2 C 12
C++ 12
Fortran77 12
GDB 56
runtime libraries 12

GNU compilers 12

H
Hardware performance monitor 99
hazardous voltage 138
high energy 138
High Performance Computing Toolkit 96
high voltage 138
HPM 99
HPM libraries 112

I
I/O 7
IBM High Performance Computing Toolkit 96
IBM XL compilers 13, 25
include files 8
inlining 29
input/output 7

K
KOJAK 97

L
link files 10
linux-bgl PAPI substrate 110
LoadLeveler 55
LoadLeveler cluster 55

M
malformed packets 5
MASS and MASSV libraries 100
memory

address space 5
Memory considerations 4
memory leaks 4
memory management 4
memory model 4
message layer 16
Midplane Management Control System APIs 71
MIO 99
mmcs_db_console 54
Modular I/O 99
MPE/jumpshot 97
MPI 4

one-sided communication 4
point-to-point communication 4

MPI environment variables 139
150 Blue Gene/L: Application Development

BGLMPI_COLLECTIVE_DISABLE 140
BGLMPI_EAGER 140
BGLMPI_RVZ 140
BGLMPI_RZV 140

MPI Profiler/Tracer 97
MPI profiling tools 96
MPI runtime characteristics 139
MPI_Test 6
MPI_THREAD_SINGLE 4
MPICH2 4
mpirun 54

P
PAPI 101
PAPI implementation 110
parallel operations 33
Paraver 97
PeekPerf 98–99
PeekView 98
peformance testing

pSeries 96
Performance counters 101
performance guidelines 95
performance testing

HPM 99
KOJAK 97
MASS and MASSV libraries 100
MIO 99
Modular I/O 99
MPE/jumpshot 97
MPI Tracer/Profiler 97
MPI_Finalize 98
Paraver 97
PeekPerf 99
PeekView 99
TAU 97
Xprofiler 99

performance tools 95
pointers

uninitialized 5
PPC 141
precautions

cover access 138
electrical shock 136
front and back covers 137
high voltage 138
leveling feet 137
lifting 137
plenums and end caps 137
service 136
short circuits 136

programming mode
choosing 6

pSeries 96

Q
q64 27
qaltivec 27
qarch 26

qbgl 26
qcache 26
qflttrap 27
qinline 29
qipa 29
qmkshrobj 27
qnoautoconfig 26
qpic 27
qsmp 27
qtune 26

R
read-only memory 7
receive FIFO 16
Redbooks Web site 148

Contact us xi
rendezvous protocol 140
rm_modify_partition 78
running applications 54

S
safety considerations 135
scratchpad 16
segmentation violation 7
send FIFO 16
shell utilities 20
SIMD 27
single-instruction-multiple-data - see SIMD 27
size command 4
sockets calls 7
standard input 7
static link files 10
stdin 7
structure alignment 27
submit job 54
substrate 110
substrate interface 110
system calls

supported 19
unsupported calls 23

system weight 137

T
TAU 97
TCP

client system calls 7
server calls 7

TotalView 59

U
uid 20
uninitialized pointers 5
universal performance counter 102
unsupported system calls 23

V
Virtual Node Mode 6, 15–16
 Index 151

X
XL 12

#pragma disjoint directive 30
__alignx function 31
__attribute__(always_inline) extension 29
__cimag 37
__cimagf 37
__cimagl 37
__cmplx 36
__cmplxf 36
__cmplxl 36
__creal 37
__crealf 37
__creall 37
__fpabs 42
__fpadd 43
__fpctiw 41
__fpctiwz 41
__fpmadd 44
__fpmsub 45
__fpmul 43
__fpnabs 43
__fpneg 42
__fpnmadd 45
__fpnmsub 46
__fpre 42
__fprsp 41
__fprsqrte 42
__fpsel 51
__fpsub 43
__fxcpmadd 47
__fxcpmsub 48
__fxcpnmadd 48
__fxcpnmsub 48
__fxcpnpma 49
__fxcpnsma 49
__fxcsmadd 47
__fxcsmsub 48
__fxcsnmadd 48
__fxcsnmsub 48
__fxcsnpma 49
__fxcsnsma 49
__fxcxma 50
__fxcxnms 50
__fxcxnpma 50
__fxcxnsma 51
__fxmadd 46
__fxmr 40
__fxmsub 47
__fxmul 44
__fxnmadd 46
__fxnmsub 47
__fxpmul 44
__fxsmul 44
__lfpd 38
__lfps 38
__lfxd 38
__lfxs 38
__stfpd 39
__stfpiw 40

__stfps 39
__stfxd 40
__stfxs 39
ALIGNX 31
arithmetic functions 41
basic blocks 28
batching computations 30
binary functions 43
built-in floating-point functions 33
built-in functions usage 52
CIMAG 37
CIMAGF 37
CIMAGL 37
CMPLX 36
CMPLXF 36
compiler options 26
compiling and linking 26
complex type manipulation functions 36
copy-primary operations 34
copy-secondary operations 35
CREAL 37
CREALF 37
CREALL 37
cross operations 34
cross-copy operations 35
data alignment 31
defining data objects 27
FPABS 42
FPADD 43
FPCTIW 41
FPCTIWZ 41
FPMADD 44
FPMSUB 45
FPMUL 43
FPNABS 43
FPNEG 42
FPNMADD 45
FPNMSUB 46
FPRE 42
FPRSP 41
FPRSQRTE 42
FPSEL 51
FPSUB 43
FXCPMADD 47
FXCPMSUB 48
FXCPNMADD 48
FXCPNMSUB 49
FXCPNPMA 49
FXCSMADD 47
FXCSMSUB 48
FXCSNMADD 48
FXCSNMSUB 49
FXCSNPMA 49
FXCXMA 50
FXCXNMS 50
FXCXNPMA 50
FXCXNSMA 51
FXMADD 46
FXMR 40
FXMSUB 47
152 Blue Gene/L: Application Development

FXMUL 44
FXNMADD 46
FXNMSUB 47
FXPMUL 44
FXSMUL 44
inline function 29
inline functions 29
load and store functions 38
LOADFP 38
LOADFX 38–39
move functions 40
multiply-add functions 44
optimization 27
parallel operations 33
pointer aliasing 29
runtime libraries 14
scripts 26
select functions 51
SIMD 33
STOREFP 39–40
STOREFX 39
unary functions 41
using complex types 28
vectorizable basic blocks 28

XL compilers 25
XL linker 14
Xprofiler 99
 Index 153

154 Blue Gene/L: Application Development

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Blue Gene/L: Application Developm
ent

Blue Gene/L: Application Developm
ent

Blue Gene/L: Application
Developm

ent

Blue Gene/L: Application Developm
ent

Blue Gene/L: Application
Developm

ent

Blue Gene/L: Application
Developm

ent

®

ZG24-6745-00 ISBN 0738491160

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Blue Gene/L: Application
Development

Explore the Blue
Gene/L programming
environment

Learn how to run and
debug MPI programs

Understand
checkpoint and
restart, Bridge APIs,
and more

This IBM Redbook is the second in a series of internal IBM
publications written specifically for the Blue Gene/L
supercomputer, which was developed by IBM in collaboration
with Lawrence Livermore National Laboratory (LLNL). This
redbook provides an overview of the application development
environment for Blue Gene/L.

This redbook explains the instances where Blue Gene/L is unique
in its programming environment. The book is divided into the
following parts:

� Part 1, “MPI application information” on page 1
� Part 2, “System application information” on page 69
� Part 3, “Performance analysis” on page 93

Prior to reading this book, you must have a strong background in
Message Passing Interface (MPI) programming.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 MPI application information
	Chapter 1. Application development overview
	1.1 MPI on Blue Gene/L
	1.2 Memory considerations
	1.2.1 Memory leaks
	1.2.2 Memory management
	1.2.3 Uninitialized pointers
	1.2.4 Forcing MPI to allocate too much memory
	1.2.5 Not waiting for MPI_Test
	1.2.6 Flooding of messages
	1.2.7 Poor choice of programming mode

	1.3 Other considerations
	1.3.1 Input/output
	1.3.2 Miscellaneous

	1.4 Include and link files
	1.4.1 Include files
	1.4.2 Static link files

	1.5 Compilers overview
	1.5.1 Programming environment overview
	1.5.2 GNU
	1.5.3 IBM XL Compilers

	Chapter 2. Programming modes
	2.1 Communication Coprocessor Mode
	2.2 Virtual Node Mode
	2.3 Which mode to use?
	2.4 Choosing modes

	Chapter 3. System calls supported by Compute Node Kernel
	3.1 Introduction to the Compute Node Kernel
	3.2 System calls
	3.2.1 Return codes
	3.2.2 List of supported system calls

	3.3 Unsupported calls

	Chapter 4. Developing applications with IBM XL compilers
	4.1 Compiling and linking applications on Blue Gene/L
	4.2 Default compiler options
	4.3 Unsupported options
	4.4 Tuning your code for Blue Gene/L
	4.5 Using the compiler optimization options
	4.6 Structuring data in adjacent pairs
	4.7 Using vectorizable basic blocks
	4.8 Using inline functions
	4.9 Removing possibilities for aliasing (C/C++)
	4.10 Structure computations in batches of five or ten
	4.11 Checking for data alignment
	4.12 Using XL built-in floating-point functions for Blue Gene/L
	4.13 Complex type manipulation functions
	4.14 Load and store functions
	4.15 Move functions
	4.16 Arithmetic functions
	4.16.1 Unary functions
	4.16.2 Binary functions
	4.16.3 Multiply-add functions

	4.17 Select functions
	4.18 Examples of built-in functions usage

	Chapter 5. Running and debugging
	5.1 Running applications
	5.1.1 mmcs_db_console
	5.1.2 mpirun
	5.1.3 LoadLeveler
	5.1.4 Other scheduler products

	5.2 Debugging applications
	5.2.1 GDB
	5.2.2 TotalView

	Chapter 6. Checkpoint and restart support
	6.1 Why use checkpoint and restart?
	6.2 Technical overview
	6.2.1 Input/output considerations
	6.2.2 Signal considerations

	6.3 Checkpoint API
	6.3.1 Checkpoint library API

	6.4 Directory and file naming conventions
	6.5 Restart
	6.5.1 Determining latest consistent global checkpoint
	6.5.2 Checkpoint and restart functionality

	Part 2 System application information
	Chapter 7. Control system (Bridge) APIs
	7.1 API support overview
	7.1.1 Requirements
	7.1.2 General comments

	7.2 APIs
	7.2.1 API to the MMCS Resource Manager
	7.2.2 Resource Manager Memory Allocators API
	7.2.3 Resource Manager Memory Deallocators API
	7.2.4 Messaging API
	7.2.5 API to the MMCS job manager
	7.2.6 API to the MMCS partition manager
	7.2.7 State diagrams for jobs and partitions

	7.3 Control system API return codes
	7.3.1 Return codes specification

	Part 3 Performance analysis
	Chapter 8. Performance guidelines and tools
	8.1 Tooling overview
	8.1.1 IBM High Performance Computing Toolkit

	8.2 General performance testing
	8.2.1 Overview of the tools that are available on pSeries
	8.2.2 Overview of tools ported to Blue Gene/L

	8.3 Message passing performance
	8.3.1 MPI Tracer and Profiler

	8.4 CPU performance
	8.4.1 Hardware performance monitor
	8.4.2 Xprofiler

	8.5 I/O performance
	8.5.1 Modular I/O

	8.6 Visualization and analysis
	8.6.1 PeekPerf

	8.7 MASS and MASSV libraries

	Chapter 9. Performance counters and PAPI
	9.1 Introduction to the performance counter interface
	9.2 bgl_perfctr library API
	9.2.1 API details
	9.2.2 Ways to access the counters
	9.2.3 Available counter events
	9.2.4 Correct API usage

	9.3 PAPI implementation
	9.3.1 linux-bgl PAPI substrate
	9.3.2 PAPI event mapping for Blue Gene/L
	9.3.3 Modifications to PAPI

	9.4 Examples of using HPM libraries for Blue Gene/L
	9.4.1 PAPI library usage examples
	9.4.2 bgl_perfctr usage example

	9.5 Conclusions

	Appendix A. Statement of completion
	Appendix B. Electromagnetic compatibility
	Appendix C. Blue Gene/L safety considerations
	Important safety notices
	Stability and weight
	Circuit breakers
	Ac terminal blocks
	Line cord retention
	Bulk power module bay
	Cover access
	Fan assembly/cards

	Appendix D. MPI environment variables
	Setting environment variables
	BGLMPI_COLLECTIVE_DISABLE
	BGLMPI_EAGER, BGLMPI_RVZ and BGLMPI_RZV

	Glossary
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

